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1. Introduction  

Face recognition has motivated several research studies in the last years owing not only to 
its applicability and multidisciplinary inherent characteristics, but also to its important role 
in human relationship.  Despite extensive studies on face recognition, a number of related 
problems has still remained challenging in this research topic.  It is well known that humans 
can overcome any computer program in the task of face recognition when artefacts are 
present such as changes in pose, illumination, occlusion, aging and etc.  For instance, young 
children can robustly identify their parents, friends and common social groups without any 
previous explicit teaching or learning. 
Some recent research in Neuroscience (Kandel et al., 2000; Bakker et al., 2008) has shown 
that there is some new information about how humans deal with such high dimensional and 
sparse visual recognition task, indicating that the brain does not memorize all details of the 
visual stimuli (images) to perform face recognition (Brady et al., 2008).  Instead, our 
associative memory tends to work essentially on the most expressive information (Bakker et 
al., 2008; Oja, 1982). In fact, theoretical models (Treves and Rolls, 1994; O’Reilly and Rudy, 
2001; Norman and O’Reilly, 2003) have indicated that the ability of our memory relies on the 
capability of orthogonalizing (pattern separation) and completing (pattern prototyping) 
partial patterns in order to encode, store and recall information (O’Reily and McClelland, 
1994; Kuhl et al., 2010).  Therefore, subspace learning techniques have a close biological 
inspiration and reasonability in terms of computational methods to possibly exploring and 
understanding the human behaviour of recognizing faces. 
The aim of this chapter is to study the non-supervised subspace learning called Self-
Organizing Map (SOM) (Kohonen, 1982; Kohonen, 1990) based on the principle of 
prototyping face image observations.  Our idea with this study is not only to seek a low 
dimensional Euclidean embedding subspace of a set of face samples that describes the 
intrinsic similarities of the data (Kitani et al., 2006; Giraldi et al., 2008; Thomaz et al., 2009; 
Kitani et al., 2010), but also to explore an alternative mapping representation based on 
manifold models topologically constrained. 
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More specifically, the purpose of this work is to navigate on the locally optimal pathways 
composed of the SOM neurons to minimize inappropriate mappings where the standard 
SOM might show significant discontinuities and compare such visualization procedures on 
the original image space to understand the most important information captured by the 
non-supervised model.  To minimize image variations that are not necessarily related to 
differences between the faces, we will carry out experiments on frontal face images available 
from two distinct public face databases that have been previously aligned using affine 
transformations and the directions of the eyes as a measure of reference.  In this way, the 
pixel-wise features extracted from the images correspond roughly to the same location 
across all subjects. In addition, in order to reduce the surrounding illumination and some 
image artefacts due to distinct hairstyle and adornments, all the frontal images have been 
cropped to the size of 193x162 pixels, had their histograms equalized and have been 
converted to 8-bit gray scale.  Our experimental results on the two distinct face image sets 
show that although the standard SOM can explain the general information extracted by its 
neurons, its intrinsic self-organized manifolds can be better described by an algorithm based 
on the principle of the locally optimal pathways and the idea of navigating on the graphs 
composed of the standard SOM neurons. 
The remaining of this chapter is organized as follows.  In the next section, we briefly review 
some literature about perceptual and cognitive processes related to human memory and the 
mechanisms of pattern completion and pattern separation.  Next, in the third section, we 
provide some background definition of SOM and highlight shortly its biological principle of 
organization that inspired Kohonen in the early eighty’s.  Also, in the same section, we 
introduce the standard SOM algorithm based on the competitive learning rule.  The main 
contribution of the chapter is then presented in the subsequent subsection entitled A Self-
Organized Manifold Mapping (SOMM) Algorithm.  In this subsection, we describe a new 
algorithm that is able to understand the information extracted from the data, identifying and 
explaining the nature of the groups or clusters defined by the SOM manifolds.  The two 
distinct public face databases used to carry out the experiments are described in the fourth 
section.  Next, in the fifth section, we show several experimental results to demonstrate the 
effectiveness of the SOMM algorithm on providing an intuitive explanation of the 
topologically constrained manifolds modelled by SOM in well-framed face image analysis.  
Finally, in the last section of the chapter, we conclude this work, summarizing its main 
points. 

2. Neurological and psychological aspects 

Several perceptual and cognitive processes guide the task of face recognition in humans.  
However, one of the most important processes is the memory.  Humans do not memorize all 
the details and features received by the sensory system (Purves et al., 2001).  In fact, the 
human brain has an outstanding capability of forgetting useless information (Brady et al., 
2008, Purves et al., 2001).  
Basically, human memory can be divided into two groups: declarative and non-declarative 

memory (Purves et al., 2001).  Declarative memory is related to memorizing facts and events 

and can be accessed for conscious recollection.  Facts are information learned during a high 

level cognition process, such as studying some specific subject.  Events are information that 

one has had as a life experience, for example: birthday, wedding, etc.  Episodes at non-

declarative memories, on the other hand, are information that cannot be accessed formally.  
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In other words, it cannot be explained explicitly by words and neither how it occurs nor 

happens.  Examples of non-declarative memory are: physical skills such as swimming, 

riding a bicycle, or emotional responses such as fear, happiness, etc.  Additionally, 

memories are also categorized as short-term-memory and long-term-memory (Purves et al., 

2001).  Short-term memories have a limited capacity to hold information and consequently 

retain it during short period of time (Anderson; 2005), but long-term ones tend to retain it 

permanently.  The process that converts information into long-term memory is known as 

memory consolidation (Bear, Connors, Paradiso; 2007).  The memory consolidation is part of 

our learning process and is strongly necessary, for instance, to the face-matching task 

(Kandel et al., 2000). 

The brain area responsible for storing the declarative memory is called the Medial Temporal 

Lobe (MTL) (Bear, Connors, Paradiso; 2007).  The MTL is a complex interconnected systems 

of the brain and one of its most important structures is the hippocampus.  Recent 

experiments carried out on rats have showed that lesions at the hippocampus might affect 

our capability of learning and retaining information (Bear, Connors, Paradiso; 2007).  Yet, in 

the past, a computational model presented by Treves & Rolls (Treves and Rolls, 1994) had 

already indicated that some parts of the hippocampus seem to create a sparse and 

orthogonalized representation of our sensory input and episodic memories.  Currently, 

there is no doubt that the hippocampus plays an important role to encode new episodic 

memories and, additionally, to prevent the risk of forgetting past memories (Kandel et al., 

2000, Kuhl et al., 2010). 

Using high-resolution (1.5 millimeters isotropic voxels) functional Magnetic Resonance 

Imaging (fMRI), Bakker et al. (Bakker et al., 2008) have studied the activity in the human 

brain MTL area on a set of pattern visualization experiments.  The experiments consisted of 

presenting to each one of a total of eighteen volunteers a sequence of pictures of common 

objects, such as apples, toys duck, thread balls, wall outlet and etc.  The set of pictures used 

is composed of 144 subsets of slightly different images of the same object, with essentially 

variation in pose and rotation. The authors have noticed that several brain structures of the 

MTL area, especially a specific area of hippocampus named CA1, have been activated when 

pictures of the same object have been presented repetitively and in a interleaved way. 

In fact, our brain process of retrieving information can be further described by two main 

mechanisms: pattern completion and pattern separation (Kuhl et al., 2010).  The mechanism 

of pattern completion is essentially related to the problem where the incoming pattern of 

some sensory input and the pattern stored in the memory are not exactly the same, but share 

some similarities.  In the mechanism of pattern separation, the similarities between the 

incoming and stored patterns, if do exist, are minimal and both patterns have, in contrast, a 

strong degree of dissimilarities that can be mathematically considered as non-correlated or 

orthogonal. 

This work focuses on the mechanism of pattern completion and the role of the human brain 

hippocampus as an associative memory to propose a new algorithm for the SOM 

competitive neural network proposed by Kohonen (Kohonen; 1982).   Since this pioneering 

work, it has been argued that SOM is not only a computational approach for data mining 

and clustering, but also a credible framework at the functional and neural levels to create a 

self-organization of the input space (Rolls; 2007) and model the human memory activities of 

encoding and retrieving information. 
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3. Self-Organizing Map (SOM) 

A formal definition of organization is quite complex because it depends on the context. 
Some crystal structures are considered highly organized due to their symmetry and 
structural repetition. Functions and hierarchy organize all biological structures, such as the 
nervous system, digestive system, circulatory system, etc (Kandel et al., 2000).  However, in 
both cases, the definitions of “organization” are ambiguous. 
For crystal structures, one finds symmetries and redundancy; on the other hand, a biological 
system is organized by functions. However, both definitions have in common the sense of 
similarity that allows us to cluster and hierarchize input patterns. In other words, 
organization is an association and composition of parts to explore a whole structure or 
behavior (Asby, 1962; Atlan, 1974). 
According to the definition above, clustering is quite related with similarities or even 
dissimilarities.  SOM is an unsupervised neural network developed by Kohonen (Kohonen, 
1982; Kohonen, 1990) based on the biological principle of somatosensory organization. 
According to Kandel et al. (Kandel et al., 2000), there is a functional organization of 
perception and movement in human and mammals brain.  There is also a specialized area in 
the brain cortex that organizes information coming from sensory pathways or going to 
motor control.  Somatosensory cortex is the area accounting for organizing stimulus coming 
from different sensory systems, grouping them according to their similarities.  In a similar 
fashion, motor cortex has surfaces dedicated to controlling parts of the body related to 
movement.  This organization in substructures by functions is well-known by 
neuroscientists, however, why the brain creates this organization remains unclear (Purves et 
al., 2001). 
Based on the biological principle of organization, Kohonen postulates that there are some 
reasons to have this organization:  a) grouping similar stimulus minimizes neural wiring; b) 
creates a robust and logical structure in the brain, avoiding “crosstalk”; c) from information 
organized by attributes a natural manifold structure from input patterns can emerge; and d) 
reduces dimensionality by creating representations (codebooks vectors) that preserves 
neighborhood relationship between input patterns.  Each codebook, also known as BMU 
(Best Match Unit), retains the most important invariant features that represent a group of 
input patterns, characterizing an arguable but intuitively analogous behaviour to the pattern 
completion mechanism of the human brain. 

3.1 The Standard SOM algorithm 

SOM can be defined as an unsupervised artificial neural network that maps a nonlinear 
relationship between input patterns in high dimensional space and makes this relationship 
an ordered and smoothed mapping of input data manifold.  SOM has a competitive learning 
rule, but does not have a rule of convergence or function to minimize. Instead, the algorithm 
of SOM works with a number of interactions during weight adaptation. 
Figure 1 illustrates a Kohonen network of 3 3  output neurons fully connected to the 
input layer composed by only two neurons.  The network is created from a 2D lattice of 
‘nodes’ composed of the output neurons and the input layer.  Each output neuron has a 
specific position   2,x y   and contains a vector of weights of the same dimension as the 
input vector.  That is, if the network has m  output neurons and the training set consists of 
vectors         0 1 2 1

, , ,..., n
nx t x t x t x t   , then we have m n  weights  ijw t  , 

0 1 0 1,  i M j m      to set.  

www.intechopen.com



Exploring and Understanding the High Dimensional and 
Sparse Image Face Space: a Self-Organized Manifold Mapping 

 

229 

 

Fig. 1. An illustration of Kohonen network. Note that all input neurons are connected to all 
output nodes. 

The algorithm can be described as follows: 
1. Initialize network, 

1.1) Define the number m  of output neurons that will compose the map and their 

lattice position (nodes): 2

0 1 2 1
, , ,..., mr r r r   , 

1.2) Define  ijw t , 0 1 0 1,  i M j m      , to be the weight from input neuron i  

to output neuron j at time t , where M is the size of the set of input training 

patterns.  Initialize weights to small random values. Set the initial radius of 

neighbourhood around node j , denoted by  0j  to be large, 

1.3) Define the number of iteration T M ,  

2. Present the input vector         0 1 2 1
, , ,..., n

nx t x t x t x t  , where  ix t  is sent to the 

input node i  at the time t , where n  is the dimensionality of input space, 

3. Compute the distance jd  between the input vector  ix t  and each output neuron j , 

given by    
0 1

minj i ij
i M

d x t w t
  

  , 0 1j m   , 

4. Designate the BMU neuron cr  to be one  with minimum jd , 

Update the weights for node cr  and its neighbors, defined by the neighborhood 

size  c t .  New weights will be: 

            1ij ij ci i ijw t w t t h t x t w t    ,  

where  t  is the learning factor:  

0
1( )

t
t

T
     

 
,  

 cih t  gives the amount of influence that a neuron ir  has on its learning as a function of 

its distance from the BMU neuron cr  :  
2

2
2

( ) exp
( )

c i
ci

c

r r
h t

t

 
  
 
 

, 

Finally,  c t  define the radius of influence of the BMU, which can be computed by: 

  0
expc

c

t
t 


 

  
 

, and c  is an integer number related to the time of influence of the 

neighbor radius, 
5. Return to step 2 until t T . 
From an initial distribution of random weights, the SOM eventually settles into a map of 
stable zones after some iterations. The term  t  is a gain term that decreases in time so 
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slowing the learning process.  Besides, the neighbourhood size  c t  decreases in size as 
time goes on, thus localizing the area of maximum activity. 

3.2 A Self-organized manifold mapping algorithm 
Several studies have provided us with some insight about how to interpret the output of 

SOMs (Brugger et al., 2008; Bauer & Pawelzik, 1992; Kiviluoto, 1995).  One of the best-

known tools in this regard is the U-Matrix (Ultsch, 2003) that gives us a quantitative 

summary of the topological relationships between similar data samples.  The result of the U-

Matrix map is a complex image (coloured or monochromatic) indicating peaks and valleys 

that represent Euclidean distances between neighboured neurons. 

Essentially, the resulting map preserves the topological distribution at the input space of the 

entire sample data considered.  Figure 2 illustrates an example of a coloured U-Matrix map 

and its hexagonal 5 4  SOM, where each neuron ijw , 0 0 1,  i M j m     , has been 

arbitrary identified by a number.  It is possible to see at least two groups of patterns in blue 

separated by a central chain in red.  The chain of high values in the U-matrix indicated by 

the reddish colours is a representation of some prototypes that are far from both groups and 

probably describe some data outliers with distinct information about the dataset considered. 
 

 

 

Fig. 2. An illustration of a coloured U-Matrix map and its corresponding SOM where each 
neuron has been arbitrary identified by a number. 

However, to understand the relationship between the information captured in the U-Matrix 

and the samples, as well as to identify and explain the nature of the groups or clusters 

defined by the manifolds, it would be helpful to represent all the SOM neurons and their 

corresponding similarities and dissimilarities on the original data space. 

Based on the principle of the locally optimal pathway and the idea of navigating on the 

neurons that compose the SOM, we propose an algorithm named Self-Organized Manifold 

Mapping (SOMM) that seeks the pathways or manifolds described by the standard SOM.  

The SOMM algorithm can be described as follows: 

a. Calculate the SOM composed of k neurons using the standard Kohonen´s algorithm. 

Create the list  0 1 2 1, , ,...,A k  ; 

b. Calculate pairwisely the Euclidean distance ijd of all k neurons; 
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c. Create a (k x k) matrix with all pairwise distance between all k neurons; 

d.  Create the list V NULL . Set 
1

r A , mind   , 0i  ;  

d.1) Insert  V r , 

d.1.a) 1i i  .  

d.2) If A V    go to (e). 

d.3) Find   1
min , ,sr i id d s A V V   . Let s   such that 

s r
d d  . 

d.4) If  *s V   go to (e) Else set r s  and  V r . Go to step (d.1a). 

e. LOOP: 

e.1) If iV LOOP go to (f)  

e.2) Find  1
min( , , )sr i id d s V V V   . Let s   such that 

s r
d d  . 

e.3) Insert  V s , 1i i  . 

f. f) Group BMUs according the order: 
1 2
, ,...,V V  

g. If A V    then 

g.1)    A A V V   , 

g.2) k = number of elements in A, 

g.3) go to (b). 

A simple way to explain this algorithm is to understand the output neurons, represented by 

the weights ijw  computed in the SOM algorithm, as a set of nodes of a fully connected 

graph (Cormen et al. 2001; Pölzlbauer, Rauber, Dittenbach, 2005; Mayer, Rauber, 2010 ) in 

the parameter space.  Each edge in this graph has a cost given by the Euclidean distance 

between its ends. Therefore, the k k  matrix calculated in steps (b)-(c) is a symmetric one 

holding the edge costs in the graph. 

More specifically, in step (d) it is created a list V and in step (d.1) the algorithm inserts in 

V each visited node. Given a node r , the step (d.3) seeks for the closest neuron s   such 

that  1 ,i is V V V
  ; that means, s   does not belong to the last visited edge of the 

graph.This step implements a greedy algorithm that makes the locally optimal choice at 

each stage generating a locally optimal pathway that connects a subset of SOM neurons. This is 

necessary because the idea is to generate a pathway that crosses different clusters but 

without losing the notion of similarity in the parameter space.  If  *s V  then we have a 

loop, like the one exemplified in Figure 3.  In this case, the pathway that starts at node 1 

ends in the loop        11 3 4 11   .  The step (e) completes the pathway, which in this 

figure is composed by the sequence:            1 2 11 3 4 11V       . 
 

 

Fig. 3. Two connected pathways with a common loop. The first one starts at node 1 and 

finally enters in the loop         11 3 4 11   , whereas the second path starts in the node 

13 and ends in the same loop.  
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Additionally, the step (g) identifies that there are nodes still not visited by the algorithm.  

Following the idea of crossing different clusters we must allow that a node r A V  might 

be connected with a node s V , like node 12r   shown in Figure 3.  In terms of the 

algorithm, it is equivalent to consider V as a node in a new graph (steps (g.1)-(g.2)), 

compute the new distances in step (b) and seek for another pathway as before.  Therefore, 

this novel algorithm brings the possibility of uncovering clusters not visible by U-Matrix 

technique or the standard SOM approach. 

4. Face databases 

We have used frontal images of two distinct face databases publicly available to carry out 

the experiments. The first database is maintained by the Department of Electrical 

Engineering of FEI, São Paulo, Brazil (Thomaz and Giraldi, 2010).  In this dataset, the 

number of subjects is equal to 200 (100 men and 100 women) and each subject has two 

frontal images (one with a neutral or non-smiling expression and the other with a smiling 

facial expression), so there is a total of 400 images with no significant differences in skin 

colour to perform the high dimensional and sparse image face analysis.  The second dataset 

is the well-known FERET (Philips et al., 1998) database.  In the FERET database, we have 

considered only 200 subjects (107 men and 93 women) and each subject has two frontal 

images (one with a neutral or non-smiling expression and the other with a smiling facial 

expression), providing a total of 400 images with significant differences in skin colour to 

perform as well the experiments. 

To minimize image variations that are not necessarily related to differences between the 

faces, we previously aligned all the frontal face images using affine transformations and the 

directions of the eyes as a measure of reference so that the pixel-wise features extracted from 

the images correspond roughly to the same location across all subjects. Also, in order to 

reduce the surrounding illumination and some image artefacts owing to distinct hairstyle  

and adornments, all the frontal images were cropped to the size of 193x162 pixels, had their 

histograms equalized and were then converted to 8-bit gray scale.  Figure 4 illustrates some 

samples of the FEI (top row) and FERET (bottom row) datasets, highlighting samples of 

distinct gender, age, facial expression and ethnicity. 
 

 

Fig. 4. Some samples of the FEI (top row) and FERET (bottom row) frontal images used in 
the experiments after the pre-processing procedure that aligned, cropped and equalized all 
the original images to the size of 193x162 pixels. 
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5. Experimental results 

All the experiments have been carried out using the well-known SOM-Toolbox for Matlab 
created and released by CIS-Helsinki University of Technology (Vesanto, 1999).  To address 
the memory issues related to computing the SOM on high-dimensional datasets, instead of 
analysing the SOMM algorithm directly on the pre-processed FEI and FERET face images, 
Principal Component Analysis (PCA) (Fukunaga, 1990) has been applied first to provide 
dimensionality reduction.  However, in order to reproduce the total variability of the sample 
data, we have composed the PCA transformation matrix by selecting all the principal 
components with non-zero eigenvalues.  Although some of these principal components 
might represent non-relevant information to understand the differences between the data 
samples, we are able to represent and further reconstruct the original images without 
adding any dimensionality reduction artefacts (Kitani et al., 2010).  
We have divided our experimental results into two parts. Firstly, we have carried out some 
face image analyses to understand and visualize the pathways found by the SOMM 
algorithm where there are subtle differences between the data samples.  Thus, we have used 
a subset of the FEI database composed of non-smiling and smiling face images of females 
only.  Then, in the second part, we have investigated the usefulness of the SOMM algorithm 
on exploring and understanding the high dimensional and sparse image face space where 
the differences between the samples are not only related to facial expression but also to 
gender, ethnicity and age.  The goal of the second experiment is to pose an alternative 
analysis where the differences between the samples are evident, using the whole two FEI 
and FERET datasets described in the previous section. 
Figure 5 illustrates the standard SOM (top left), the pathways described by the SOMM 
algorithm (bottom left) and their corresponding visualization (top and bottom right) on the 
original face space using a subset of the FEI database composed of non-smiling and smiling 
face images of females only.  It is important to highlight that since the SOMM navigation is 
based on the principle of the locally optimal path, it is only possible to visit a new neuron 
when its distance is minimal regarding all the other neurons previously visited.  Therefore, 
the algorithm explicitly describes the discontinuities present at the high dimensional face 
image space due to the limited number of input samples.  In other words, it is possible to see 
that SOMM could not find a unique graph that defines a single locally optimal path from 
non-smiling to smiling female face images.  In fact, as shown on the bottom right part of 
Figure 5, we can see three feasible pathways or clusters: (1) samples that describe a definite 
smiling facial expression; (2) samples that describe the visual differences from non-
convincing to convincing smiling facial expressions; (3) samples that describe the visual 
differences from non-convincing to convincing non-smiling facial expressions. 
In the next two figures, we show the behaviour of the SOMM algorithm on navigating at 
high dimensional and sparse image face spaces where the differences between the samples 
are not only related to facial expression but also to gender, ethnicity and age.  Figure 6 
illustrates the standard SOM (top left), the pathways described by the SOMM algorithm 
(bottom left) and their corresponding visualization (top and bottom right) on the original 
face space using the whole set of frontal face images of the FEI database with both gender 
and facial expression differences. 
Analogously to the previous results, three clusters have been found by the SOMM 
algorithm.  Despite the gender differences available on this dataset, SOM has not clearly 
extracted this information on its standard mapping and neither SOMM has described it in a 
separated pathway or cluster.  The smallest SOMM cluster, composed of 6 neurons, shows 
samples that describe a definite smiling facial expression with slightly more male facial 
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Fig. 5. Exploring the similarities and discontinuities of the high dimensional image face 
space composed of smiling and non-smiling female face images only of FEI database: 
standard SOM of size 8x5 (top left); visualization of the SOM neurons (top right); SOMM 
algorithm navigation (bottom left); visualization of the SOMM clustering (bottom right). 

traits than female ones.  A similar description is valid for the second smallest SOMM cluster, 
composed of 8 neurons, but rather with more female facial traits.  However, the largest 
cluster clearly shows that the most expressive information captured by SOMM has been 
related to changes in facial expression, no matter the gender of the subjects analysed. 
The last experimental results using the FERET dataset are presented in Figure 7.  It can be 
seen that the main expressive information captured by SOM have been based on ethnicity 
and facial expression changes.  The visualization of the standard SOM, illustrated on the top 
right part of Figure 7, shows clearly how the data set has been generally spread along the 
high dimensional face image space.  It is possible to see that when we move from top to 
bottom we are able to see differences related mainly to ethnicity, no matter the facial 
expression or gender of the subjects.  Besides, navigation on the SOM neurons from left to 
right highlights essentially information about changes on facial expression with minor 
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Fig. 6. Exploring the similarities and discontinuities of the high dimensional image face 
space composed of the whole set of frontal face images of the FEI database: standard SOM of 
size 8x5 (top left); visualization of the SOM neurons (top right); SOMM algorithm 
navigation (bottom left); visualization of the SOMM clustering (bottom right). 

differences related to gender and ethnicity features.  However, not all these pathways are 

feasible due to the discontinuities of the high dimensional and sparse image face space.  In 

fact, as described by the SOMM algorithm, there are only five clusters possible to move 

along based on the principle of the locally optimal path.  Therefore, although the standard 

SOM can explain the general information extracted by its neurons, its intrinsic self-

organized manifolds have been only explicitly explained by the SOMM algorithm.  
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Fig. 7. Exploring the similarities and discontinuities of the high dimensional image face 
space composed of some frontal face images of the FERET database: standard SOM of size 
7x6 (top left); visualization of the SOM neurons (top right); SOMM algorithm navigation 
(bottom left); visualization of the SOMM clustering (bottom right). 

6. Conclusion 

In this chapter, we proposed and implemented a self-organized manifold mapping 

algorithm that allows a better understanding of the information captured by the standard 

SOM neurons.  The method is able not only to identify and explain the nature of the clusters 

defined by the SOM manifolds, but also to represent all the SOM neurons and their 

corresponding similarities and dissimilarities on the original data space.  To describe the 

possible self-organized pathways to navigate on the high dimensional and sparse image face 
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space, we constructed a neighbourhood graph on the SOM neurons based on the principle 

of the locally optimal path.  Such graph visualization method explicitly provides 

information about the number of clusters that describes the sample data under 

investigation, as well as the specific features extracted and explained by them.  We believe 

that the algorithm proposed might be a powerful tool in SOM analysis, providing an 

intuitive explanation of the topologically constrained manifolds modelled by SOM and 

highlighting some perceptual properties commonly present in well-framed face image 

analysis such as facial expression, ethnicity and gender. 
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