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France 

1. Introduction  

Face detection is a fundamental prerequisite step in the process of face recognition. It 
consists of automatically finding all the faces in an image despite the considerable variations 
of lighting, background, appearance of people, position/orientation of faces, and their sizes. 
This type of object detection has the distinction of having a very large intra-class, making it a 
particularly difficult problem to solve, especially when one wishes to achieve real time 
processing. 
A human being has a great ability to analyze images. He can extract the information about it 
and focus only on areas of interest (the phenomenon of attention). Thereafter he can detect 
faces in an extremely reliable way. Indeed, a human being is able to easily locate faces in its 
environment despite difficult conditions such as occlusions of parts of a face and bad 
lightening. Many studies have been conducted to try to replicate this process, automatically 
using machines, because face detection is considered as a prerequisite for many computer 
vision application areas such as security, surveillance, and content based image retrieval.  
Over the last two decades multiple robust algorithmic solutions were proposed. However, 
researches in the field of computer vision and pattern recognition in particular tend to focus 
on the algorithmic and functional parts. This generally leads to implementations with little 
constraints of time, computing power and memory. Most of these techniques, even if they 
achieve good performance in terms of detection, are not suited for real time application 
systems. Nonetheless, Boosting–based methods, firstly introduced by Viola and Jones in 
(Viola & Jones, 2001; 2002), has led the state-of-the-art in face detection systems. These 
methods present the first near real time robust solution and by far the best speed / detection 
compromise in the state-of-the-art (up to 15 frames/s and 90% detection on 320x240 
images). This family of detectors relies upon a cascade of several classification stages of 
progressive complexity (around 20-40 stages for face detection). Depending on its 
complexity, each stage contains several classifiers trained by a boosting algorithm (Freund & 
Schapire, 1995; Lienhart, Kuranov, & Pisarevsky, 2003; Viola & Jones, 2002) 
These algorithms help achieving a linear combination of weak classifiers (often a single 
threshold), capable of real time face detection with high detection rates. Such a technique 
can be divided into two phases: Training and detection (through the cascade). While the 
training phase can be done offline and might take several days of processing, the final 
cascade detector should enable real-time processing. The goal is to run through a given 
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image in order to find all the faces regardless of their scales and locations.  Therefore, the 
image can be seen as a set of sub-windows that have to be evaluated by the detector which 
selects those containing faces. This approach is optimized for a sequential implementation 
but this implementation has two major drawbacks: high dependency between the different 
stages of the detector and irregularity in time processing. 
Most of the Boosting–based face detection solutions deployed today are general purpose 
processors software. But with the development of faster camera sensors which allows higher 
image resolution at higher frame-rates, these software solutions are not always working in 
real time.  Even more the current technology of multi-core processor cannot be exploited to 
its full limits because of the dependency between the different stages. Seeking some 
improvement over the software, several attempts  were made trying to implement face 
detection on multi-FPGA boards and multiprocessor platforms using programmable 
hardware , however in almost all the cases the resulting implementation are capable to 
accelerate the detection but degrade the detection accuracy. 
 The major difficulties in a parallel implementation of the cascade detector (boosted based 
methods) are the full dependency between the consecutive stages and classifier repartition 
which is optimized for sequential implementation. Based on this observation and our belief 
that a useful acceleration of the face detection should not compromise the detection 
performances, our main contribution is a new structure that exploits intrinsic parallelism of 
a boosting-based object detection algorithm without compromising its accuracy. At first we 
present a new stage grouping capable of equally partition the computation complexity of 
the algorithm. Based on this partitioning, a new parallel model is proposed. This model is 
capable of exploiting the parallelism and the pipelining in these algorithms, and provides 
regularity in time processing. It can also be customizable according to the cascade in use. 
This chapter also shows that a hardware implementation is possible using high-level 
SystemC description models. SystemC enables PC simulation that allows simple and fast 
testing and leaves our structure open to any kind of hardware or software implementation 
since SystemC is independent from all platforms. The processing blocs are modeled using 
SystemC. We show that, using a SystemC description model paired with a mainstream 
automatic synthesis tool, can lead to an efficient embedded implementation. We also display 
some of the tradeoffs and considerations, for this implementation to be effective.  
Finally, using the results of the processing blocks’ implantations, we define a new architectural 
structure of the implementation including the interconnectivity of the memory blocks and the 
number and the type of the used memories. This final system proves capable of achieving 47 
frames per second for 320x240 images as well as keeping the same detection accuracy as the 
original method. In the end, we show a detailed comparison between our system and the other 
state-of-the-art embedded implementation for boosting based face detection. 
This chapter can be considered as a continuation of previously published work (Khattab, 

Dubois & Miteran 2009) in which we proposed a new architecture for an embedded real-

time face detector based on a fast and robust family of methods, initiated by Viola and 

Jones. However only parts of the processing blocks were implemented, memories types and 

interconnection wasn’t optimized and the system validation was made in simulation 

2. Review of Boosting based object detectors  

Object detection is defined as the identification and the localization of all image regions that 
contain a specific object regardless of the object’s position and size, in an uncontrolled 
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background and lightning. It is more difficult than object localization where the number of 
objects as well as their size are already known. The object can be anything from a vehicle, 
human face (Figure 1), human hand, pedestrian (Viola, Jones, & Snow, 2003), etc. The 
majority of the boosting based object detectors work-to-date has primarily focused on 
developing novel face detection since it is very useful for a large array of applications.  
Moreover, this task is much trickier than other object detection tasks, due to the typical 
variations of hair style, facial hair, glasses and other adornments.  
 

 

Fig. 1. Example of face detection 

2.1 Theory of Boosting Based object detectors 
2.1.1 Cascade detection 
The structure of the cascade detector (introduced by Viola and Jones) is that of a 
degenerated decision tree. It is constituted of successively more complex stages of classifiers 
(Figure 2). The objective is to increase the speed of the detector by focusing on the promising 
zones of the image. The first stage of the cascade will look over for these promising zones 
and indicates which sub-windows should be evaluated by the next stage. If a sub-window is 
labeled at the current classifier as non-face then it will be rejected and the decision upon it is 
terminated. Otherwise it has to be evaluated by the next classifier. When a sub-window 
survives all the stages of the cascade, it will be labeled as a face. Therefore the complexity 
increases dramatically with each stage, but the number of sub-windows to be evaluated will 
decrease more tremendously. Over the cascade the overall detection rate should remain 
high while the false positive rate should decrease aggressively.  
 

No object 

Object 

 

21 3 4

Rejected Sub-windows 

All Sub-windows Further processing

 

Fig. 2. Cascade detector 
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2.1.2 Features 
To achieve a fast and robust implementation, Boosting based faces detection algorithms use 
some rectangle Haar-like features (shown in Figure 3) introduced by (Papageorgiou, Oren, 
& Poggio, 1998): Two-rectangle features (A and B), Three-rectangle features (C) and Four-
rectangle features (D). They operate on grayscale images and their decisions depend on the 
threshold difference between the sum of the luminance of the white region(s) and the sum of 
the luminance of the gray region(s). 
 

A B C D 

+1
+1

+1 +1 +1

+1
-1

-1
-1

-1

-1

 

Fig. 3. Rectangle Features 

Using a particular representation of the image so-called the Integral Image (II), it is possible 
to compute very rapidly the features. The II is constructed of the initial image by simply 
taking the sum of luminance value above and to the left of each pixel in the image: 

 
' , '

( , ) ( ', ')
x x y y

ii x y i x y
 

   (1) 

 Where ii(x,y) is the integral image and i(x,y) is the original image pixel’s value. Using the 
Integral Image, any sum of luminance within a rectangle can be calculated from II using 
four array references (Figure 4). After the II computation, the evaluation of each feature 
requires 6, 8 or 9 array references depending on its type. 
However, assuming a 24x24 pixels sub-window size, the over-complete feature set of all 
possible features computed in this window is 45,396: it is clear that a feature selection is 
necessary in order to keep real-time computation time compatibility. This is one of the roles 
of the Boosting training step.  
 

P1 
A B

C D

P2

P3 P4  

Fig. 4. The sum of pixels within Rectangle D can be calculated by using 4 array references; 
SD= II [P4] – (II [P3] + II [P2] – II [P1]) 

2.1.3 Weak classifiers and Boosting training 
A weak classifier hj(x) consists of a feature fj, a threshold θj and a parity pj indicating the 
direction of the inequality sign:  

 
1

0

   ( )
( )

  
j j j j

j
if p f x p

h x
otherwise


 


 (2) 

Boosting algorithms (Adaboost and variants) are able to construct a strong classifier as a 
linear combination of weak classifiers (here a single threshold) chosen from a given, finite or 
infinite, set, as shown in Equation 3.  
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Where θ is the stage threshold, αt is the weak classifier’s weight and T the total number of 
weak classifiers (features). This linear combination is trained in cascade in order to have 
better results. 
There, a variant of Adaboost is used for learning object detection; it performs two important 
tasks: feature selection from the features defined above; and constructing classifiers using 
selected features. The result of the training step is a set of parameters (array references for 
features, constant coefficients of the linear combination of classifiers, and thresholds values 
selected by Adaboost). This set of features parameters can be stored easily in a small local 
memory. 

2.2 Previous implementations  

The state-of-the-art initial prototype of this method, also known as Viola-Jones algorithm, 
was a software implementation based on trained classifiers using Adaboost. The first 
implementation shows some good potential by achieving good results in terms of speed and 
accuracy; the prototype can achieve 15 frames per second on a desktop computer for 
320x240 images. Such an implementation on general purpose processors offers a great deal 
of flexibility, and it can be optimized with little time and cost, thanks for the wide variety of 
the well-established design tools for software development. However, such implementation 
can occupy all CPU computational power for this task alone; nevertheless, face/object 
detection are considered as prerequisite step for some of the main application such as 
biometric, content-based image retrieval systems, surveillance, auto-navigation, etc. 
Therefore, there is more and more interest in exploring an implementation of accurate and 
efficient object detection on low cost embedded technologies. The most common target 
technologies are embedded microprocessors such as DSPs, pure hardware systems such as 
ASIC and configurable hardware such as FPGAs. 
Lot of tradeoffs can be mentioned when trying to compare these technologies. For instance, 
the use of embedded processor can increase the level of parallelism of the application, but it 
costs high power consumption,  all while limiting the solution to run under a dedicated 
processor. 
Using ASIC can result better frequency performance coupled with high level of parallelism 
and low power consumption. Yet, in addition to the loss of flexibility, using this technology 
requires a large amount of development, optimization and implementation time, which 
elevates the cost and risk of the implementation. 
FPGAs can have a slightly better performance/cost trade-offs then previous two, since it 
permits high level of parallelism coupled with some design flexibility. However some 
restriction in design space, costly rams connections as well as lower frequency comparing to 
ASIC, can rule-out it use for some memory heavy applications. 
For our knowledge, few attempts were made trying to implement Boosting based face 
detection on embedded platforms. Nevertheless, these proposed architectures were 
configurable hardware based implementations and most of them couldn’t achieve high 
detection frame rate speed while keeping the detection rate close of that’s of the original 
implementation. For instance, in order to achieve 15 frames per second for 120x120 images, 
Wei et al. (Wei, Bing, & Chareonsak, 2004) choose to skip the enlargement scale factor from 
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1.25 to 2. However such a maneuver would lower the detection rate dramatically. 
Theocharideset al. (Theocharides, Vijaykrishnan, & Irwin, 2006) has proposed a parallel 
architecture taking advantage of a grid array processor. This array processor is used as 
memory to store the computation data and as data transfer unit, to aid in accessing the integral 
image in parallel. This implementation can achieve 52 frames per second at a 500 MHz 
frequency. However, details about the image resolution were not mentioned. Another 
complex control scheme to meet hard real-time deadlines is proposed in (M Yang, Wu, 
Crenshaw, Augustine, and Mareachen 2006). It introduces a new hardware pipeline design for 
Haar-like feature calculation, and a system design exploiting several levels of parallelism. But 
it sacrifices the detection rate and it is better fitted for portrait pictures.  And more recently, an 
implementation with NoC (Network-on-Chip) architecture is proposed in (Lai, Marculescu, 
Savvides, & Chen, 2008) using some of the same element as (Theocharides, Vijaykrishnan, & 
Irwin, 2006), this implementation achieves 40 frames per second for 320x240 images. However 
detection rate of 70% was well below the software implementation (82% to 92%), due to the 
use of only 44 features (instead of about thousands). 

3. Global parallelism 

In this section we provide a detailed analysis of the boosting based face detection algorithm, 

in order to extract as much useful information for designing an efficient parallel 

architecture. For this, we first present an analysis of the sequential implementation. We then 

analyze the different stages of the cascade, and the computational complexity of each one of 

them. Finally, we propose a parallel structure to accelerate this algorithm. 

3.1 Sequential implementation  

The strategy used in software implementation consists of processing each sub-window at a 

time. The processing on the next sub-window will not trigger until a final decision is taken 

upon the previous one i.e. going through a set of features as a programmable list of 

coordinate rectangles. The processing time of an image depends on two factors: the 

processing time of each sub-window and the number of sub-windows to process. 

The processing time of a sub-window can vary dramatically depending on the complexity of 

its content. For example, an image of uniform color will definitely take less time to process 

than an image containing several faces. For this reason, the cascade-like detection algorithms 

are irregular and not predictable.  In fact, Viola and Jones have already indicated that the 

speed of the cascade detector depends on the image content and accordingly the average 

number of weak classifiers evaluated per sub-window on an image sequence. Moreover, their 

tests showed that, on average, 10 weak classifiers are evaluated per sub-window. These tests 

were done using CMU image database (Rowley, Baluja, & Kanade, 1998). 

3.1.1 OpenCV implementation 

Several variants of Boosting based face detection can be found in today’s literature. However 
the principal of cascade detection remain the same in almost all of these variants. As for the 
cascade /classifiers, we chose to use the database found on Open Computer Vision Library 
(OpenCv1). OpenCV provides the most used trained cascade/classifiers datasets and face-

                                                 
1OpenCv. (2009). Open source computer vision library. http://sourceforge.net/projects/opencvlibrary/ 
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detection software today. The particular classifiers, used on this library, are those trained with 
a base detection window of 24x24 pixels, using Adaboost. These classifiers are created and 
trained, by Lienhart et al (Lienhart & Maydt, 2002) , for the detection of upright front face 
detection. The detection rate of these classifiers is between 80% and 92%, depending on the 
images Database. This cascade includes more than 2500 features spread on 25 stages. 
Using this sequential implementation, we decided to investigate each stage. For instance, the 
first stage classifier should be separated from the rest since it requires processing all the 
possible sub windows in an image, while each of the other relies on the results of previous 
stage and evaluates only the sub windows that passed through. 

3.1.2 Classification stages 

As mentioned earlier the first stage of the cascade must run all over the image and rejects 

the sub-windows that do not fit the criteria (no face in the window). The detector is scanned 

across locations and scales, and subsequent locations are obtained by shifting the window 

some number of pixels k. Only positive results trigger in the next classifier. 
The addresses of the positive sub-windows are stored in a memory, so that next classifier 
could evaluate them and only them in the next stage. Figure 5 shows the structure of such 
classifier. The processing time of this first stage is stable and independent from the image 
content; the algorithm here is regular.  
 

 

Yes

No 

Features 

Parameters 

Load II 

Values 

Integral 

Image II 

Decision 

End Shift & Scale

Positives Sub windows 

addresses  

Process 

next 

image

 

Fig. 5. First cascade stage 

The other classification stages, shown in Figure 6, do not need to evaluate the whole image. 

Each classifier should examine only the positive results, given by the previous stage, by 

reading their addresses in the memory, and then takes a decision upon each one (reject or 

pass to the next classifier stage). 

Each remaining stage is expected to reject the majority of sub-windows and keep the rest to 

be evaluated later in the cascade. As a result, the processing time depends largely on the 

number of positive sub-windows resulted from the previous stage. Moreover the classifier 

complexity increases with the stage level.   

3.1.3 Full sequential implementation analysis 

For a 320x240 image, scanned on 11 scales with a scaling factor of 1.25 and a step of 1.5, the 

number of total sub-windows to be investigated is 105,963. Based on tests done in (Viola & 

Jones, 2001), an average of 10 features are evaluated per sub-window. As a result, the 

estimated number of decision made over the cascade, for a 320x240 image, is 1.3 million as 
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Fig. 6. nth Stage classifier 

on average. Thereafter around 10 million memory access (since each decision needs 6, 8 or 9 
array references to calculate the feature in play). Note that the computation time of the 
decision (linear combination of constants) as well as the time needed to build the integral 
image, are negligible comparing to the overall memory access time. 
Considering the speed of the memory is 10 ns per access (100 MHz), the time needed to 
process a full image is around 100 ms (about 10 images per second). However, this rate can 
vary with the image’s content.  

3.2 Possible parallelism 

We applied the frontal face detector, "Discrete AdaBoost" of OpenCV,  on the CMU image 
database in order to analyze the number of sub-windows rejected per stage and 
subsequently the number weak classifiers (features) evaluated per sub-window. Indeed, 75 
081 800 sub-windows have triggered a total of 668 659 962 evaluations of weak classifiers. 
Hence, only 9 weak classifiers are evaluated per sub-window on average. 
Even more, these analysis revealed another major characteristic of the cascade 
implementation: The unbalance in processing loads between the different stages. This is 
caused by the fact that the boosting based face detection is optimized for sequential 
implementation. The training phase of the boosting methods is configured to reject as much 
sub-windows as early as possible.  
On average, about 35% of the total memory access (and processing) load takes place in each 
of the first two stages while less than 32% take place in all of the remaining stages combined 
In the rest of this section, we show how to take advantage of such unbalance in memory 
access in order to propose a feasible parallel model 

3.2.1 Pipeline solution 
The previous analysis of the OpenCV cascade revealed that more than a third of the 
memory access take place on each of the first two cascade stages while less than third in all 
remaining stages. This analysis leads us to suggest a new pipelined solution (shown in 
Figure 7) of 3 parallel blocks that work simultaneously: In the first two blocks we intend to 
implement respectively the first and second stage classifier, then a final block assigned to 
run over all remaining stages sequentially. 
Unlike the state-of-the-art software implementation, the proposed structure tends to run 
each stage as a standalone block. Nevertheless, some intermediate memories between the 
stages must be added in order to stock the positively-labeled windows addresses. 
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Fig. 7. Parallel structure 

The new structure proposed above can upsurge the speed of the detector in one condition: 
since that the computation complexity is relatively small and the time processing depends 
heavily on the memory access, an integral image memory should be available for each block 
in order to gain benefit of three simultaneous memory accesses. Figure 7 shows the 
proposed parallel structure. At the end of every full image processing cycle, the positive 
results from Block1 trigger the evaluation of Block2. The positive results from Block2 trigger 
the evaluation of Block3. And the positive results from Block3 are labeled as faces. It should 
be noted that blocks cannot process simultaneously on the same image i.e. if at a given 
moment Block1 is working on the current image In, then Block2 should be working on the 
previous image In-1 and Block3 should be working on the one before In-2. 
This structure requires data dependency between the parallel blocks. The addresses of the 
sub-windows classified positively by Block 1 shall be transmitted to Block 2. Similarly, the 
addresses of sub-windows classified positively by Block 1 and 2 respectively, must be 
transmitted to the Block 3. 
The large numbers of sub-windows addresses require the use of intermediate memories, 
which will manage the communication between the different blocks. At any given time, 
Block 1 processes on image In and stores the addresses of its positively labeled sub-windows 
in a memory (mem.1). At the same time Block 2 processes an image In-1 but only the sub-
windows positively labeled by the first and whose addresses are stored in memory mem.2. 
The addresses of sub-windows positively labeled by Block 2 are stored in a memory (mem.3). 
Respectively, Block 3 processes an image In-2 , but only its sub-windows positively labeled 
by Block 2 and whose addresses are read from a memory mem.4. Block 3 works the same 
way as in the sequential implementation: the block run back and forth through all remaining 
stages, to finally give the addresses of the detected faces.  
After each image cycle, and the memories mem.1 and mem.2 are swapped, same goes for 
mem.3 and mem.4 
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This can be translated into the model shown in Figure 8. A copy of the integral image is 
available to each block, as well as, three pairs of logical memory are working in ping pong to 
accelerate the processing. 
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3iII 

Sub windows 

addresses 
Sub windows 

addresses 

Sub windows 

addresses 
Sub windows 

addresses 

Decision
 

Fig. 8. Data Flow 

The given parallel model ought to run at the same speed rate as its slower block. As 
mentioned earlier, the first stage of the cascade requires more access memory and therefore 
more time processing than the second stage alone or all the remaining stages together. In the 
first classifier stage, all 105,963 sub-windows should be inspected using three features with 
eight array references each. Therefore, it requires about 3.4 million of memory access per 
image. Using the same type of memory as in section 3.1.4, an image needs roughly 34 ms (29 
images per second) of time processing. 

3.2.2 Parallel model discussion  
Normally the proposed structure should stay the same, even if the cascade structure 
changes, since most of the boosting cascade structures have the same properties as long as 
the first two cascade stages. 
One of the major issues surrounding boosting based detection algorithms (especially when 
applied on to face detection in a non-constraint scene) is the inconsistency and the 
unpredictable processing time e.g. a white image will always takes a little processing time 
since no sub-window should be capable of passing the first stage of the cascade. As 
opposite, an image of thumbnails gallery will take much more time. 
The proposed structure not only gives a gain in speed; this first stage happens to be the only 
regular one in the cascade, with fixed time processing per image.  This means that we can 
mask the irregular part of the algorithm by fixing the detector overall time processing. 
As a result, the whole system will not work at 3 times the speed of the average sequential 
implementation; but a little bit less. Further work in section 5 will show that the embedded 
implementation can benefit from some system teaks (pipelining and parallelism) within the 
computation that will make the architecture even faster. 
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Due to the masking phenomena in the parallel implementation, decreasing the number of 
weak classifiers can accelerate the implementation; but only if the first stage of the cascade is 
accelerated.  
For this structure to be implemented effectively, its constraints must be taken into 
consideration. The memory, for instance, can be the most greedy and critical part; the model 
requires multiple memory accesses to be done simultaneously. The definition of an 
architectural structure of this representation depends on two factors: the nature of memory 
access and the desired performance of the system. For instance, the memory blocks of the 
integral images are used in the computation of the Haar-features rectangles. The integral 
images are stored in a linear fashion; however the reading access depends on the position, 
the size and the parameters of the weak classifier to be evaluated. It is for this reason that 
access to these memories are made randomly.  On the other hand, the blocks of intermediate 
memories are used to store and read the addresses of the sub-windows. Both the write and 
the read of these addresses are done sequentially. To optimize performance of architecture, 
it is imperative to use memories appropriate to the nature of each of the different access 
types. Thus, as we shall see in the implantation section 4, we recommend using two 
different types of memory. 
It is obvious that a generic architecture (a processor, a global memory and cache) will not be 
enough to manage up to seven simultaneous memory accesses on top of the processing, 
without crashing it performances. 

4. Architecture definition and implementation 

Flexibility and target architecture are two major criteria for any implementation. First, a 
decision has been taken upon building our implementation using a high level description 
model/language. Modelling at a high level of description would lead to quicker simulation, 
better bandwidth estimation, better functional validation, and more importantly it can help 
delaying the system orientation and thereafter delaying the hardware target.  

4.1 SystemC description 

C++ implements Object-Orientation on the C language. Many Hardware Engineers may 
consider that the principles of Object-Orientation are fairly remote from the creation of 
Hardware components. Nevertheless, Object-Orientation was created from design techniques 
used in Hardware designs. Data abstraction is the central aspect of Object-Orientation which 
can be found in everyday hardware designs with the use of publicly visible “ports” and 
private “internal signals”. Moreover, component instantiation found in hardware designs is 
almost identical to the principle of “composition” used in C++ for creating hierarchical design. 
Hardware components can be modelled in C++, and to some extent, the mechanisms used are 
similar to those used in HDLs. Additionally C++ provides inheritance as a way to complement 
the composition mechanism and promotes design reuse.  
Nonetheless, C++ does not support concurrency which is an essential aspect of systems 
modelling. Furthermore, timing and propagation delays cannot easily expressed in C++.  
SystemC2  is a relatively new modeling language based on C++ for system level design.  It 
has been developed as standardized modeling language for system containing both 
hardware and software components.  

                                                 
2SystemC, Initiative Open. Initiative Open SystemC, (OSCI) http://www.systemc.org. 
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SystemC class library provides necessary constructs to model system architecture from 
reactive behaviour, scheduling policy and hardware-like timing. All of which are not 
available using C/C++ standalone languages.  
There is multiple advantages of using SystemC, over a classic hardware description 
languages, such as VHDL and Verilog; flexibility, simplicity, simulation time velocity, and 
for most the portability. 

4.1.1 SystemC implementation for Functional validation and verification 

The SystemC approach consists of a progressive refinement of specifications. Therefore, a 
first initial implementation was done using an abstract high-level timed functional 
representation. 
In this implementation, we used the proposed parallel structure discussed in section 3. 
This modeling consists of high level SystemC modules (TLM) communicating with each 
other using channels, signals or even memory-blocks modules written in SystemC. 
Scheduling and timing were used but have not been explored for hardware-like purposes. 
Data types, used in this modelling, are strictly C++ data types. 
Functional validation of our model SystemC is performed using a simulation phase (Figure 
9). We simulate the behavior of a SystemC model by executing its processes in a pseudo 
concurrent way. The simulation stops when there is no eligible process and event 
notification. To manage the progress of simulation time, the SystemC simulator has a timed 
notifications schedule to be triggered. This schedule is a list of notifications of timed event 
that is sorted according to the time of such notification triggers. 
Functional validation of the system was performed by comparing the results of the SystemC 
written structure with the results of OpenCV’s software implementation, using 25 random 
images from the CMU image database.  
 

SystemC Model

Simulation 

Validation 

 

Fig. 9. SystemC functional validation flow 

4.1.2 Modelling for Embedded implementation 

While the previous SystemC modelling is very useful for functional validation, more 
optimization should be carried out in order to achieve a hardware implementation. Indeed, 
SystemC standard is a system-level modelling environment which allows the design of 
various abstraction levels of systems. The design cycle starts with an abstract high-level 
untimed or timed functional representation that is refined to a bus-cycle accurate and then 
an RTL (Register Transfer Level) hardware model. SystemC provides several data types, in 
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addition to those of C++. However these data types are mostly adapted for hardware 
specification. 
Besides, SystemC hardware model can be synthesizable for various target technologies. 
Numerous behavioural synthesis tools are available on the market for SystemC (e.g. 
Synopsys Cocentric compiler, Mentor Catapult, SystemCrafter, and AutoESL). It should be 
noted, that for all those available tools, it is necessary to refine the initial simulation-like 
SystemC description in order to synthesize into hardware. The reason behind is the fact that 
SystemC language is a superset of the C++ designed for simulation. Therefore, a new 
improved and foremost a more refined “cycle accurate RTL model” version of the design 
implementation was created. 
Our design is split into compilation units, each of which can be compiled separately. 
Alternatively, it is possible to use several tools for different parts of your design, or even 
using the partition in order to explore most of the possible parallelism and pipelining for 
more efficient hardware implementation. Eventually, the main block modules of the design 
were split into a group of small modules that work in parallel and/or in pipelining. For 
instance, the module Block1 contains three compilation units (modules): a “Decision” 
Module which contains the first stage’s classifiers. This module is used for computation and 
decision on each sub-window. The second module is “Shift-and-Scale” used for shifting and 
scaling the window in order to obtain all subsequent locations. Finally, a “Memory-Ctrl” 
module manages the intermediate memory access. 
As result, a SystemC model composed of 12 modules: three for Block1, two for Block2, three 
for Block3, one for the Integral image transformation, 3 for the memories.  
Other major refinements were done: Divisions were simplified in order to be power of two 
divisions, dataflow model was further refined to a SystemC/C++ of combined finite state-
machines and data paths, loops were exploited and timing/scheduling were taken into 
consideration. Note that in most cases, parallelism and pipelining were forced manually. 
However, this level of description can vary depending on the needs of the high-level 
synthesis tool used for the hardware implementation. For example tools like Mentor 
Graphics CatapultC can propose and test different alternatives of parallel and pipeline 
implementations for high level of description C/SystemC. Other tools like SystemCrafter 
require manual coding of parallelism and pipeline operations.  
On the other hand, not all the modules were heavily refined, for example the three memory 
modules were used in order simulate physical memories, which will never be synthesized 
no matter what the target platform is. 

4.2 High level synthesis 
SystemC hardware model can be synthesizable for various target technologies. However, no 
synthesizer is capable of producing efficient hardware from a SystemC program written for 
simulation. Automatic synthesis tool can produce fast and efficient hardware only if the 
entry code accommodates certain difficult requirements such as using hardware-like 
development methods. Therefore, the results of the synthesis design implementation 
depend heavily and the tool itself, and the different level of refinements done on the entry 
code. Figure 10 shows the two different kinds of refinements needed to achieve a successful 
fast implementation, using a high level description language. The first type of refinements is 
the one set by the tool itself. Without it, the tool is not capable of compiling the SystemC 
code to RTL level. Even so, those refinements don’t lead directly to a good proven 
implementation. Another type of refinements should take place in order to optimize the 
size, the speed and sometimes (depending on the used tool) power consumption.  
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For our design, several refinements have been done on different modules depending on 
their initial speed and usability. 
The SystemC scheduler uses the same behavior for software simulation as for hardware 
simulation. This works to our advantage since it gives the possibility of choosing which of 
the modules to be synthesized, while the rest works as SystemC test bench for the design. 
Our synthesis phase was performed using an automatic tool, named SystemCrafter, which is 
a SystemC synthesis tool that targets Xilinx FPGAs. 
 

SystemC Model

C to RTL 

Synthesis Tool 

HDL to hardware

Synthesis Tool 

HDL 

Implementation

Refinement 

 

Fig. 10. SystemC to hardware implementation development flow  

It should be noted that the used SystemC entry code can be described as VHDL-like 
synchronous and pipelined C-code (bit accurate): Most parallelism and pipelining within 
the design were made manually using different processes, threads, and state-machines. 
SystemC data types were used in order to minimize the implementation size. Loops were 
exploited, and timing as well as variables lengths were always a big factor. 
Using the SystemCrafter, multiple VHDL components are generated and can be easily 
added or merged into/with other VHDL components (notably the FIFO’s modules). As for 
the testbench set, the description was kept in high level abstraction SystemC for faster 
prototyping and simulation. 
Basically, our implementation brings together four major components: the Integral Image 
module, the first stage decision module, the second stage decision module and Block 3 
which runs sequentially the rest of the cascade stages. Each of these components was 
implemented separately in order to analyze their performances. In each case, multiple 
graphic simulations were carried out to verify that the output of both descriptions 
(SystemC’s and VHDL’s) are identical.  
The reduced number of weak classifiers in the first two stages (three and nine respectively) 
allows us to store their settings in internal memory (LUT type). In the case of Block3, the 
number of weak classifiers is about 2500. Knowing that every weak classifier has 13 
parameters (addresses rectangles, weight, threshold...) and each of these parameters is 
defined with an integer data type of size 24 bits. The size of memory needed to store these 
parameters is therefore: 2500 x 13 x 24 = 780 000 = 780Kbits. It is therefore clear that the 
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storage of these parameters in internal LUT type memory can occupy a large number of 
logical blocks (slices) within the FPGA. We chose to store these parameters in the blocks 
RAM (BRAM). Indeed the use of SystemCrafter facilitates this task by using the type 
ram_block. This structure can be used in the same way as type "ram" plus it handles the 
storage and the control of the FPGA’s BRAMS. 

4.3 Performances 

The Xilinx Virtex-4 XC4VL25 was selected as a target FPGA. The VHDL model was back 
annotated using the Xilinx ISE.  

4.3.1 Non-optimized implementation 

The synthesis results of the design implementation for each of the components are given on 
Table1. 
 

 Logic Utilization Used Available Utilization 

Integral Number of occupied Slices: 913 10752 8% 

Image Number of Slice Flip Flops: 300 21504 1% 

 Number of 4 input LUTs: 1761 21504 8% 

 Maximum frequency 129 MHz 

BLOCK1 

Number of occupied Slices: 1281 10752 12% 

Number of Slice Flip Flops: 626 21504 3% 

Number of 4 input LUTs: 2360 21504 11% 

Maximum frequency 47 MHz 

BLOCK2 

Number of occupied Slices: 3624 10752 34% 

Number of Slice Flip Flops: 801 21504 4% 

Number of 4 input LUTs: 7042 21504 33% 

Maximum frequency 42 MHz 

BLOCK3 

Number of occupied Slices: 3178 10752 29% 

Number of Slice Flip Flops: 722 21504 3% 

Number of 4 input LUTs: 3014 21504 14% 

Maximum frequency 43 MHz 

Table 1. The synthesis results of the components implementations 

The clock rate of the design did not exceed the rate of its slowest component. Therefore it is 
necessary to simulate and estimate the average speed of each block. Another big advantage 
of SystemC is the possibility of using C++/SystemC testbenches with VHDL models.  And 
using simulation tools such as ModelSim, we can determine exactly the number of cycles 
needed to process a sub-window and thereafter the speed of each block. For instance Block1 
can operate with a maximum frequency of 47 MHz and can process a sub-window in 42 
clock cycles. Table 2 shows the average speed of each hardware Block using the CMU image 
database.  
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This actual implementation is capable of achieving only up to 11 frames per second on 
320x240 images. Accelerating Block 1, Block 2 and Block3 is essential in order to achieve 
higher detection speed. 
 

 
Maximum 

Frequency (MHz)
Number of Cycle per 

Sub-windows 
Average speed (frame 

per second) 

Block1 47 42 11 

Block2 42 112 11,3 

Block3 43 192 to 2400 16 

Table 2. speed of processing blocks before optimization 

4.3.2 Optimized implementation 

Analyzing the automatically generated VHDL code shows that despite all the refinement 

already done, the SystemCrafter synthesis tool still produces a much complex RTL code 

than essentially needed. Particularly, when using arrays in loops, the tool creates a register 

for each value, and then wired it into all possible outputs. Things get worse when trying to 

update all the array elements within one clock cycle. A scenario that occurs regularly in our 

design e.g. updating classifiers parameters. Simulation tests proved that these last 

manipulations can widely slowdown the design frequency. Therefore more refinements 

have been made for the “Decision” SystemC modules. For instance, the arrays updating 

were split between the clock cycles, in a way that no additional clock cycles are lost while 

updating a single array element per cycle. 

The synthesis results for the new improve and more refined decision modules are shown in 

Table 3. The refinements made allow faster, lighter, and more efficient implementation for all 3 

modules. Even more, the ModelSim simulation of our design shows that the refinements also 

allow achieving less cycles per decision (sub-windows processing) in all 3 blocks. Table 4 

shows the new average speed of each VHDL Block using the CMU image database.  

 

 Logic Utilization Used Available Utilization 

BLOCK1 

Number of occupied Slices: 713 10752 7% 

Number of Slice Flip Flops: 293 21504 1% 

Number of 4 input LUTs: 1091 21504 5% 

Maximum frequency 127 MHz 

BLOCK2  

Number of occupied Slices: 2582 10752 24% 

Number of Slice Flip Flops: 411 21504 2% 

Number of 4 input LUTs: 5082 21504 24% 

Maximum frequency 127 MHz 

BLOCK3 

Number of occupied Slices: 1703 10752 16% 

Number of Slice Flip Flops: 405 21504 2% 

Number of 4 input LUTs: 2616 21504 12% 

Maximum frequency 127 MHz 

Table 3. The synthesis results for the new improved decision modules 
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The FPGA can operate with a frequency of 127 MHz. Using the same logic as before, a 
system is as fast as its slowest blocks, therefore the  new design can achieve up to 47 frames 
per second on 320x240 images. 
The design can run on even faster pace, if more refinements and hardware considerations 
are taken. However, it should be noted that using different SystemC synthesis tools can 
yield different results. After all, the amount and effectiveness of the refinements depend 
largely on the tool itself. 
Other optimizations can be done by replacing some of the auto-generated VHDL codes from 
the crafter with manually optimized ones.  
 

 
Maximum 

Frequency (MHz) 
Number of Cycle per 

Sub-windows 
Average speed 

(Image per second) 

Block1 127 28 47 

Block2 127 76 47,7 

Block3 127 132 to 22890 50 

Table 4. Speed of processing blocks after optimization 

4.4 Architectural structure and memory blocks connectivity 

The synthesis results from the previous paragraph helps showing the limitation in 
processing speed. However the performance of design also depends on the architectural 
structure of the implementation including the interconnectivity of the memory blocks and 
the number of physical memory used. 
A first possible solution is to use a system with separated memory blocks (Figure 11.a.). At 
the end of each image cycle, a “switch” module is in charge of swapping memory blocks at a 
physical level. This solution can maximize processing performances, but it is too costly in 
terms of physical memory and resultant physical interconnections. 
Reducing the number of physical memory can be explored in other solutions that integrate 
timesharing systems. Figure 11.b. shows a solution with a single physical memory for 
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Fig. 11. Different architecture solution for memory’s interconnection 
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Integral Images (same can be done for the intermediate memory blocks). The physical 
memory is logically divided into four memory banks that work in queues. The swapping of 
the memory access is also done by "Switch". But unlike the previous solution, where the 
swapping is made at a physical level, they are calculated at a logic level. This solution is 
optimal when the number of memory accesses is small. However in cases where memory 
accesses are the limiting factor of the system, this solution is less efficient than the using 
separated memories. 

4.4.1 Intermediate memory 

One of the drawbacks of the proposed parallel structure (given in section 4) is the use of 

additional intermediate memories (unnecessary in the software implementation). Logically, 

an inter-blocks memory unit is formed out of two memories working in ping-pong. 

A stored address should hold the position of a particular sub-window and its scale; there is 

no need for two-dimensional positioning, since the Integral Image is created as a 

monodimensional table for a better RAM storage. 

For a 320x240 image and a base sub-window size of 24x24, a word of 32 bits would be 

enough to store the concatenation of the position and the scale of each sub-window. 

As for the capacity of the memories, a worst case scenario occurs when half of the possible 

sub-windows manage to pass through first block. That leads to around 2 x 53,000 (50% of 

the sub-windows) addresses to store. Using the same logic on the next block, the total 

number of addresses to store should not exceed the 168 000. Eventually, a combined 

memory capacity of less than 1 Mbytes is needed. The simulation of our SystemC model 

shows that, even when facing a case of consecutive positive decisions for a series of sub-

windows, access onto those memories will not occur more than once every each 28 cycles 

(case of  mem.1 and mem.2 ), or once each 76 cycles (case of mem.3 and mem.4). The access 

on these memories is regular since the writing and the reading are always done sequentially. 

Due to these facts, we propose a timesharing system (shown in Figure 12) using four 

memory banks, working as a FIFO block, with only one physical memory.  In order to 

determine the exact characteristics of the needed memory, several testbenchs were created 

to compute the maximal bandwidth needed as well as the optimal FIFO queue size in worst 
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Fig. 12. Intermediate Memories structure   
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case scenario. The results of these simulation shows that a frequency of 17 MHz and a buffer 

size (each FIFO block) of 10 are enough for our configuration. 

Typical hardware implementation of a 1 Mbytes SDRAM memory, running on a frequency 

of anything higher than 17 MHz, is enough to replace the four logical memories. Moreover, 

the required buffer size is very small. They FIFO are easily implemented with a limited 

number of block RAM (BRAM). We can use two BRAMS in dual-port mode or four BRAMS 

single port mode. 

4.4.2 Integral image memory 

The set of processing blocks (Integral Image, Block 1, Block2  and Block3) need to access 4 

different Integral Images simultaneously. To achieve a detection of 47fps on 320x240 images, 

each of block must operate at their maximum frequency. In the worst case scenario the total 

bandwidth needed to access all Integral images is about 10,7 Gigabits/s. 

However unlike the intermediate memory, the access to the integral images is never 

sequential or regular. The memory usage of SDRAM is not suited. In fact, the non-

consecutive data transfer will drop dramatically the SDRAM bandwidth. Typically, for a 

latency of two cycles, the available bandwidth is divided by 3.The use of SRAMs appears to 

be more appropriate. For these reasons, we propose a solution with four SRAM memory 

units (Figure 13). Though, a solution with less memory units can be considered, the use of 

four minimizes the complexity of the switching module “SWITCH_II”. At the end of each 

image cycle, a circular swapping logic is performed between memory units. 
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Fig. 13. Integral image interconnection  

4.4.3 Final architecture structure 

After establishing the interconnectivity of our architectural structure, we synthesize the 

whole system which includes Block 1 to 3, the Integral image module, and the switching 

modules. The results and the performances are shown in Table 5.  The FPGA can operate at 
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a clock speed of 127 MHz. Figure 14 Shows the final proposed architecture which is capable 

of 47 images per second. 

The simulation tests, used in section 4.1 for the functional validation of the SystemC code, 

were carried out on the VHDL code mixed with a high level test bench (the same SystemC 

test bench used for the SystemC validation model). The outputs of the VHDL code were 

compared to the outputs of the OpenCV’s implementation. These tests prove that we were 

able to achieve the same detection results as in using the software provided by OpenCV. 
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Fig. 14. Proposed architecture  

 

Logic Utilization Used Available Utilization 

Number of occupied Slices: 6075 10752 57% 

Number of Slice Flip Flops: 1729 21504 8% 

Number of 4 input LUTs: 10711 21504 50% 

Number of DSPs: 9 48 19% 

Maximum frequency 127 MHz 

Table 5. The synthesis results of the refined implementation for the entire design 

4.5 State-of-the-art comparision 

We compare in this section, the performance of our embedded implementation with other 

known embedded implementations for the boosting based face detection in the literature. 

Comparisons are made in terms of speed (frame per second) and detection rates.The results 

of these comparisions are shown in Table 6. 

One of the major challenges when trying to implement a real time embedded solution for 

this type of  algorithms is the large number of features to be implemented in a cascade. In 

fact, the number of used features is usually betwen 2000 and 6000, depending on the 

training phase. Furthermore, the cascade implementation and the irregular nature of the 

stages of the cascade, make it extremely difficult to proposed a parallel structure capable of 

accelerating the detection without degrading the performances. 
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Implementation 
Image 

size 

smallest 
sub-

window 
size 

Frames 
per 

second 

Test 
database

Feature
s used 

Detection 
rate 

Wei & al. (Wei, Bing, & 
Chareonsak, 2004) 

120x120 24x24 15 CMU NA 50% 

Yang et al. 320x240 24x24 13 P I DB3 140 75% 

Theocharides 
(Theocharides, 
Vijaykrishnan, & Irwin, 
2006) 

NA NA 52 P I DB 
Less 
than 
150 

NA 

Lai & al. (Lai, Marculescu, 
Savvides, & Chen, 2008) 

320x240 20x20 40 P I DB 42 75% 

Author’s implementation 320x240 24x24 47 CMU 2500 88% 

Table 6. Comparison of embedded implementation of Boosting based face detection 

In the literature we can find a lot of attempts to accelerate the boosting based face detection. 

However the authors in these works have sought to reduce the overall computation burden, 

without taking into consideration the local burden of computation at each stage of 

classification. By consequence,  they have abandoned the cascaded architecture in favor of a 

single complex stage of classification(e.g.only 42 features in the implementation of Lai & al.). 

Indeed, it is easier to exploit the parallelism of a single stage with several features than the 

parallelism of a complex cascade with very high data dependencies. However, this approach 

has two major drawbacks: 

- Each sub-window must be evaluated by a large number of features (42 to 150) , when  
the average number of evaluated  features per sub-windows in a cascade is generally 
less than 10. 

- The evaluation of these features must be done in parallel to speed up the detection time. 
The amount of necessary resources for these computations is thereby increased, which 
explains the limited number of features used in the hardware implementations. And 
therefore the detection rates of these implementations are well under the ones set by the 
software implementations.  

However, unlike the listed embedded implementations, our architecture is capable of 

supporting a large number of features. Indeed, we were able to implement the same full 

cascade (more than 2500 features) as the “default” one found in OpenCV.  Hence the 

detection rates are the same as the software implementation.  Our implementation can 

achieve up to 47 fps on the CMU image database, while processing about 106 000 sub-

windows. The implementation proposed by Theocharides can achieve slightly higher  of 

number of frames per second, but the authors did not provide sufficient details on 

important factors, such as images size  and the smallest sub-window size. These 

configurations are essential in determining the speed of the detection (and the detection 

rates), for exemple taking changing the smallest sub-window size from 24x24 to 32x32 can 

divide the computation burden by 2 and therefore accelerate the detection by a factor of 2. 

                                                 
3proprietary image databases 
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5. Conclusion 

This chapter can be considered as a continuation of previously published work (Khattab, 

Dubois & Miteran 2009) in which we proposed a new architecture for an embedded real-

time face detector based on a fast and robust family of methods, initiated by Viola and 

Jones. The most notable differences between the 2 articles are: The implementation of the 

third processing block (Block3), the new architecture structure including memories types 

and interconnection, and finally a full system validation and tests. 

First we analyse the sequential structure model which reveals to be irregular in time 

processing and in load partitioning. Then a new parallel structure model is introduced. This 

structure proves to be at least 3.4 times faster than the sequential, and provides regularity in 

time processing.  

The design was validated using SystemC. Simulation and hardware synthesis were done, 

showing that such an algorithm can be fitted easily into a FPGA chip, while having the 

ability to achieve the state-of-the-art performances in both frame rate and accuracy.  

The hardware target, used for the validation, is a FPGA based board, connected to the PC 

using an USB 2.0 Port. The use of SystemC description enables the design to be easily 

retargeted for different technologies. The implementation of our SystemC model onto a 

Xilinx Virtex-4 can achieve a theoretical 47 frames per second detection rate for 320x240 

images. And Unlike the state-of-the-art embedded implementation, we were able to 

implement the whole cascade detector (with all the features) as the one use in the software 

implementation. This has led to achieve practically the same result in detection rates as in 

the software implementation.  

On the other hand, we proved that SystemC description is not only interesting to explore 

and validate a complex architecture. It can also be very useful to detect bottlenecks in the 

dataflow and to accelerate the architecture by exploiting parallelism and pipelining. Then 

eventually, it can lead to an embedded implementation that achieves state-of-the-art 

performances, thanks to some synthesis tools. More importantly, it helps developing a 

flexible design that can be migrated to a wide variety of technologies. 

However, experiments have shown that refinements made to the entry SystemC code 

add up to substantial reductions in size and total execution time. Even though, the extent 

and effectiveness of these optimizations is largely attributed to the SystemC synthesis 

tool itself and designer’s hardware knowledge and experience. Therefore, one very 

intriguing perspective is the exploration of this design using other tools for comparison 

purposes. 

Accelerating the first stage can lead directly to a whole system acceleration. In the future, 

our description could be used as a part of a more complex process integrated in a SoC. We 

are currently exploring the possibility of a hardware/software solution; by prototyping a 

platform based on a Wildcard. Recently, we had successful experiences, implementing a 

similar type of solutions in order to accelerate a “Fourier Descriptors for Object 

Recognition using SVM”(Smach, Miteran, Atri, Dubois, & Gauthier, 2007)  and motion 

estimation for MPEG-4 coding(Dubois, Mattavelli, Pierrefeu, & Mitéran, 2005) . For 

example the Integral Image block as well as the first and second stages can be executed in 

hardware on the wildcard, while the rest can be implemented in software on a Dual core 

processor.  
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