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1. Introduction

This Chapter contains the results of our research activities in the line to reduce both: the
uncertainties in power forecasting and the lack in power quality for Wind Farms connected
to public grids. Our approach is a suite of studies that are focused on power forecasting for
Electricity Markets and also an innovative simulation technique to evaluate the quality by
using a coupled storage systems as water reservoirs, inertial systems or chemical batteries.
The use of renewable energy sources (RES) in electricity generation has many economical
and environmental advantages, but has a downside in the instability and unpredictability
introduced into the public electric systems. The more important renewable sources, wind
and solar power, are mainly related to the weather in a local geographic area. However, the
weather is a chaotic system with limited predictability. Many countries follow two trends in
the development and planning of their public electric systems; the first is the increase in the
generation power from RES and the second one is the transition to open electricity markets.
These two trends have a common impact on the public grids, because they both increase the
number of agents in the system and the level of uncertainty in the balance between generation
and load.
The access of more and bigger RES electricity producers can increase the risk of fail and
decrease the service quality. That risk can be reduced by increasing the power reserve based on
high response gradient systems. These, e.g. diesel or hydraulic, have a high speed of change
in their generated power, that is suitable to balance the frequent sudden and unpredictable
changes of RES-based electricity production. Therefore, the positive impact of the use of RES
on the cost of fuel consumption would have a negative impact on the global cost of electricity
systems.
The control and planning of public electric systems covers a widespread set of levels, ranging
from the hundred millisecond domain associated to the frequency and voltage controlErlich
et al. (2006), to the yearly planning domain. Precise regulations for these levels are the concern
of the national Electricity Authorities of each country as well as to supranational agencies.
The EC Project STORIESPanteri (2008) provides an overview of existing regulations and the
respective legislative framework related to RES implementation at a European level. In each
national system, the Transmission System Operator(TSO) deals with the management of the
electric system in the different control and planning levels. With the increasing penetration
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of RES systems, the TSO becomes concerned with the impact on system stabilityEriksen et al.
(2005).
The forecasting of RES power production is a basic tool in the reduction of these high
operative reserve, which must be ready to be used. According to the practical experiences
of E.ON, the largest German electric company, wind power is only as reliable as the weather
forecastingE.ON-Netz (2004). If the wind power forecast differs from the actual infeed, the
TSO must cover the difference by using the reserves, which must amount to 50-60% of the
installed wind power. According to E.ON, the expected maximum forecast deviation is more
important that the mean forecast error. This is because even if the actual infeed deviates from
the forecast level on only a few days of the year, the TSO must also be prepared for this
improbable eventuality and have sufficient capacity available, spinning reserve, for a reliable
supply to still guaranteed and the correct balance between generation and load to be restored.
The Electric Authorities of many different countries have included the power forecasting
in its Regulatory Norms in order to preserve the quality of the electricity supply. The
planning of an Electric System requires several levels related to different time scales and
whether forecasting requires also different levels. Very close short-term forecasting, or
nowcasting, is the immediate prediction in a time scale ranging from some minutes to several
hours. Short-term forecasting address a time scale that ranges from one to three days, while
medium-term forecasting covers from four days to several weeks.
The statistical approach for short-term wind prediction has been used due to the system
complexity of whether and the chaotic fluctuations of wind speed. The statistical models
such as ARMA, ARX and Box-Jenkins methods have been used historically for short-term
wind forecasting up to few hours ahead Landberg et al. (2003); Nielsen & Madsen (1996);
Nielsen et al. (2006). Giebel Giebel (2003) reports some of the statistical state of the art models
and methods for wind power forecasting which have been developed and used, such as time
series models for up to a few hours by means of statistical approaches and neural networks,
as well as models based on Numerical Weather Prediction(NWP).
The simplest time scale in power predictions is the nowcasting, which can be carried out
by using the time series analysis. The short-term scale requires the cooperation between
statistical and NWP tools, in regional and mesoscale weather models and cooperating with
predictive systems as HIRLAN and MM5. The power forecasting for RES in Spanish
Regulations is related to hourly periods of planning of the electricity market. All the power
supplies and demands of the energy agents must be related to these hourly periods. The
regulations for the short-term Spanish Electricity Market comprise two steps:

Short-term Forecasting. The RES producers, solar and wind farms, with power greater than
10 MW must provide 30 hours ahead the power forecasting for every hourly period of a
full range of 24 hours.

Nowcasting. One hour ahead of each hourly period, corrections to the previous values can
be sent to the Electricity Authority.

This means that in the nowcasting time scale, the computation of the predicted value must
be carried out for the period covering two hours ahead. The second step can be carried
out by using time series approaches, but the first requires the cooperation with NWP tools.
Artificial Neural Networks (ANN)Haykin (1999) have been widely used for modeling and
predictions in the field of renewable energy systems Kalogirou (2001); Li et al. (1997) because
they are able to handle noisy, incomplete data and non-linear problems to perform predictions
and classifications Alexiadis et al. (1998); Kandil et al. (2006); Zhang et al. (1998). Hippert et
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al Hippert et al. (2005) have addressed the construction, and evaluation, of their performance
of very large ANNs in electric systems to forecast the load profile. Recurrent ANN Mandic &
Chambers (2001) have been used as generalizations of predictive systems as ARMA. Also,
they can be used to generalize linear predictive systems as Kalman filter Haykin (2001).
Recurrent and recurrence in each layer, called multilayer recurrent, architectures have been
also used in wind power predictionLi (2003).
Many studies about the use of ANN in wind power have been preformed, but the criteria
to evaluate their performance have been mainly based on error parameters. Based on more
modern standard protocol for forecastingMadsen (2004), the published results will provide
improvement criteria over the persistence or references models of its same place. Persistence
forecasting is a simple model that is intrinsic to the data, that is, it is a no algorithm
approach. Any new proposed algorithm is so good or bad as how much is able to overtake the
persistence. The use of ANN can provide a suitable procedure to beat it and other reference
model based on the Wiener predictive filter. An application is presented applying the standard
protocols with Feed Forward(FNN) and Recurrent Neural Networks(RNN) architectures in
the background of the requirements for Open Electricity Markets.
The prediction in the time scale of nowcasting can be carried out by using the time series
analysis approach. The short-term scale requires the cooperation between statistical and NWP
tools, in regional and mesoscale weather models. In many countries the power forecasting for
RES is related to hourly periods of planning of the electricity market. All the power supplies
and demands of the energy agents must be related to these hourly periods. For example, as
has been presented, the regulations for the short-term Spanish Electricity Market comprise
two steps. In the step 1 in short-term time scale, the RES producers must provide the power
forecasting for every hourly period of a full range of 24 hours 30 hours in advance. In step 2 in
the nowcasting time scale, one hour ahead of each hourly period, corrections to the previous
values can be sent to the Electricity Authority. This means that at the end of the hour h, the
RES producer must send the corrections for the expected value of the average power, P̂h+2,
for hour h + 2.
The prediction based on persistence is the simplest model and is based on the assumption
of a high inertia in the subjacent physical model. If y(t) is the value at time t of a time
series, in persistence model the predicted value for k time ahead is: ŷ(t + k) = y(t).
The simple persistence model can be overtaken by other. more advanced, models that
involve persistence-like information. A reference model to compare different forecasting
models has been proposed Madsen (2004); Nielsen et al. (1998). It includes very short-term
information, such as persistence, and long-term information. This proposed reference model
is an extension of the pure persistence defined by the linear expression: ŷ(t + k) = b + ay(t).
In an Electricity Market applications we have two kinds of power values, the spot power P(t)
and its hourly average Ph. For the TSO, the spot power is very important to ensure the system
stability at any time, but in the Electricity Market the hourly average is that required to RSE
agents. The reference model for wind power forecasting proposed by Madsen Madsen (2004)
can be applied for hourly average power such as that required in the Spanish regulation as:
P̂h+2 = A0Ph + (1− A0)P, where A0 and P are parameters computed from large-term training
information. It is difficult to beat this reference model because is based on the shortest-term
information, Ph, and in the longest-term information, P.
Even if the forecasting techniques for RES power were perfect, the problems that its high
penetration introduce in grids would not be avoided. Figure 1 shows a power series P(t) in
time steps of one minute, and their hourly average Ph. That last one is the best prediction
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Fig. 1. Spot power and its hourly average for a wind power generator. Even though we can
have the perfect hourly prediction, the lack of quality in spot power can be significative

that we can achieve. Even using this ideal case, the difference between the spot power
P(t) and the best estimated planed power P̂h = Ph is significant. The lack of quality in
the electricity production based on RES, such as wind power, must require of higher power
spinning reserves that entail additional costs. If the penetration of RES based power increases
significantly, those costs will be billed to the RES producer by means of penalties. These are,
or will be, imposed by the Electricity Authorities associated with the lack of quality in the fed
energy.
The variance shown in every hourly period can be avoided by using short-term storage
systems that reduce the impact of the chaotic behavior of the local weather in the public
grids. Short-term storage systems can be implemented by using different technologies such as
electric batteries, hydraulic reservoirs or inertial systems. Lazarewicz and Rojas Lazarewicz
& Rojas (2004) identify some of the basic problems involved in frequency regulation and their
solution by using large batteries of inertial systems. Drouilhet Drouilhet (1999) presents a
wind power system with a diesel generator and a short-term energy storage using electric
batteries. This system focuses on the power flow management, frequency and voltage control
for high penetration of wind sources, mainly in isolated rural electrical systems. Its conclusion
is that in conventional power generation systems, the short-term load variations are usually
small and the main power source can supply the demand, but in the high penetration wind
power systems the power feed to the system is stochastic in nature and highly variable.
EdsingerEdsinger et al. (1978) focuses on the evaluating of the economic feasibility as well
as on the general performance of wind energy systems with energy storage options.
An application where the use of storage energy systems have been used extensively is in
space applications where the supply of solar power changes along the orbit. The use of
hybrid system of batteries and flywheels has been proposed and simulated Beaman & Rao
(1998). To avoid the inertial problems, two or more counter-rotating wheels are used to
produce null angular momenta. The design of such systems requires the definition of the
battery and flywheel charging control schemes and the solar array regulation. The main
advantages of inertial storage systems that have been proposed for satellite and space oriented
applications is its reduce mass Fausz & Richie (2000); Wilson et al. (2005). The simulation
of these systems was conducted using the power model for the Flywheel Attitude Control,
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Energy Transmission, and Storage (FACETS), which is constructed by using blocks provided
in the Matlab and Simulink packages.
Our approach is to study the energy and power management rather than the modeling
and simulation associated with any specific technology, device or technical solution. We
agree that a first level of a simulation can be a general one based on the power and energy
flows and transfer, while a more detailed simulation of a defined solution, which must use
defined models for wind farmsTande et al. (2007) and grid interactionHansen et al. (2002),
can be achieved after the analysis of the results obtained in the power and energy oriented
simulation. For example, a general simulation can provide the total amount of energy storage
needed for an RES system based on its logged power data. At this stage, it does not matter
which kind of technology is used in a more detailed forward modeling. This paper includes a
mathematical model of power and energy transfer between the RES source, the energy storage
and the public grid.

2. Power forecasting by using ANN

Persistence is the simplest model for forecasting. It is based on the assumption of a high inertia
in the subjacent physical model. If y(t) is the value at time t of a time series, in persistence
model the predicted value for k times ahead is: ŷ(t + k) = y(t). This kind of forecasting is
really simple but can be very useful in practical, because it can be used as reference model
to compare different theoretical and practical applications. Any proposal of a new model
or approach that requires some computational resource is required to have at least a better
performance that this simple one. The level of improvement over this reference model must
be a level of utility of the additional formal and computational cost. A high value in an error
parameter, as MAE or RMSE, in a hardly predictable site can be a better result that a small
value in a easily predictable site. However there are not a parameter to define what site has a
hardly or easily predictable wind. A option is the use the own persistence as the reference to
which compare the performance of proposed algorithms.
The pure persistence model can be overtaken by other model that involve persistence-like
information. A reference model to compare different forecasting models has been
proposed Madsen (2004); Nielsen et al. (1998). It is more advanced because it includes very
short-term information, as persistence, and long-term information. This proposed reference
model is an extension of the pure persistence as a linear expression: ŷ(t + k) = b + ay(t).
A detailed analysis allows to show that is really the first order case of a more general linear
predictive filter, as the Wiener filter with general expression:

ŷ(t + k) = B +
m

∑
i=0

Aiy(t − i) (1)

where coefficients Ai and B can be computed from the matrix containing the cross correlation
between y(t + k) and y(t − i). The constant parameter is B = (1 − ∑

m
i=0 Ai)y, where y is

the large-term average value of y(t). For the simplest case of first order filter: ŷ(t + k) =
B + A0y(t), the value of the coefficient is:

A0 =

∫
[y(t + k)− y][y(t)− y]dt∫

[y(t)− y]2dt
(2)

In an Electricity Market we have two kind of power values, the spot power P(t) and its hourly
average Ph. For the TSO, the spot power is very important to assure the system stability at
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any time, but in the Electricity Market the hourly average is the required to RSE agents. The
proposed reference model for wind power forecasting by Madsen Madsen (2004), is applied
for hourly average power in nowcasting as the required in the Spanish regulation as:

P̂h+2 = A0Ph + (1 − A0)P (3)

where A0 and P are parameters computed from large-term training information. This
reference model, which we can call as improved persistence or Wiener persistence, is harder
to beat because is based in the shortest-term information, Ph, and in the longest-term
information, P.
The basic theory for using ANN in prediction, its architectures and algorithms are in the
area of adaptive and predictive linear filterMandic & Chambers (2001). The use of ANN has
generated generalizations that has introduced improvements in the original linear models by
allowing the construction of nonlinear predictive systems. The relationship between ANN,
in special recurrent architectures, with linear predictive systems as ARMA allows nonlinear
generalizations of previous statistical linear approaches. A generalization of recurrent
ANN is the multilayer recurrentLi (2003); Mandic & Chambers (2001). In the wind power
forecasting the problem can be formulated by using Feed Forward(FNN), without feedback,
or Recurrent(RNN) ones:

P̂h+2 = F [Vh, . . . , Vh−n+1, Ph, . . . , Ph−m+1] (4)

The used training procedure was the Bayesian regularization Foresee & Hagan
(1997); MacKay (1992) which updates the weight and bias values according to the
Levenberg-Marquardt Levenberg (1944); Marquardt (1963) optimization procedure. It uses as
goal function a combination of squared errors and weights, and then determines the correct
combination so as to produce a network that generalizes well. The Bayesian regularization
implementation that has been used is the implemented in the training function trainbr of the
Neural Networks Toolbox of MATLABDemuth et al. (2008). The NARX architecture have been
used for RNN with the same window size for input data, the wind speed, and feedback data,
the wind power.

2.1 Results in power forecasting

We have used a wind data series acquired in Gran Canaria Island(Spain). The wind speed
series comprise about 33 days data from a meteorological tower in time steps of one minute.
Wind power series are obtained from the wind speed at 40 meters high and from a power
transfer function with 5 and 12.5 m/sec cut-off values. Relative values about the nominal
values, P(t)/Pn, are used in the power series. The data set was split in two subset, the train
and test. The train data is 2/3 of the global data. The standard protocol for performance
evaluation suggested by MadsenMadsen (2004) was used. It includes the definition of the
Evaluation Criteria(EC) BIAS, MAE, RMSE and SDE, and also the improvement over the
reference model which are computed in percent value as:

Impre f ,EC(%) = 100
ECre f − EC

ECre f
(5)

Many training procedures of ANN use optimization procedures that run from initial random
states. The optimization tries to reach a minimum value of some goal function, but the reached
value and the trained network depend on the initial random state. In the practice, that means
that the performance of a trained ANN has some random degree. To reduce the uncertainty
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Pers. Ref. RNN1 RNN2 RNN3 RNN4 RNN5
Delay (2:3)2 (2:5)4 (2:7)6 (2:7)6 (2:7)6

Hidden Nodes 80 40 10 40 60
BIAS 0.6 0.9 0.5 ± 0.1 0.3 ± 0.1 0.1 ± 0.3 0.3± 0.4 0.3 ± 0.1
MAE 14.5 15.3 15.5 ± 0.2 15.3 ± 0.1 15.7 ± 0.5 15.3 ± 0.2 15.3 ± 0, 1
RMSE 23.7 22.3 22.3 ± 0.3 21.6 ± 0.1 22.5 ± 1.2 21.5 ± 0.1 21.6 ± 0.1
SDE 23.7 22.3 22.4 ± 0.3 21.6 ± 0.1 22.5 ± 1.2 21.6 ± 0.1 21.6 ± 0.1

Imp_MAE −0.4±, 1.2 1.1 ± 0.5 −2.5 ± 3.3 0.6± 1.0 0.4 ± 0.9
Imp_RMSE 0.0 ± 1.2 3.3 ± 0.3 −1.0 ± 5.3 3.3± 0.6 3.2 ± 0.6
Imp_SDE −0.1± 1.2 3.2 ± 0.3 −1.1±, 5.3 3.2± 0.6 3.1 ± 0.6

Table 1. Comparative results for two hours ahead prediction by using several RNN
configurations trained with Bayesian regularization. All Evaluation Criterion and their
improvements over the reference model are in percent(%) normalize to the nominal power.
The mean and standard deviation, µ ± σ, values are provided for 25 training trials

FNN1 FNN2 FNN3 FNN4 FNN5 FNN6
Delay (2:4)3 (2:4)3 (2:6)5 (2:6)5 (2:11)10 (2:11)10

Hidden Nodes 3 6 5 10 10 20
BIAS 3.0 ± 1.8 4.0 ± 2.5 1.4 ± 0.3 1.4 ± 0.9 2.4 ± 2.4 3.2 ± 3.1
MAE 16.2 ± 1.0 16.8 ± 1.2 15.7 ± 0.4 16.0 ± 0.7 16.7 ± 1.3 17.4 ± 1.7
RMSE 22.7 ± 0.4 22.9 ± 0.6 22.2 ± 0.4 22.4 ± 0.5 22.6 ± 0.8 23.4 ± 1.3
SDE 22.5 ± 0.2 22.5 ± 0.3 22.2 ± 0.3 22.4 ± 0.5 22.5 ± 0.6 22.0 ± 1.1

Imp_MAE −4.8±, 6.5 −8.6± 8.0 −1.3± 2.7 −3.1± 4.8 −7.4± 8.0 −12.3 ± 10.7
Imp_RMSE −2.1± 2.0 −2.9± 3.0 2.7 ± 1.6 −0.6± 2.3 −1.5± 3.4 −4.7 ± 5.8
Imp_SDE −1.0± 0.9 −0.8± 1.2 0.4±, 1.5 −0.4± 2.1 −0.5± 2.5 −2.9 ± 5.0

Table 2. Comparative results by using several FNN networks configurations. Additional data
are the same as in Table 1

in the results, we provide the mean and the standard deviation obtained from 25 training
trials as: µ ± σ. Following the suggestion of ZangZhang et al. (2001) that users should pay
more attention to selecting the number of input nodes, we have cross correlated the power
with itself and correlated it with the wind speed and concluded that the highest values are for
offsets until the range of 4-6 hours back. It means that the size of the more useful data window
must be around this range.
Tables 1 and 2 contain the results for several configurations of RNN and FNN respectively.
Table 1 contains also the error values for the persistence and reference model. The
computation of the reference model data was performed by using the train set, its parameters
are: A0 = 0.82 and P = 0.68. The reported results are related to architectures including
one hidden layer. The experiments have shown that more layers increases the computational
cost and have no better performance. In both tables, the delays are taken in relation to the
prediction time; they are represented as: (h1 : h2)w, where w = h2 − h1 + 1 is size of the time
window. In all cases h1 = 2 to met the regulations. Remark that the values of BIAS and MAE
are related to the first moment of the error, therefore they are related to the generated power,
but the values of RMSE and SDE are related to the second order moment and the variance of
the error.
All the tested RNN architectures perform better on BIAS values, such as significatively reduce
the level in relation to the reference model and the persistence. It means that the feedback
of RNN architectures systematically corrects the biased offset in the prediction. The FNN
architectures without such feedback are systematically biased. The inclusion of innovation
filters can be needed for the FNN case but is no necessary for the RNN one. However, in
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Fig. 2. Comparative RMSE of several models in the very short-term prediction

MAE criterium the persistence value is not beaten neither reference nor any tested ANN
architecture. The variance of the error provided by RMSE and SDE criteria are outperformed
by some RNN architectures in relation to persistence, reference model and FNN. The range
of parameters that provide better results are around values 4 and 6 for windows size, and
around 40 for hidden nodes. The use of narrow windows or lower number of hidden nodes
performs worse. There are not tradeoff between reducing the window size and increasing the
hidden nodes as shows on the RNN1 case. The increasing of hidden nodes does not performs
much better as is shown in RNN6 case. The FNN architectures are more unstable, eg. the
FNN3 have a good improvement of 2.7 in mean value in the RMSE criterium, but has a big
standard deviation value of 1.6. It is unstable if compared with the RNN2 case with 3.3 value
in mean and 0.3 value in standard deviation.
Figure 2 shows the comparative performance in several hours ahead for the RMSE criterium.
The included models are the persistence, the reference model the RNN2 and the FNN3 cases.
It is shown that the reference model performs much better that the persistence and both ANN
cases outperform the reference model. Also it is shown that the relative efficiency of the
predictive models of ANN in relation to persistence increases when increases the ahead hours.

3. Mathematical model of power quality

The outline of the generic model of a RES producer coupled to a energy storage and connected
to a public grid is shown in Figure 3. The RES provides a power P(t) that varies according the
wind speed or sun radiation. The power planned to be sent to the grid in the hourly period is
P′, its value had been computed by means of some forecasting procedure before being sent to
the TSO. The power that the system is effectively sending to the grid is Po(t). The difference
Po(t)− P′ is the deviation between the planned and the fed power; this difference is logged by
the measurement systems of the TSO and the control system. These values will provide some
quality parameters that will reduce the economic billing of the RES producer. This paper
focuses only on the technical problem of the energy flows and on the measurement of the
quality parameters and does not address the economic downside that is strongly dependent
on the National Regulations of each country.
If no storage system is used, Po(t) = P(t), the penalties are related to the chaotic evolution
of the local weather and some basic freedom degrees of the wind power system, eg. the
pitch regulation of the blades. Precise forecasting procedures can reduce such impact but only
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Fig. 3. The Storage and Energy Management System

partially, because most of the Electricity Markets are related to hourly periods, and one hour
is too long a time period to have constant wind speed.
The National Regulations of some countries with high RES penetration have defined some
quality constraints for the divergences and its economical downsides. In this paper, we adopt
a simplified model: the energy sent to the grid must meet some quality constraints if penalties
are to be avoided. It must be in an offset band such as P′ − ∆ ≤ Po(t) ≤ P′ + ∆. The ∆ value is
defined by the Grid Regulations and it can be defined as a fraction, δ, of the nominal power:
∆ = δPn.
We define two logical conditions, the into band one when the output power is within the offset
band, Po(t) ∈ P′ ± ∆, and the converse out band condition when the output power is outside
this offset band Po(t) �∈ P′ ± ∆. We can introduce some measures of energy amount and
quality. The raw energy provided by the RES generator Eres and the energy feed in the grid
Egrid are defined as follows:

Eres =
∫

P(t)dt Egrid =
∫

Po(t)dt (6)

If no storage system is used, both values are the same. The planned energy, Eplanne and the
energy feed into the grid outside of the quality band are expressed as:

Eplanned =
∫

P′dt Eout =
∫

Po(t) �∈P′±∆
Po(t)dt (7)

Moreover, we can introduce the excess or deficiency of energy feed when the system is out
band as:

Edeviation =
∫

Po(t) �∈P′±∆
|Po(t)− P′|dt (8)

3.1 Modeling the storage subsystem

A simplified model of the storage subsystem is composed of two parts: the energy storage
itself and the driver or set of physical devices( electronic, electrical and mechanical) that allows
the storage and recovery processes. The driver subsystem is an abstract wrapper of a complex
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system involving very different technologies. The energy storage can be implemented by
electric batteries or hydraulic reservoir, while the driver can be a system of power electronics
or water turbines and pumps. We will suppose that the energy amount is an observable
variable by mean of some suitable sensors. Let E(t) and Emax be the stored energy and the
maximum energy capacity of the storage subsystem, verifying: 0 ≤ E(t) ≤ Emax. The main
issue in the modeling is the energy conservation equation. However, a detailed model is
required to take account of the efficiency in the storage/recovery processes. The changes in
the stored energy are defined as:

dE

dt
= Ėin − Ėout − Ėloss (9)

where Ėin is the input rate in the storage phase, Ėout is the rate in the energy recovery phase
and Ėloss is the rate of energy lost in the storage itself. The increase in the stored energy is the
following when E < Emax :

Ėin =

{
ηs[P(t)− P′] P(t) > P′ + δ1

0 otherwise
(10)

where ηs is the efficiency of the driver in the storage phase, and δ1 ≤ ∆. The decrease of
energy in the recovery phase is the following when E > 0:

Ėout =

{
1
ηr
[P′ − P(t)] P(t) < P′ − δ2

0 otherwise
(11)

where ηr is the efficiency of the recovery phase and δ2 ≤ ∆. It is possible to model some losses
as a ratio of the stored energy:

Ėloss = −λE (12)

where λ is a decay factor. The efficiency factors ηs and ηr in a hydraulic system are the
efficiency of the pump in storage phase and the turbine in the recover one respectively. The
output power that is sent to the grid, Po(t), is:

Po(t) =

⎧
⎨
⎩

P′ P(t) > P′ + δ1 ∧ E < Emax
P′ P(t) < P′ − δ2 ∧ E > 0

P(t) otherwise
(13)

One additional constraint can be introduced by defining an upper value for the maximum
gradient for energy change, |dE/dt| < Dmax, which is the maximum power of the driver
system.
We have designed a basic object to simulate storage related problems with limited upper and
lower capacities. This basic object is related to the following differential equation involving
x(t) as the data, which is the rate of change of the stored value, and y(t) which is the stored
value itself:

dy

dt
+ λy = η x(t) y(t) ∈ [0, ymax]

∣∣∣∣
dy

dt

∣∣∣∣ ≤ dmax (14)

where the efficiency depends on the direction of the storage/recovery process.

η =

{
ηs x(t) ≥ 0
1
ηr

x(t) < 0 (15)
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Fig. 4. Blocks in the modeling and simulation

Figure 4 shows the blocks of the modeling and simulation systems. The block Storage
implements the defined model of a generic storage system focused on the power and energy
management. The data source of the system is provided by the block windPower, which
provides the spot power and some model of basic forecasting. It is implemented as a wrapper
of a MATLAB file containing the power series in time steps of one minute and the whole series
comprises 33 days. These data are obtained from wind speed series and a transfer function
for a pitch regulated wind generator with values of 4 m/sec and 13 m/sec for cut-off and
saturation respectively. The power is constant at the nominal value to the 25 m/sec limit,
which is never reached in the series. The block windPower also provides some values of
three basic forecasting models for hourly periods. The simplest model is the persistence
model, which provides the predicted value: P̂h+2 = Ph. The second forecasting model is
that suggested as the reference model Madsen (2004); Nielsen et al. (1998), which provides the
predicted values: P̂h+2 = a2Ph + (1 − a2)P, where P is a long-term average of the available
data of source power and a2 is the correlation coefficient between Ph and Ph+2. These values
in our case are: a2 = 0.82 and P = 0.68. The last forecasting model is not actually a
forecasting, we called it the ideal forecasting because is the best, and unreal, prediction that
can be achieved: P̂h+2 = Ph+2. It is included only for testing purposes, because this ideal and
unreal forecasting does not solve the problems concerning the lack of quality in the power fed
to the grid.
By simulating the systems we have experienced that the storage system becomes
systematically empty or full depending on the configuration parameters. In those states the
system can neither store nor recover energy to regulate the output power, because it runs into
its non-linear zones. To avoid that the energy storage systematically becoming full or empty,
a factor of innovation can be introduced in the planned power k hours ahead as:

P̂
(inv)
h+k = P̂h+k + k1(Eh − Eobj) (16)

where Eh is the average stored energy in the h hour, k1 is a small constant parameter and Eobj
is some objective level of storage. This strategy corrects the systematically biases and non
linear states. The Control block implements the storage strategy. An additional parameter has
been added to avoid feeding power to the grid at power lower than a defined minimum value.
This Pmin value and the lower threshold δ2 in Equation (13) mean that no power is fed to the
grid lower than the Pmin − δ2 value. It computes the planned power for each two hours ahead
period and sends it to the TSO block. At every simulation step it computes the power balance
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Fig. 5. Power feed to grid by an unregulated wind generator
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Fig. 6. Simulation results of the regulated system. In each hourly period the power feed to
the grid can change at most ±5% of the nominal power.
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Fig. 7. Simulation results of the regulated system. The stored energy.

and sends the requested power to the storage system to be stored or recovered. It uses the
data provided by the Average block that implements the feedback innovation term to correct
the states of bias.
The TSO block is mainly a logger of the power feed to the grid. It detects the in band and out
band states according to the ∆ parameter, which is defined in the Regulatory Norms of the
Electricity Authority, and the planned power for each Market period. The energy feed in the
different states is computed by integrating the power.
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Energy(MWh) P(NS) R(NS) I(NS) P R I P(In) R(In) I(In)
Egrid 546.48 546.48 546.48 526.89 521.56 540.14 519.76 519.73 536.46
Eout 270.05 471.36 174.41 7.88 1.25 4.37 0.00 0.00 0.00
Edeviation 110.90 132.80 41.84 14.20 5.00 1.58 0.00 0.00 0.00
Eplanned 546.51 546.63 546.48 540.93 525.81 540.90 519.68 518.67 534.78
Einit - - - 3.00 3.00 3.00 3.00 3.00 3.00
Eend - - - 0.43 2.11 0.01 2.95 3.32 2.86
Emax - - - 3.00 5.00 3.42 3.52 3.59 3.48
Emin - - - 0.00 0.00 0.00 0.73 0.92 2.45

P: Persistence, R: Reference Model, I: Ideal Forecasting, NS: No Storage, In: Innovation

Table 3. Quality Parameters

3.2 Results in energy storage

The first test performed on the system was the computation of the results of the TSO block
without any storage system. This test provided the raw quality factors corresponding to the
RES generator. The test was based on a time series of 791 hours. The first three columns
on Table 3, with the label no storage(NS), contain the energy values for the three forecasting
strategies, P(Persistence), R(Reference Model) and I(Ideal). An unexpected conclusion that
can be obtained is that the Reference Model introduced by NielsenNielsen et al. (1998) and
MadsenMadsen (2004) has the worst quality values. It has been claimed that it has less error
in wind power forecasting than the Persistence Model but it performs worse in terms of the
quality of the energy supplied to the grid.
When the storage system is used, the energy provided by the RES generator is managed by
the control system. It is stored and recovered according to the defined strategy. It means that
some energy amount will be lost due to the efficiency of the storage driver. The use of the
storage system provides more quality in the power fed to the grid, at the cost of lower amount
of feed energy. The more quality, the less energy is an approach that will be economically
feasible depending on the structure of prices, penalties and subsidies of each country.
Figure 5 shows 3900 minutes of the power provided by the RES generator. Figure 6 shows
the power feed to the grid with a storage system. The parameters for the control block are:
δ1 = δ2 = 0.05, k1 = 0.1, Eobj = 3 MWh and Pmin = 0.25 MW. The last of those means
that no energy is fed with a power lower than Pmin − δ2 = 0.2 MW. The parameters of the
storage system are Eint = 3 MWh, Emax = 5 MWh, λ = 0 ηr = ηs = 0.9 and no constraint
is imposed in the maximum allowable gradient. Figure 6 shows how the power holes of the
RES generator are time-delayed in relation to the fed power. This allows the TSO to have the
planned power two hours in advance, thus avoiding uncertainty in the planning od the public
electricity system.
Table 3 contains the results for a large simulation, the same parameter previously considered
with a lower efficiency: ηr = ηs = 0.8, which means a global efficiency of ηsηr = 0.64. The
columns without the label innovation(in) do not use the innovation factor, which means: k1 =
0.0. Other included data are the values of the initial and final energy, as well as the maximum
and minimum energy values.
In the columns without the innovation term, the Reference Model performs better than the
other forecasting. It has the lowest values in out band and deviation energy. However, it was
the more unstable because the storage became full and empty in the simulation. The last three
columns have the best performance in quality. The storage was neither full nor empty, and
also the final storage capacity was also close to the initial one. This means that the storage was
always in the linear zone and the out band and deviation energies were null. However, the

221Short-Term Advanced Forecasting and Storage-Based Power Quality Regulation in Wind Farms

www.intechopen.com



14 Will-be-set-by-IN-TECH

energy amount fed to the grid was lower in the three cases than in the same strategies in the
previously considered groups.
In the performed experiment, which concern to 1 MW of power, the storage of 5 MWh in
capacity was sufficient except in the case of the Reference Model without innovation, where
there is an overflows. These results are consistent with the analysis by ButlerButler (1994) that
evaluated the storage needed for several tasks in the electric system. For spinning reserves
between 10-100 MW that author estimated about one half hour; for local frequency regulation
related to 1 MW one hour and for a renewable application of 1 MW, 1-4 hours, equivalent to
1-4 MWh in line with the simulated results.

4. Conclusions

The short-term forecasting of wind power for Electricity Markets requires two kind of time
scales prediction. The first requires detailed prediction for 1-2 days ahead, which needs the
cooperation of some tools of NWP. The second is for the time scale of few hours ahead, which
can be carried out by using time series analysis. In this time scale, ANN can be applied
successfully for wind power forecasting useful in Open Electricity Markets.
This study has used the standard protocols to evaluate the performance of forecasting
procedures that some authors have introduced. We have compared the results according
these protocol. We have shown that the new reference model, based on the first order Wiener
filter, perform better in variance criteria as RMSE and SDE, but it is worse in first order
moment as BIAS and MAE. Some ANN architectures, as Recurrent and Feed Forward, have
been tested. The main conclusion is that Recurrent architectures have better performance in
first and second order statistical moments and can beat the reference model in the range of
nowcasting useful in the Electricity Market.
The higher penetration of the RES in the future will introduce high disturbance into the
electric systems by increasing the risk of instability. This risk can be avoided by increasing
the spinning reserves; that is, by increasing the cost of the public electricity systems. The
Electricity Regulations would move toward increasing the effects of the quality parameters
in the system of prices and penalties. In addressing those problems, we have defined a
mathematical model for energy storage based on general parameterized systems and also
constructed a simulator focused on the management of the power and energy. This model
can be used as a first level approach to simulate storage systems. With this approach, we
avoid the device dependent details to obtain general conclusions about strategies, storage
capacity, quality and efficiency. The simulator provides precise data about the increase in
quality parameters and the corresponding decreasing in the amount of energy fed to the grid.
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