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1. Introduction

Wind electricity has known a spectacular increase since 1990, essentially due to
governments” voluntarist policy. At present, this renewable energy is considered as the best
economic profitability.

The success is accompanied by difficulties in short and medium terms and deep
questionings in long term. Thus, coupling problem between wind generator and network
perturbation, usually resulted by untimely decoupling, has to be studied. In medium term,
the question will be around the general ancillary services problem such as voltage and
frequency regulation. In long term, numerous questionings concerning the network capacity
of wind power integration (e.g.: in Germany, 50 GW is planned by 2020) and the
unsatisfying current premier reserves will be purposed. Therefore, new production
infrastructures have to be built, especially with improved management plan which will link
these new productions to stocks and load pilot.

Moreover, because of the continuously increasing penetration rate of wind power in power
system, the management of wind power intermittency become more and more important.

In fact, network driver will meet a serial of difficulties that cannot be solved without actions
directly on the flux of wind energy or indirectly by economical incitements (penalty/bonus)
to wind producers.

An interesting schema for the wind energy management can be a coupling of wind
generators and storages. Naturally, there are multiple varieties of wind generator and
storage systems.

However, for the power level that can influence the grid, the most adapted systems of
storage is turbine/ pump ones.

In order to optimize the operation of wind and storage system, particular attention in
existent research is given to maximizing economic benefit. Such an economical approach,
suitable in the short-time frame for encouraging the wind development, assesses the wind
intermittency as a technical-economic problem with network operating limit conditions.
With large-scale of wind integration, the intermittency will have great impact on power
system operation (fluctuations, stability, reserve capacity...). Network needs to apply more
and more constraints on power quality delivery by wind system. In this context, the current
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110 Wind Farm — Impact in Power System and Alternatives to Improve the Integration

work considers optimal operation of wind storage system as an optimization problem that
deals with primary sources, storage capacity as well as demand. The main objective is to
meet grid requirements in term of limiting the fluctuations and providing possible ancillary
services. The intermittency management will be assessed into two steps: anticipation phase
and reactivity phase. The first one, which will generally be done at Month-1, Week-1 or Day-
1, consists in using forecast information (weather, network demand ...) to define the optimal
operation schedule for wind - storage system. On real time operation, the system has to deal
with possible vagaries and take the right adjustment control with actual capacity. The
problem is complex with numerous discrete control variables and continuous ones. A
mixed-integer linear programming (MILP) is used to efficiency solve the problem. An
example is given to illustrate the proposed method. Results indicate that wind power with
storage can meet the network requirements while best ensure its profits. Results also show
that the proposed optimal operation strategy which limits considerably the fluctuations on
power system will facilitate the integration of more wind power.

In this chapter, we deal with a wind system combined with a hydraulic storage (we name
the system W+S since now) where the input is the network demand power and the output is
the provided wind power. This system has to response to the management requirements in
taking into account the wind vagaries, the storage and de-storage capacity, the energetic cost
of the flux transfer and highlighting economical efficiency.

2. Introduction of corrective measures in order to face the intermittencies of
wind energy

Because of the fluctuations of wind energy, some corrective measures have been proposed

to face the intermittencies.

e The choice of location for a wind power plant building

The choice of an optimal geographic location is one of the first criteria to be considered

and analyzed in order to plan a significantly and stabilized production. Many geographic

areas seem to be appropriate to the wind energy development: a uniform wind speed

with few or no weather anomalies (storms and cyclones) guarantees a controlled

production of energy.

For example, in France, the priority fields of wind energy development are determined by

the following parameters:

e A high wind potential with three distinct wind patterns: north, west, south;

e  The possibility to be connected to a national electrical network;

e The preservation of the land-use sites, that is to say, the guarantee of a low impact on
landscape, environment, fauna, historic edifices and all other protected areas.

e Avoid proximity with military areas, airports, radar detections...

The priority regions for the wind energy development are (in France) Lorraine, Bretagne,

Languedoc-Roussillon, Picardie, Champagne-Ardenne, Rhone-Alpes, Midi Pyrénées,...

e The improvement of the wind forecast accuracy (speed and direction)

Forecasting is a main factor giving the entry parameters of all the operational decisions

related to the operation of the electrical systems in general, of the wind energy plants in

particular. However, due to the continuous variation of the weather conditions, the wind

speed forecast accuracy and to a lesser extent wind direction, is a main topic.

e Energy storage
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Optimal Management of Wind Intermittency in Constrained Electrical Network 111

Energy storage is the key of all kind of integration of intermittency primary sources.
Nevertheless, all the existing mature technologies are little or no adapted to the wind energy
power scales (MW). Except for the three following ones:

e Bigsized hydraulics or gravity-fed systems in general;

e Compressed air;

e  Flywheels;

Each system is characterized by its power or its mass or energy volume, its efficiency and its
cost; these parameters will be relevant ones for the choice of a technology than another.

And in this party, the use of wind power combined with storage means (mainly, pumped
hydro storage system) is often proposed and chosen to limit the impact of the variability of
wind power [SOM-03], [ANA-07].

3. Problem description of operation of a wind power plant with an hydraulic
storage within the electrical network

3.1 An economic problem (old policy: only economic constraints taken into account)

Beforehand, the energy policies emphasized the wind energy producers by introducing

advantages on their produced energy purchase price and by neglecting the ancillary services

criteria for this kind of energy. Indeed, the producers supplied energy without being

concerned by:

e Voltage regulation;

e Frequency regulation and power regulation required by the grid;

e Adaptation of supplied energy in case of variable situations (dramatic wind speed
fluctuations or network voltage drop).

With the growth of renewable energies in general and that of wind energy particularly,

these advantages gradually decreased:

e The evolution of energy policy: subventions dedicated to renewable energies decrease;

e In prospect: increase of participation rate of renewable energies in the electrical network
(20% attempted in 2020);

e Increasing of imposed technical constraints.

Thus, optimization of (W+S) system operation is needed in order to better integrate the

wind energy into the electrical system according to the new requirements of the grid.

3.2 A technical-economic problem (real time or reactive management)

Wind power plant management is the adaptation to the wind intermittencies in order to
satisfy the electrical network requests. This is a global exercise where all elements must be
carefully analyzed. Then, study of sources (location, weather and installed capacity), the
prevision of the operation mode (seasonal forecasts, month, week, day and hour) and on the
real time, optimal driving strategy must be considered.

Management of wind energy intermittencies can be separated in two phases: anticipation
phase based on forecasting data (static management) and reactive phase on the real time
(dynamic management).

e Anticipation management

Concerning this kind of management, the optimal operate diagram of a day is established
thanks to previous day data. The drawback is that the performances depend on the accuracy
of forecast data. The difference between the forecast data and the real data can generate
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112 Wind Farm — Impact in Power System and Alternatives to Improve the Integration

technical errors and economic losses. To overcome this problem, a real time management
can be proposed and anticipation plan for the optimal operation of system will be forecasted
for tomorrow.

e  Real time or reactive management

The aim is to obtain adapted optimal operate strategy and dynamic on the real time in case
of unpredictable variations concerning wind speed or required grid power for example. The
method is based on a continuous daily update as soon as entry data are not conformed to
expected ones. As a result, a new optimal operate strategy is determined.

Thanks to the combination of the two management phases, the wind energy system with a
hydraulic storage (W+S) is fully controlled. First, the forecast data is used. Then, they are
compared to the real ones and the deviations, if there is one, is adapted in order to obtain a
new optimal operate plan.

4. Problem characterization

4.1 W+S system characterization
The energy flux of the W+S system is presented as the following figure. This system
principal characterization is discussed in the next paragraphs of this part.

N g ©

Grid

P hydro

Pumping

Fig. 1. Connection of the W+S system to electric grids

a. Continuous, discreet and intermittent nature

e The wind power is an intermittent source

The variability of wind energy is due to the intermittent nature of wind and the process of
converting wind energy into electrical energy.

The wind speed is constantly changing. This is a climatic phenomenon, which depends on
several variables that are very difficult to predict with accuracy. Normally we use statistical
tools to describe this phenomenon: the variation of wind is given by (1) using a Weibull
distribution function and is illustrated in Figure 5. The statistical model is characterized by
the scale factor C (m/s) and the shape factor k (dimensionless).

{8 ]

The C and k factors are estimated by using historical data of wind on the site considered for
a long period. A description of wind conditions at many sites in Europe shows that in
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general, the value of C factor is between 2 and 8 and the k factor takes a value between 1.5
and 2, [BUR-01], [GAR-06], [GEN-05], [DWIA].
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Fig. 3. Characteristic of the wind power according to the wind

In the wind turbines, electricity generation is directly related to the wind speed. The
turbines convert wind energy into mechanical energy, which is then used by the electrical
generator. The conversion process of a wind turbine is described by a power curve given by
Betz expression:

pzé.cp.p.ﬂ.[_f.w )
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Where:

p: density-dependent temperature

P : power generated by wind turbine

Cp: drag coefficient of power (specific to the wind farm)

V: wind speed

D: diameter of the blades

This expression is quite similar for different manufacturers and turbine types. The power is

null if the wind speed is less than a starting speed (cut - in speed) (Vd = 2 to 4 m/s), this

power is also proportional to the wind speed rise between cut - in speed and the rated
speed (about Vnom = 12 to 16 m/s). At the rate speed the power is near its nominal value.

Power is constant between the rated speed and cut - out speed (Vmax = 25 to 30 m/s).

Beyond the cut-off speed, the turbine is stopped for safety reasons.

By observing Figure 5 we see that the winds are more frequently at low and average speed

than at strong velocity. Otherwise the (2) shows that the average wind power supplied by

the turbine varies strongly with the cube of the average wind speed. Thus, a doubling of
wind speed corresponds to an increase in its capacity energy 23 = 8 times.

Consequently, the variability of the wind and the process of energy conversion makes the

wind generation an intermittent nature.

e The electric grid is considered as an intermittent source

The electric grid is a complex multi-actor system consisting of many uncertain factors like

technical, human and natural factors. The uncertainty is present at several levels.

e Stochastic variation of demands (usually considered as the prediction error) has
important effects on anticipating and on managing the real-time system. It is due to
some related climates and consumer behaviours.

e Several types of uncertainty exist in electricity generation where the generating units
cannot reach their production plans or where the production unit cannot start as
expected or is stopped suddenly by natural or technical causes.

e Operation limits of the transportation and distribution systems have to be taken into
account. The risk of disruption is high if one of these limits is violated, usually when the
capacity of power transmission exceeds its limit or there are some technical restrictions
on the use of lines. We called them congestion problems. They are unpredictable and
normally occur following any incidents (errors of operations) or external aggressions (a
tree branch falling on a line, overload, lightning or discharge on some lines...).

The combination of these uncertainties and the physic nature of the system, in plus with the
difficulty of predicting the behavior of all factors increase the uncertainty on the system.
Therefore the electric grid is considered as an intermittent source.
e Hydraulic storage system is a cumulative resource
In this storage system, water is stored in high basin in the form of potential energy. It is
removed from storage into turbines to produce electricity when needed. Providing
hydraulic pumping increases the storage energy while the discharge by the turbine reduces
the volume of the basin. It is the characteristic of "storability" which leads us to consider not
only the operation flexibility but also gives us un opportunity to produce energy at better
valuated times. Thus, the main characteristic quantities of the storage system are:

e storage volume (in m3) and storage capacity (in watt-hours (Wh));

o different altitude between the two basins (upper and lower) (m);

e installed power and performance of hydroelectric turbines and pumping station.
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The storage state at any time is determined by the accumulation of volume available in the
past and the provided and discharged volume at the time.

e Turbine and pump are the two alternate functions

The storage system, which operates with two closed basins, is considered as a closed circuit.
In case of overproduction wind, water can be pumped into the upper to accumulate
potential energy. The hydroelectric turbines use this water to produce electricity during
high load demand. Therefore, both turbine and pumping are alternated functions.
Moreover, the W+S arms to maximize the value of wind energy. The hydroelectric storage
plays the supported role. It is a non-permanent status (discrete). It is also important to note
that for economic reasons, it is undesirable or even impossible to run two functions
simultaneously, especially in the case where the system has only one forced operating
system - type IL.

b. Dynamics

The W+S is a dynamic system. The time horizon considered for the W+S system can be
viewed at different time scales where the amplitude variation has not same values.

First, wind generation is intermittent but it sometimes shows a certain periodicity. In
different seasons, we see that wind generation is more favourable in winter in the Nordic
countries with a low pressure weather, or better in summer in the Mediterranean region
thanks to the summer breezes [GAR-06], [PET-97].

The annual consumption of the electrical system also has a regular trend and is periodic.
The power consumption increases year-by-year following the country development. The
growth rate depends on development degree: low in industrialized countries and very
strong in developing countries. In a year, season-by-season, energy demand is much higher
in winter than in summer in cold countries and inverted trend in hot countries [GAR-06],
[PET-97].

A example of annual win energy statistic is given in the following figures. Figure 7 gives
potential wind energy between 2003 and 2008 on a site in Montpellier (southern France).
Figure 8 shows of the monthly power consumption in France between 2003 and 2008.
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Fig. 4. Potential wind energy
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Fig. 5. Monthly power consumption

Thus, at this time scale, the forecast is based on the past history and on the modeling of
climate effects or others recurring effects (festivals, big events ...).

We also note that diurnal cycles are mainly due to the effect of temperature for both wind
generation and power consumption.

In reduced time scales (order of a minute) it is difficult to predict exactly the average wind
speed and its level of fluctuation. Consumption also fluctuates unpredictably for the reasons
cited in the above paragraph. However, we note that changes in short-term consumption are
rather "continuous" or "progressive'.
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Fig. 6. Wind generation
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Fig. 7. Daily consumption

The following analyses show us some observations:
in medium term (week, month, season, year): variability is rather slow and periodic;

in short term (day): the variations are large and associated with large uncertainties;
in very short term (some minutes): fluctuations are very fast with amplitudes rather

unpredictable.
Every time horizon type of variability and its impact on the operation of different system.

Therefore, it is important to take into account this dynamic characteristic of the W + S in the
developed approaches which arms to optimize the intermittency management.

c. System benefits
The economic and financial needs have to meet the profitability of the system. Because,

despite technological and techniques progress in recent decades, the economic incitements
and the trend of wind energy integration into electrical system, the price of energy produced
by this source is still higher than conventional sources. The economic criteria are still among

the top regardless of adopted management strategy.

4.2 Towards an optimized management
The presented characteristics of the W + S system have highlighted a need to develop a

optimized and appropriate management approach. It arms to determine the schedules of
on- off operation and the quantity of energy of all components in the system (wind - hydro -
pumping), which meets the technical and / or economic criteria. The coordination of
components operation in the system should be part of an overall vision and be composed of

several levels of control for the different time scales.
How do we define an optimal strategy of operation management? The answer depends on

the conditions of wind integration in the electrical system.

Nowaday, the development of wind power in several European countries (Germany, Spain,
Denmark...) is explained by the support policy adopted by its governments. These include
not only regulation policy (required purchase, quotas) applied to electricity distributors but
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also an attractive remuneration per kWh generated by wind power (investment subsidies,
guaranteed purchase price). This policy, known mechanism of integration, is obviously
intended to increase wind energy generation to maximize its profitability. Fluctuations are
less disadvantageous and are even negligible for wind power producers. The operational
and financial responsibility of the intermittent management refers to different actors of the
electrical system. The quality of results and the effectiveness of this policy are proven by the
substantial growing of wind turbines installation over worldwide during recent years. Thus,
for wind energy producers, the best management approach arms to maximize the profit
from selling wind generation by maximizing win energy penetration into the grid, at the
best price [HAL-01], [GER-02], [CAS-03], [MAG-03], [CAS-04a], [CAS-04b], [CAS-04c],
[KAL-07], [BEN-08], [NGU-09], [EWE-09].

A management strategy is supported when wind generation is still a marginal source
among available sources. The impact caused by the intermittent operation of the system is
less visible and often merged by the consumption vagary. So if we investigate for medium
term, wind power should continue to grow. The management of vagary involved in wind
energy would be of not only a technical challenge - because the dependability of the system
depends, but also an economic issue - for the management of the vagary has a cost
(disturbances need increase operating margins...). The question supposed to the electrical
system is that will be the acceptable level of fluctuation? Should we accept these risks or
consider eventually wind power as an independent producer in order to meet specific
technical constraints and electricity market rules. The management of the wind system in
upcoming years would inevitably focus on the answer to this question.

We focus on this context and are going to set up an optimized management approach of the
W+S system.

5. Optimized management method for W+S systems

5.1 Architect of the management system

To initialize an optimized management method for W+S systems, we base on two levels of
control: the anticipation of the operation system and the dynamic and responsive
management in real time.

a. Anticipation of the operation system

In general, the anticipation is the most important step in the operation system. The
objectives here are to define the plan of operation of all components in the system in
subjecting to meet all the technical constraints in order to achieve the target during a period.
Therefore, the anticipation is an optimization problem.

The principle of anticipation is based on predictions such as: weather forecast (wind data,
temperature...) and the network demand (power, energy and / or curve of electricity prices),
the actual generation capacity of each component (condition, planned maintenance...) ... etc.
The anticipation is purely theoretical (no physical control). It permits us to prepare the set
values to be applied to each component in the in situ operation. The instructions are
determined because they are calculated as a reference in the physical exchange with the
network and thus provide an opportunity to address the risks due to uncertainties or
vagaries. The calculations are performed using the average values over a time horizon,
which is the duration of the operation plan to be determined. Depending on the length of
this horizon, the goal may be different.
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Fig. 8. Architect of the management system

In order to know the operation anticipation of the system W + S, we distinguish two levels
of anticipation:

Anticipation of the hydro storage operation: it consists in defining the macro level of the
operation plan of the W + S system, especially is the use of storage capacity in order to
better adapt to wind availability. It seeks to determine the maximum and minimum
storage basins at specific times.
The horizon of anticipation to be considered has to suit the storage capacity, the wind
power capacity and the quality of forecasts. It is possible to plan the operation rather
medium-term (days, weeks, month or season). It can be called the anticipation plan at
the horizon of the day ahead D-1. The more storage capacity has, the longer anticipation
horizon is. This allows us to anticipate a global view of operations and system
performance over time. However, the longer horizon to consider is, the worse forecast
is and so we has the risk of predicting values which are averages, shrouded uncertainty.
Moreover, by considering the system over a long period, the calculation sample must be
carefully chosen because the size and complexity of the optimization problem and the
solution time depends on it. Typically, the sample varies from 1:00 to 3:00.
Anticipation of the exchange between wind energy and the network: whatever the type
of centralized power system (vertically integrated) or decentralized (managed by the
electricity markets), the anticipation at the day ahead for the next day is an obligation
for each participant. The challenge of this step is important because it provides the
network manager the information needed to ensure proper coordination between the
production and the consumption of system participants. For the W + S system, the
anticipation arms to define an operating plan that allows us:
e to propose its best offer of production to maximize the benefit of wind power
production;
e to anticipate risks and to predict the operating margin to minimize the impact of the
intermittent nature of production and thus limit the these impacts on the network.
The horizon to be considered is therefore 24 hours (from midnight to midnight), also
called anticipation on the horizon of the day ahead D-1. Sampling computation
depends on that used by the system, typically it is 15, 30 minutes or 1 hour.
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Thanks to optimal computations of operation plan, estimated costs and benefits are
calculated. Moreover, beyond a simple prediction of operation, anticipating on the horizon
of the day ahead D-1 must be able to "secure" the achievement of the target. The notion of
"secure" is indeed to provide in terms of control a certain level of flexibility and tolerance
face to the disturbances. This could be achieved by further analysis on sensitivity of
obtained solutions in function of input parameters variability.
b. Dynamic and reactive management in real time
The purpose of the dynamic and reactive pilotage in real time is the intermittent and
dynamic characteristic of the system W + S. Indeed, at first, it is simply to ensure that it
functions correctly according to the plan of operation in anticipation. Subsequently, face to
the problem appears with the disturbances up to the day ahead, the problem is a proactive
and dynamic management, which permits us to found the best compromise to minimize the
damage. The consequences of decisions taken at a given time should be reassessed
continuously and, if necessary, modified. Then, new actions should be taken. For these
reasons, the process is considered reactive management based on two levels:

e Reactive "spontaneous" management: the adjustment is within the capacity of internal
regulation of each component of the system (wind, hydroelectric and pump);

e Predictive management at the slipped horizon: it arms to call the optimizer, each time
when the difference between the measured value and the prediction value exceeds a
certain acceptable threshold (at instant H in Fig 1), review or redefine the operating
plan for the period called the prediction horizon slipped between H+1 and T (the end of
the expected prediction horizon). Following this reassessment in function of new
available data the new instructions are recalculated. The illustration of the predictive
management process in real time is presented in Fig 12.
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In this section, we proposed the architecture of the optimized management system. The
following sections are specifically devoted to the optimization module with: the structure of
input and output data, the mathematical modeling of the problem and the choice for
method resolution.

5.2 Hypotheses and data structuring

a. Prediction of wind power

As already mentioned in the above paragraph, the wind power is a variable and intermittent

energy source. To develop a method for managing the wind energy, a good forecast of wind

production associated with the estimation of uncertainty is primarily important input data.

The purpose of the wind generation prediction is to provide an estimate power generation

at a given time in the future. The “peak” prediction is the most common model: for each

time step in the future, a single value is provided. The forecast is given in power because it
uses the characteristic curve that directly converts the wind speed in power. It is defined by
several time horizons:

e afew days a week: this forecast could facilitate the anticipation of the use of storage;

e afew hours in the range from 24 to 72 hours: This prediction is essential for managing
the electricity system in general and the wind system in particular. We'll use this
prediction for the anticipation of our system operation;

e afew minutes of one hour: it is the very short term forecast - even in real time, which
can be used for active control of the turbines.

Naturally, the quality of the prediction increases as the prediction horizon is reduced.

Knowing that the forecast still contains certain of error what is defined as the difference

between the measured and estimated (predicted) value, theoretically, several research exist

to take into account the uncertainties such as:

e a stochastic model: we assume that these uncertainties are random variables following
the probability law;

e interval model: we assume it is possible to determine an interval of plausible values
that bound the actual values;

e scenario model: one defines a number of scenarios of possible uncertainties based on
the study of histories, trends ...

In this article, we use the combination of two models: intervals and scenarios by

determining 3 values for each point of prediction (minimum, average and maximum).

b. Operation of the W + S system in the electrical system

The electrical system in which the W + S participates, presents a deregulated organization.

The coordination of production and consumption bases on a sequence of two modules at

medium action and horizon distinct actions (cf. [SAG-07]).
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Fig. 10. Principle of the organization of electricity markets

www.intechopen.com



122 Wind Farm — Impact in Power System and Alternatives to Improve the Integration

The first module of electricity markets permits its participants to prepare a decentralized
mode and forecast their energy exchanges in real time. These markets, called "forward", are
composed of several levels:

e market before the day ahead D-1 arms to prepare long scale trade (week, month, year);

e market of the day ahead D-1 arms to prepare the coordination of production and
consumption the next day;

e market of infra hours arms to coordinate the operation for the next few hours, so as to
exploit all opportunities to better manage the vagaries.

The participant producers in forward markets respect the following common rule: based on
forecasts (weather, consumption...); producers anticipate their operation to identify offer
production, i.e. a quantity of energy exchanged with the network for each delivery interval.
The choice of the length of this interval depends on the considered system.
This step is purely financial and trade deals are permitted until a time called the gate
closure. At the time of gate closure, the market therefore has all the information needed to
define, based on production offers and demand loads, the best compromise towards the
power demand and the amount of energy to be delivered. This is to minimize the total
operating costs while ensuring the safe operation of the system. Thus, the electricity price
for each delivery interval is determined.
In France one day is from midnight to midnight, composed of 48 intervals of 30 minutes.
The gate closure is 16 pm the previous day for the markets forward. The market of infra
hours is 45 minutes before physical delivery. The price used is the weighted average price
(PMP: Prix Moyen Pondéré in French).
The second module, in which the actual time starts from the gate closure, performs the
centralized coordination of production programs with the overall consumption and the
management of physical constraints of the system. Any variation between the proposal at
forward markets and the physical delivery will require the network manager to use the
necessary actions to ensure system balance. For this reason this module is called an
adjustment mechanism. It consists of two stages:

e Stage 1: Set frequency - power (primary and secondary) automatically by the
responsible groups of the balance (with a specific contract with the network manager)
within a very short time (less than 10 minutes);

e  Stage 2: optimization of load distribution and return operating margins. This setting is
available through modifying operation demands of the other actors in the system. All
producers or consumers are eligible for this adjustment phase.

The adjustment mechanism is expressed by the rule of difference at unique or a double

price. In France, the adjustment is at double price, Table 1. This is to encourage favorable

ranges and to penalize unfavorable ranges in the system. In the first case, the ranges are
generally favorable for PMP defined by the market of the day ahead D-1. In the second case,
the unfavorable range is penalized for PMP price revised at a multiplicative factor [SAG-07],

[TEN]

For example, at time t, the tendency of the network is increasing. It means that the system is

in energy deficit. A producer provides an amount of energy:

e either less than the offer made at D-1, that will aggravate the situation. There will be

penalized for each kWh not supplied at a price of: PMP-(k+1);

e or greater than the offer made at D-1, which goes in the right direction to relieve the
system. It will be paid for each additional kWh at a cost of: PMP .
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Trend of adjustment mechanism
upward downward null
Positive PMP
difference PMP (k+1) PMP
Negative
, PMP-(k+1) PMP PMP
difference

Note : In France since 2005, k = 0.12

Table 1. Price of regulation of ranges in the adjustment mechanism

It is the network manager who will make the selection to offer and activate the change order
from the operation program of selected producers.

Thus, in the context of this thesis, we consider that the W + S system works in electricity
market following the same rule as other producers as described above. Nevertheless, by its
intermittent nature, we assume that the W + S system does not intervene at the first stage of
the adjustment mechanism. That is to say, it does not offer the reserve primary and
secondary frequency.

6. Problem formulation

The problem of optimal management of the W + S system described in the preceding
paragraphs has all characteristics of an optimization problem where we use limited
resources to achieve optimal goals. This can be solved by techniques optimization.
Optimization techniques are algebraic and numerical approaches based on mathematical
programming. An optimization technique based on a class of decision variables and arms to
prove the existence of a scenario that is the best of all possible scenarios. This scenario is
known as optimal solution. Two large families of optimization methods exist:

e exact methods;

e  heuristic methods.

Early approaches, such as their name suggests, are accurate and effective. The optimality of
obtain results is mathematically proven. However, these methods require knowledge of
mathematical programming in order to build adequate and appropriate models. Problem
formulation (objective function and constraints) in mathematical form is sometimes
laborious especially when the complexity of the problem increases. The cost of calculation
time and informatics resources is also a weak point which demotivates to choose these
methods if there are problems of very large size. In the area related to resource allocation,
linear programming and its extensions such as integer programming or mixed linear
programming and dynamic programming are mathematical techniques commonly used for
solving such problems.

The latter approaches are methods of solving complex problems and mathematically less
robust but based on good significations. They do not guarantee obtaining the optimal
solution but a solution whose performance is generally quite good and similar to those of
the first approaches, we speak of sub-optimal solutions. These reduced robust approaches
can save time and computational cost for complex and large problems.

To address the problem of optimal management of the W + S system, we choose a method
belonging to the family of exact methods: linear programming. It is an effective and realistic
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method. It has the advantage of flexibility modeling which allows us easily introduce
extensions (including consideration of new variables or constraints).

In addition, the combination of increased computing power with specialized software
strides such as the CPLEX solver, the solver JLPK or one integrated in MATLAB (MPT ...)

makes a possibility of solving very large linear programs in a reasonable time [MOM-01].

6.1 Linear Programming (PL)

The implementation of the linear programming technique can be divided into several stages:

e identifying the problem as being solvable by linear programming. This identification is
the contribution of deep knowledge of the physical phenomena and to the
mathematical modeling of the problem;

e formulating the problem with using a linear mathematical model (equation formulation
of variables, objective function and constraints);

e solving the theoretical problem using techniques algorithmic;

e determining a real solution from the theoretical (mathematical) solution;

e verification and validating the solution.

a. Mathematical model

The term "linear programming (LP) implies that solutions must be found to be represented

by real variables. The objective function and constraints are represented in linear form.

When the problem consists of continuous and discrete variables (integer or binary), Linear

Programming extends to the Mixed Linear Programming (MLP) or Integer Linear

Programming (ILP). In the following, we use the name "PML".

The general expression of the PML is:

Minimize: F(x)
Subject to constraints: A-x<b

Ib<x<ub
Where:

x : vector of variables (continuous, discrete)

Ib, ub : lower and upper bounds of x

A, b : constraint matrices

F : expression of the objective function

All types of objective functions or constraints can be written in standard form.
For an objective function to maximize:

Maximize P(x) isequivalentto Minimize —P(x)

For an equality constraint: a(x)="b is equivalentto a(x)+5>b

—a(x)—6<-b
with 6 >0
For an upper inequality constraint: a(x)>b is equivalentto  —a(x)<-b
Example :
Maximize: P(x)=8x; +5x, +6x;
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Constraints: 2x; +3x, +2x3 <85
X1 +2x, +1x3 <81
4x; +3x, +1x3 <120

x;20,i=[1..3]
The presentation of the problem in standard form is as follows:

Minimize: F(x)=-8x; —5x, —6x3

Therefore, we have:

X4 0 +00 -8 2 3 2 85
x=|x,|,b=|0|, ub=|+0|, F=|-5|, A=|1 2 1|, b=|81
X, 0 +o0 -6 4 31 120

b. Solution approach

e  Algorithm for solving Linear Programming (PL)

Considering the constraints and limits imposed on the variables, we can determine the trust

region. This region collects all the feasible solutions. If we fail to build a region where all

constraints are verified, the problem is considered infeasible.

There is a solution in this region, which corresponds to a minimum of the objective function

(the problem is presented in its standard form, so the objective function to minimize). This

solution is called the optimal solution.

Moreover, it is possible to have one or more optimal solutions that give the same optimum.

Many methods have been developed to solve the LP problem whose variables are strictly

continuous. The most frequently used techniques are known as the graphical method,

simplex method and its variants.

o  Graphical method: a feature of the PL is that the optimal solution, if it exists, is one of the
highlights point of the "polytope" formed by the constraints and bounds of variables.
Therefore, after building the region of feasible solutions, it suffices to inspect the
vertices and find the solution that gives the minimum value of the objective function.
The illustration of the graphical method is given in Fig. 11.

This method is very illustrative but is difficult to apply to large problems.

e  Simplex method: developed by Dantzig in 1947, this method and its variants are widely
used in solving the PL. This method based on the matrix approach is much more
efficient for computer-assisted calculations.

The idea is to transform inequality constraints into equality constraints by adding slack

variables / artificial ¢ . The problem becomes:

Minimize: F(x)

Subject to: A-x <b which is transformed into A-x+5="b
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25.83
x=|5.67-107°
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Fig. 11. Feasible region and optimal solution of the presented example

e Then, by solving the equation A-x + 6 =b we can obtain some cases:

- no solution : the problem is considered infeasible;

- aunique solution: the optimal solution;

- infinity of solutions forming a feasible region: the region obtained by examining the
highlight points in order to find a solution that minimizes the objective function

e Solving Algorithm the Mixed Linear Programming (PML)

By nature of our problem, the variables are of continuous type on one hand and binary

decision on the other. The PML problem is a difficult problem. The most common method

for this kind of problem is the "Branch and Bound". Its principle is to:

e  First, divide the problem into several linear sub problems which are numbered in a
logical sequence (separation process) in order to obtain solutions containing only
continuous variables;

e Then evaluate each of these sub problems in order to find the optimal solution using the
resolution algorithm of the PL (procedure) in making each "tree node";

e Finally, choose the best tree constructed.

In this way, the problem is finding an optimal solution from a combination of NM solutions;

with N being the number of integer variables and M is the range of values of considered

variables.

For the presented example, if we add a constraint considering that all variables are integers,

the optimal solution is:

26
x=|0 | and F,;, =-304, P, =304
16

c. Sensitivity of the optimal solution to parameter variations

Once the optimal solution is obtained, we investigate the sensitivity of input parameters.
Knowing that the W + S input parameters tainted by uncertainty, analysis of the optimal
solution is particularly important goal, which is to propose a management method for W+S
systems.

www.intechopen.com



Optimal Management of Wind Intermittency in Constrained Electrical Network 127

How is the optimal solution if the parameters of the objective function or those relating to
constraints vary? In which condition the optimal solution changes or in a worse case where
the solution is no longer feasible?

This sensitivity analysis of post-optimization will allow us to answer these questions and to
secure the optimal solution to face the intermittent input parameters.

We analyze in this paragraph, two types of uncertainty: first the parameters of the objective
function and second the second member of the constraints.

e  Uncertainty about the parameters of the objective function f;

Continuing the example presented in previous paragraphs, we suppose it has an uncertainty
on the parameter of the objective function:

-8
F=|-5 , with—0 <5<+
—-6+0

We can draw its graph based on the coefficient of variation (see Fig. 12)

-200

Ion

-300 -

5-400

-500 -

Value of objective funct

B | |

-8 -6 4 -2 0 2
Variation of parameter f;

a

-600
-14 -12 -10
Fig. 12. Sensitivity of the objective function to parameter variation f;

With 6 =0, the optimal solution is that initially obtained.
It is found that the value of § can have two specific values o and f :
e With:

fa=—6+0<a < O<a+6

Note that the objective function responds linearly to a linear change of the coefficient f3.
The more & decreases the more objective function decreases, then is minimized, and vice
versa.
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e With:

fz=—6+02a < Jo2a+6
- a+6<9<[+6

fi=—6+5<B < S<B+6

The optimal solution is feasible but the value of the objective function only varies flexibly
from the change 3.
e With:

fs=—6+52f < 520+6

The variable x3 is too expensive and the optimal solution is no longer feasible. We say that
x3 has more influence on the objective function, which becomes "flat" compared to f; .

O <
~-100 |
i)
g
e —200 7
()
> =
8-300 \b1 0
;g,
% -400 -
()
=
©-500 |
_600 | a’ | | B J
0 150 200

o 100
Variation of parameter b,
Fig. 13. Sensitivity of the objective function to parameter variation bi

e  Uncertainty of the parameters b;
We continuing the presented example and suppose it has an uncertainty on the parameter
constraint b, :

85+ 6
b=|81 avec —0 <<+
120

We can draw its graph according to the variation of this coefficient (see Fig. 13).
With Ab; =0, the optimal solution is that obtained originally.

We see that there are also two specific values of 6 :aand
e With:

b =85+3>p < 5>=p-85
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The constraint on b; is always satisfied with all x and §. It is said that this constraint is

unnecessary or redundant. She hasn’t influence on both the area of feasible solutions and
objective function value.
e With:

bj=8+d52a < J2a-85
— a-85<6<p-85

bj=85+0<p < 6<p-85
The optimal solution is feasible and the value of the objective function varies linearly with
the inverse of the variation of 5. The more & increases, the more the objective function

decreases then is minimized.
e With:

b =85+5<a < S<a-85

Note that the objective function increases more strongly compared to the previous area
because this constrain has become increasingly difficult to verify.

7. Optimized management of the W+S system by PLM

In this section we describe our problem in mathematic expressions. Firstly we use some
nomenclatures.

Glossary | Symbole
System parameters

Optimization period T
Time step At
Nominal power of wind generator Pynom
Nominal power of hydroelectric turbine Prygroom
Nominal power of pump system Ppump'om
Maximal/Minimal power of wind generator Pymax / Py min
Minimal power of hydroelectric turbine Phydro™im
Minimal power of pump system Ppump™min

Efficiency of energy accumulation system (hydraulic turbine and water

driving network) Thydro
Efficiency of energy accumulation system (pump system and generator

and water driving network) Tpump
Functioning cost of pump system per kWh Cpump
Maximal capacity of upper/lower storage basins Seup - inf |
Minimal limitation of upper/lower storage basins S;ﬂi; , ir;\}n
Initial state of of upper/lower storage basins Séﬁi; , ;g;f
Final state of of upper/lower storage basins at the end of optimization g fin finit
period sup / “inf
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Glossary | Symbole
Signs

Upper sign for variables in anticipation calculation a
Upper sign for anticipation variables in reactive calculation

Inputs
Projected power of wind generator Py(t)
Projected electricity cost SP.(t)
Projected cost for power gap Gy (t)
Instant of a possible disturbance tP
Real cost for power gap PMP(t)

Results
Required power for hydraulic turbine Phyaro(t)
Required power for pump system Ppump(t)
Required exchanged power to network P.(t)
Power gap between required and real exchanged power to network AP,(t)
Total benefit during period T BT
Intern working cost of W+S system during period T CcT

Table 2. Parameters and variables used in this section

7.1 Objective functions

a. Anticipation of system operation W+S

We recall that the anticipation the system W + S aims to maximize the profit from the sale of
wind energy. In this way the objective function is expressed by the difference between the
sale of energy and the cost of internal work:

T T
FO" =BT ~CT = £ SB()-B/() = X Cpup(8)-PL, () ©

b. Reactive optimized management

There is no mathematical optimization to be done to manage "spontaneous" reactive in real

time. At the moment where the injection system meets the anticipation plan, the W + S

system components work with calculated instructions. Ether wind turbine generator or

hydroelectric, if it is functioning, supports the operation in the limit of its capacity.

The problem is complicated with possible disruptions because they can probably change the

system state and thus affect the final result. For example with an increase of wind speed, the

power injected to the network is more important.

e If this power difference is paid, that is to say that the network trend is upward, it is not
necessary to review the operating plan of the W + S because this event enhances the
benefit of system.

e  On the other side, if the power difference is penalized, that is to say that the trend of the
network is downward, would it be wiser to recalculate the level of the W + S system in
changing the starting or stopping of the hydro-electric generator or theirs of the
pumping station to compensate for this loss of profit or simply make better use of the
excess energy?
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Here's another example: we suppose the network is lack of power (problem of congestion,

defects, consumer vagaries...). So the price of regulation of power deviation is very high,

that is to say, each piece of extra supplied energy to the network at that time will be very

well paid and each kWh of shortfall from the expected plan will be much penalized.

e If the system W + S is consistent with the anticipatory plan, there will be no impact on
the final result.

e  Otherwise, using the optimization, the W + S system is able to provide more energy to
relieve the network while is maintaining or even is improving the final outcome.

Each time, we call the optimization calculation engine to calculate a new operating plan.

This plan covers the period from tP (the appearance of the disturbance) at the end of the

anticipation period (T = 24) taking into account new data on the situation following the

actual disturbance.

To maximize the overall operation of the system, the objective is to minimize the negative

impact of the disturbance according to the best level of function defined in the offer. Thus,

the objective function is expressed by an estimate of the penalty due to all kWh gap to

minimize:

T
FO'= % C,(t):
t=tP+1

Per(t)_Peu(t)‘ (4)

Two remarks are identified by considering 1'(4).

e  The first is the value of the cost penalty. As the price of regulation of power deviation is
only known in real-time, penalty cost introduced by CP values were estimated (based
on analysis of historical and current trends of actual network). They are used to better
manage the different injected power to the grid.

e The second point concerns the equation formulation of this objective function. An
absolute value is considered nonlinear. It requires a mathematical transformation to
write the standard form of PML.

By adding a new variable nonnegative AP, (t) :

AP (t) >

HORAD ()
The constraint described in (3) is equivalent to the following two constraints:

P! (t)- AR,(t) < P (t) 6)

_Per(t)_APe(t>SPea(t) (7)

The objective function of (2) is written so well in a linear form as following;:

FO'= 3 C,(H-AP() ®)

t=tP+1

7.2 System constraints
System constraints W + S can be divided into two types: static and dynamic. The first type is
in fact specific technical limitations at each component. The second type represents the time
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interdependence of various values during operation. Constraints described below are

applicable to the proactive and reactive phase.
a. Static constraints

The components of the system are supervised by their maximum and minimum.

e  Wind turbine:

Py <P, () < Pr™

e Hydroelectric generator:

min max
Phydro = Phydro (t) = Phydro

e  Pumping station:
min max
Ppompe = pompe(t) = Ppompe

e Basin capacity:

Smin < S(t) < Smax

(10)

(11)

(12)

e The exchange with the network is considered without technical limitations
assuming that the network is sufficiently large to receive the maximum power that

can be delivered by the system W+S.
b. Dynamic constraints

e The energy produced by the W + S system will be injected to the network.

At any moment we have:

Pw(t)+Phydro(t)_P (t)_P

pompe (t) 20

e Itis preferable not to operate the turbine and pumping in parallel:

Phydro(t)'Ppump<t) =0

(13)

(14)

In linear programming, variables are only defined by linear relationships. To get to express

this constraint we see the need to introduce a binary decision variable «(t) by referring to

[HA-06], so that:

Pmin B Phydro (t) = a(t) P}max

e = hydro
~P2 (1= a(t)) < Py (1) <0
Demonstration:
Si a(t)=1 — Biviro < Puyaro (1) < By
Pf’ump (t) =0

- Only the function of turbine is activated
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B, (t)=0
Si a(t)=0 — hyd (1)
~Pamp < =Py (£) <0

{Phydro (t) =0
%

0< Py () < Poany

- Only the pumping function is activated
e The power supplied by hydro-electric generator at each time step is limited by the
available energy stored in the upper basin and the storage capacity of the lower
basin:

Phydro (t) <At

- <min {(Ssup ()-Sm ), (S~ - sinf(t))} (16)

e The energy storable in the upper basin at each time step is limited by the available
storage capacity of the upper basin and the storage capacity available in the lower
basin:

By (8) Mgy - A < in { (ST = 8,08, (Sine ()= S| (17)

e The stock state of the basin at the beginning and at the end of the day must respect
the limits of maximum and minimum filling of the reservoir defined in the macro-
plan of operation (advance phase of the storage)

Seup(t=0) =Sk (18)
Saup(t=T) =S, (19)
Sint(t=0) = Sif’ (20)
Sne(t=T) =Skt (21)

e The temporal evolution of the state of available storage is calculated by examining
the input and output powers of the basins:

B t)- At
t+1)=Ssup(t)_ hydro( )

77hydr0

S P, (1) At (22)

sup( + Moump * Lpump

Phydro (t) <At

n hydro

Sinf(t + 1) = Sinf(t) Ppump(t) At + (23)

—_ npump .

7.3 Sensitivity of the optimal solution to the data
For the W + S system, the uncertain parameters are: wind power forecasting and stochastic
nature of the grid, which are realized as a change in the cost of penalty (the price of
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regulation of power deviation) when there is no correlation between demanded power and
supplying power. We will consider changes in the form of a tree of scenarios.

P

w,S

()= Py(t) + 8, (£) With &,y <5, (1)< (24)

— Twmax

SP,(t) = SP,(t) + Osp, (t) with S¢p, min < Ospe (t) < O5pe max (25)

8. Study case

A representative study case of a wind power plant in Montpellier is chosen. All the
parameters for the system sizing problem are recapitulated in the Table 3.

Without loss of generality, it is considered that the two storage basins have the same
capacity.

Parameters Variable Value Unit
Nominal power of wind generator Py nom 10 (MW)
Maximal power of wind generator Py max 10 (MW)
Minimal power of wind generator Pmin 0 (MW)
Nominal power of hydroelectric turbine Pryarotom 3 (MW)
Nominal power of pump system Ppympom 3 (MW)
Minimal power of hydroelectric turbine Pryaromin 0 (MW)
Minimal power of pump system Ppymymin 0 (MW)
Efficiency of energy accumulation system

(hydraulic turbine and water driving network) Thydro 08671 i
Efficiency of energy accumulation system (pump

system and water driving network) Tpmp 0865 i
Storage maximal capacity Smax 24 (MWh)
Minimal limitation of storage basin Srmin 1 (MWh)

Table 3. Parameters of W+S system

We consider the system of this study case with the same management process as presented

in previous sections.

9. Results and discussion

9.1 Anticipation plan of system function at J- 1
a. Anticipation plan of storage use

As mentioned in the section 6, the main objective of the anticipation plan for the storage use
is to define a system macro function plan in order to adapt to the wind availability.

An anticipation calculation of the wind speed and the electricity price for the next 7 days is
given on the Fig. 14
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Fig. 14. Forecast date for the next 7 days

It can be observed in this example that a non-homogenous repartition of the wind energy
potential capacity during these 7 days, while the electricity price evolution is rather cyclic.
The wind potential estimation is summed up in this following table:

Day Forecasted( l{)/lr‘(l)\(’ilgced power Observation
1 188.96 Strong potential
2 55.86 Middle potential
3 57.75 Middle potential
4 31.266 Low potential
5 46.27 Low potential
6 56.46 Middle potential
7 63.876 Middle potential

Table 4. Forecast wind energy

There are different ways to proceed toward the anticipation plan of the storage use. Two of
them will be compared: the first based on “1 day optimization”, the second on “7 days

optimization”.
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Fig. 15. Different strategies of storage management

We notice clearly two ways to manage the hydroelectric storage. In the first case (illustrated
by the dotted line on the Fig. 15), the system management aims to best exploit the storage
day by day. In order to optimize economical objective, the system destocks completely at the
end of the day. The second case is illustrated by the full-filled line on the Fig. 15. As the
objective consist to optimize the system benefit on 7 days period, the system stocks energy
during the strong production potential days in order to ensure a better energy development.
In both cases, the use rate of the wind energy is maximized: 95.4% in the first case and 96.3%
in the second. In this example, the longer term optimization (7 days) makes a better use the
energy sale to the network. The economical result of the second case is 1.32% higher than the
first.

However, this difference is sensitive to the forecast wind power repartition and to the
considered time scale. It is interesting for the W+S operator to compare cases in order to find
out the best adapted strategy to the wind availability.

b. Anticipation plan of system function at D-1

At D-1, the system has a more precise forecast. This stage is very important as it can help to
define energy production offer to the market Day D. In using the data of Day 1 (Fig. 14 and
Table 4), the instructions are to be applied to the hydroelectric turbine (Fig. 16, full-filled
line) and to the pump system (Fig. 16, dotted line).The energy exchanged with the network
at Day D can be forecasted as in Fig. 17

c. Sensitivity to incertitude of anticipation plan

This exploitation program is the one engaged with the network. It has to be respected in
spite of the forecast incertitude and the wind intermittency. In this section, we analyse this
program’s sensitivity to the wind production variation in order to predict the margin of
operation and the actions in disturbance cases. This analysis is carried out based on the
sensitivity analyse method previously presented in the section §6.1.c.

We suppose that the precision of the forecast of the average wind speed is + 30% (cf.Fig. 18).
The aim is to manage the system function in such a way that minimizes the power gap
between the real exchanged power to the network and the forecasted one.
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Fig. 17. Forecast of exchanged power to network at Day D
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Fig. 18. Scenarios for wind power variation

When the produced wind power is lower than the forecasted one (Fig. 19, dotted line with

nn

mark "."), it is recommended to adjust the storage volume and the destocking plan. In order
to best reduce the gap between the real and the projected exchanged power, more the wind
production tends to decrease, more the storage volume for the day is big.
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Fig. 19. Storage evolution in relation to produced wind power incertitude
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When the wind production tends to increase, the wind generator can ensure the projected
exchange power to the network. Note that the storage need is lower. At the end of the day,
the storage level may be not equal to the initially expected level (Fig. 19, dotted line). In this
way, the storage use plan for the next days is challenged. It is the responsibility of the wind
power manager to decide whether the function plan has to be reviewed. The decision may
be made in function of forecast data and the difference between the projected and real
storage levels.

The injected power plans of the wind generator to the network are given in the Fig. 20 in 3
cases of wind production scenarios: with initially expected plan (Fig. 20, fulfilled line), with
30% more than expected (dotted line mark ".") and with 30% than expected (dotted line).
The difference with the initial plan creates penalties.

The objective function’s variation is showed in the as the difference between the energy sale
benefit (paid by the network) and the penalties. The results are given in percentage
compared to the expected power. It is interesting to see that with incertitude of about £30%
on the wind production, the objective function would vary only about 6%. That proves the
interest of the proposed optimal management method.
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Fig. 20. Plan of injected power to the grid
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Fig. 21. Objective function’s variation in relation to the produced wind power
(with the expected value)

9.2 Reactive management in real-time
We are now J-Day and suppose that some disturbances occur during this day.

e At5a.m, alack of power can be translated by an increasing penalty pric

30

difference

e for each MW

that the W+S system does not provided to the network (from 26.51 €/MWh to 76.51

€/MWh).
At 10 a.m, the wind production increases from 9.26 MW to 11.26 MW.

has to decrease its provided power from 9.84 MW to 7.84 MW.

At 3 p.m, to response to the network need to reduce injected power, the W+S system

The following graphics show the W+S system’s behaviour under these conditions and the

impact of these disturbances on the global result.
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Fig. 22. Final required and exchanged power plan during disturbances
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Fig. 23. Evolution of storage state

In order to face these events, new optimal operate plans are computed each time
disturbances occurred.

A suitable response is proposed in order to manage several unpredicted events disturbing
the system and the electrical network. The optimization response most suits in function of
unpredictable constraints occurring. Concretely, the actual total penalty cost is equal to 1020
€ per day instead of 2363 € per day without disturbances (cf. Table 5).

Casel Case II
Maximal economic gains | Minimal power deviations
(in the case forecast - (in the case disturbance -
anticipation) reactive management)

Total profits [€/day] (1) 5614 5352

Total penalty cost [€/day] (2) 2363 1020
Total net profit [€/day]

3251 4332

B =0-2)

Table 5. Simulations of profit and penalty cost considering two kinds of forecast and
disturbances

The benefits of case II is lower than that of case I. But the penalty cost of case II represents
only 43.17% of case 1. But the net profit is higher in case II. In conclusion, it is more efficient
to manage the reactive management of minimal power gaps is more efficient than the
management by anticipation of maximal economic gains.

10. Conclusions

The development of an optimized management method of W+S systems was the main topic
of this chapter. First, a thorough analysis of the W+S system parameters (intermittencies,
dynamic, cost efficiency) has been implemented.

Then, bibliography on management methods of W+S systems has been carried on. The
differences between the methods are mainly due to the applied conditions concerning the
wind energy implementation. With support mechanisms, the objective is to maximize the
benefits of the wind energy selling to the electrical network. This strategy allowed a
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significant growth of the wind energy during the last years. But, with the increasing of wind
energy growth rate a new management method of intermittencies is needed. Its objective is
to minimize the impact of intermittencies on the power system.

The purpose of the management method dedicated to the optimal operation of a wind farm
coupled to a storage system (W+S) which has been proposed in this chapter is its adaptation
to the specific characteristics of the system in the new context of the wind energy
implementation within the electrical network. The optimal management of the W+S
exploitation reduces the impacts of intermittencies impacts and better controls the dynamic.
Moreover, the economical rentability is preserved. The energy flow optimisation technique
allows the supply of a power adapted to the electrical network requirements (network
system services). This method is efficient with several disturbance sources such as wind
speed intermittency, variable network requirements, penalty cost variability. This system is
characterized by the intermittency of the primary source, and by the unpredictable
behaviour of the electrical network. The proposed systems of control enable an efficiently
operate system management with and without disturbances. In other words, the
architecture of the management system is based on two driving levels: anticipative
management and real time reactive management. Anticipation is a main step. Operate plan
and W+S system involvement are determined by anticipation. The mathematic description
which has been detailed is based on MLP algorithm which is used for optimisation problem
and is seem to be adapted to such problem complexity being highly flexible and fast.
Concerning the real time reactive management, its main role is to manage variation and
intermittency impacts in real operating time. The optimisation management requires a
robust and efficient algorithm. Also, a method of sensitivity analysis has been presented.
This analysis gave us a methodological framework to evaluate the impacts of disturbances
on the optimal operate system. By this way, the wind energy intermittency is treated on
several time scales. Obtained results are based on a feasibility study case. This gives a global
view of how operates the system.
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