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1. Introduction 

This chapter discusses the use of carbon nanotube (CNT) based nanocomposites for 
biomedical applications, particularly in the area of orthopaedic bone cement used in joint 
replacement surgery.  
The chapter initially introduces total joint replacements and poly methyl methacrylate 
(PMMA) bone cement. The associated issues and drawbacks with the use of these PMMA 
bone cements in terms of mechanical and thermal properties are then discussed in detail. 
The application of various MWCNT types (in terms of chemical functionality) at various 
weight loadings in augmenting some of the issues described is then presented. The next 
section of this chapter discusses the biological response to the various nanocomposite 
bone cements with MWCNT. The chapter concludes by discussing issues of CNT 
interaction with the body, and outlines the current trends in tagging and tracking the 
movement of MWCNT. 

2. The hip joint 

The hip joint (Figure 1) is a synovial ball and socket joint allowing for rotation about three 
perpendicular axes. It is constructed of the femoral head and the acetabulum of the pelvic 
bone. The femoral head and acetabulum are covered by cartilage. In a healthy hip joint the 
cartilage acts as a protective cushion to allow smooth movement of the joint, thus 
reducing friction and to some extent absorb shock. The presence of the synovial 
membrane secretes synovial fluid into the joint in order to nourish and lubricate the 
articulating cartilage (Martini and Bartholomew, 2000). The hip joint is responsible for the 
transfer of weight from the leg to the body, and as such, can be under substantial 
mechanical stresses. 

2.1 Potential problems with the hip joint 
Problems with the hip joint can arise due to cartilage damage within the joint caused by 

disease, trauma, or congenital conditions. This can lead to the surrounding tissues becoming 

inflamed, causing considerable pain.  

Arthritis (joint inflammation) is the main cause of hip joint degradation (Havelin et al. 

2003; Malchau et al. 2002). There are more than one hundred rheumatic diseases that can 

cause chronic pain, stiffness, and swelling in the synovial joints. The Arthritis Research 
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Campaign (ARC 2002) reported that in the UK, 206 million working days were lost due  

to arthritis and joint related conditions. The National Institute of Arthritis  

and Musculoskeletal and Skin Diseases (NIAMS 2004) stated that two of the most 

common forms of arthritis are osteoarthritis and rheumatoid arthritis. Primary 

osteoarthritis is a result of the gradual eroding of the cartilage layer (Figure 2a). It most 

commonly affects those over the age of 60 (ARC 2002) and remains the most common 

cause for primary joint surgery (94% of patients in 2005 (NJR 2006)). Congenital 

conditions such as a deformed joint or defective cartilage can result in osteoarthritis; 

however obesity, joint fracture, ligament tears, or other injury can damage cartilage, 

resulting in secondary osteoarthritis. It is noteworthy that while increased occurrences of 

osteoarthritis are indicative of an aging population, obesity is currently a major risk factor 

of osteoarthritis (ARC 2002). Overall, it is clear that osteoarthritis is the most common 

indication for joint replacement irrespective of age (Furnes et al. 2005; Karrholm et al. 2008; 

NJR 2006). 

 

 

Fig. 1. Anatomy of a healthy hip (Martini and Bartholomew, 2000). 

Rheumatoid arthritis is a chronic inflammatory disease of the joints whereby the synovium 
within the joint becomes inflamed. This inflammatory process damages the surrounding 
bone and cartilage (Figure 2b). Rheumatoid arthritis most commonly occurs during middle 
age of adulthood; however the disease can affect children and young adults as well. 
Rheumatoid arthritis usually affects joints symmetrically and most frequently attacks the 
hands, wrists, elbows, shoulders, knees and elbows.  
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Fig. 2. Illustration of (a) Osteoarthritis and (b) Rheumatoid arthritis of the hip (Zimmer Inc., 
2010) 

2.2 Primary joint replacement 
It is estimated that more than 29% of the population in the UK, are affected by arthritis and 
joint pain (ARC 2002). If partial damage of the joint has occurred, it may be possible to 

(a) 

(b) 
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repair or replace just the damaged areas; if the entire joint is damaged, however, a total joint 
replacement (TJR) may be necessary to relieve pain and to maintain function of the joint 
(Prendergast 2001). When replacing a total joint, the diseased or damaged parts are removed 
and artificial parts, i.e. prostheses or implants, are fitted. Due to the associated risks of 
surgery, in addition to high financial cost (in 1999-2000, hip and knee replacements alone 
cost the UK’s health and social services £405 million (ARC 2002)), TJR is considered the last 
resort after failure of non-surgical treatment (Felson et al. 2000). TJR may be performed on a 
variety of joints, including hip, knee, ankle, shoulder, elbow, fingers and wrist. However, 
hip replacements are by far the most common, as reported, for example, in Norway between 
1987 and 2004 (Furnes et al. 2005). Figure 3 shows an example of total hip replacement (THR) 
components. 
 

 

Fig. 3. (a) Typical components of a total hip replacement (THR) and (b) the components in 
vivo (Smith and Nephew Inc., 2008) 

During TJR, the most commonly used method of implant fixation is with a load transferring 

grout-like material, typically an acrylic based bone cement. The major advantage of these 

cemented joint replacements is the reduced operation recovery time: once polymerised the 

cement is capable of bearing load and offers immediate stability (figure 4).  
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Fig. 4. Schematic diagram of a cement TJR. 

However, if the cement mantle becomes loose, the surrounding bone may resorb and 
ultimate failure of the implant may occur. Uncemented implants were introduced to 
overcome these shortcomings, for example, cement wear particles, in addition to residual 
monomer and the highly exothermic polymerisation causing cellular necrosis to the 
surrounding bone. Uncemented implants typically use a roughened porous surface to 
promote bone growth around the prosthesis (Hungerford and Jones 1988). However, the 
bone cavity produced during the operation needs to be precise to ensure the implant is 
initially held in place through an interlocking mechanical fixation between the implant and 
the bone. It is also essential that the surrounding bone is healthy to enable this technique to 
be successful. In addition, the recovery time is long as the bone is required to regenerate. A 
combination of cemented and uncemented implants is also employed and often termed a 
‘hybrid’. More recently, resurfacing arthroplasty has been introduced, where less of the 
bone is removed compared with conventional TJR. Resurfacing procedures not only require 
the removal of less bone, but cause fewer complications during revision surgeries because 
the femoral canal is retained intact (Amstutz et al. 1998). On average, the number of primary 
arthroplasties in developed nations is increasing each year (Furnes et al. 2005; Karrholm et al. 
2008; NJR 2006). Figure 5 demonstrates the proportion of cemented, uncemented and hybrid 
replacements. It is obvious from this graph just how much more popular cemented 
procedures are. It should be noted that the total number of TJRs performed in England and 
Wales is significantly greater than Sweden and Norway. In 2004, for example, 48,987 THRs 
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were recorded in England and Wales, compared to just 13,366 in Sweden and 7,061 in 
Norway. It should also be noted that the population of England and Wales (approximately 
55m) is significantly greater than Sweden and Norway (approximately 13m). This equates to 
approximately 1 in every 1100 people in England and Wales, and 1 in every 650 people in 
Sweden and Norway. 
 

 

Fig. 5. Number and fixation type of primary THRs preformed in Sweden from 1979 to 2007. 
(Karrholm et al. 2008) 

Fully cemented TJR remain the most frequently used implant fixation procedure with 51% 
of primary THR in England and Wales being cemented in 2005, compared with 54% in 2004. 
In contrast, there was a slight increase in the application of bone cement for other fixation 
surgical procedures (NJR 2006). Alternative studies have shown that use of primary 
cemented TJRs over the last 10 years has remained consistent, whilst the application of 
cementless implants has almost doubled over the same period (Karrholm et al. 2008). This 
may be partly explained by the increase in the number of TJRs required for a younger age 
group (<60 yrs and <55 yrs for Sweden and England/Wales respectively). This cohort 
received more surgical procedures involving uncemented and hybrid implants (Karrholm et 
al. 2008; NJR 2006). It is important to note that whilst there is a slight decrease in the use of 
cemented implants in THR procedures; bone cement is still required for the majority of 
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implant procedures. In 2005, cement was used for the fixation of 73% of femoral stems and 
53% of acetabular cups, in England and Wales (NJR 2006).  

2.3 Acrylic bone cement 
Poly (methylmethacrylate) (PMMA) has been used in orthopaedics since the early 1960s 
(Charnley 1960). It was first introduced by Sir John Charnley and Dr Dennis Smith. Also 
known as acrylic bone cement, it acts as a grouting agent for the fixation of artificial joints as 
well as the treatment of spinal compression fractures (vertebroplasty). In TJR, bone cement 
fills the space between prosthesis and bone and acts as an elastic buffer, therefore 
transferring mechanical load on the implant to the bone. This function of distributing 
stresses is critical for implant longevity. If the external stresses exceed the ability of the 
cement to transfer the load, a fracture results (Kuehn et al., 2005).  
Acrylic bone cement is a two phase system, consisting of a polymer powder and monomer 
liquid. The powder phase primarily consists of spherical PMMA beads (82–89 wt. %), in 
addition to an inorganic radiopacifying agent, usually barium sulphate or zirconium 
dioxide (10 – 15 wt. %). The powder component also contains benzoyl peroxide (BPO; 0.5–
2.6 wt. %), which catalyses polymerisation. The liquid phase is largely MMA monomer (98 
wt. %), with 2 wt. % N, N-Dimethyl-p-toluidene (DmpT) which accelerates the 
polymerisation. From a chemical point of view, MMA is an ester of methacrylic acid with a 
polymerisable double bond. When the liquid and powder phases are mixed, the initiator 
(BPO) reacts with the accelerator (DmpT) to form free radicals in what is known as the 
‘initiation reaction’. These free radicals initiate polymerisation of MMA into PMMA by 
adding to the polymerisable double-bond of the monomer molecule. Temperatures during 
this reaction can reach up to 110ºC. During polymerisation, the bone cement is worked into 
a ‘dough’ phase that can be moulded or injected.  In a relatively short amount of time (10 – 
15 minutes) the bone cement hardens to ca. 90% of its final mechanical properties (Kuehn et 
al., 2005). Although current revision rates of cemented TJR are low, improved mechanical 
and thermal properties are required to further reduce subsequent surgeries of cemented 
arthroplasties, and increase the longevity of the implant. With 88.7% of current cemented 
implants expected to last at least 14 years (Karrholm et al. 2008), this would mean that more 
physically active patients would have to undergo a number of revision surgeries in their 
lifetime. Furthermore, younger patient populations are more likely to impose heavier, more 
complex loadings on the implant, as they would wish to continue pursuing an active 
lifestyle.  

3. Composition and polymerisation reaction 

3.1 Composition 
Acrylic bone cement, as mentioned is primarily composed of poly methylmethacrylate 
(PMMA). Most commercial acrylic bone cements comprise of a two part self-curing acrylic 
polymer, usually formulated as a 2:1 powder to liquid ratio. These components are mixed 
immediately prior to implantation during surgery and delivered directly to the implant 
site. The compositions of the main commercial bone cements are summarised in Table 1.0, 
showing variations in chemical composition. Other cements may also contain antibiotics 
(e.g. gentamicin sulphate (Lewis 2003; Hendriks et al. 2004)) in order to improve the 
body’s response to the implant, reducing risk of subsequent infection and implant 
rejection. 
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Constituent CMW-1 CMW-3 Palacos R Simplex P 
Zimmer 
LVC 

POWDER COMPONENTS      

Benzoyl peroxide (BPO) 2.60 2.20 0.5-1.6 1.19 0.75 

Barium sulphate (BaSO4) 9.10 10.00 - 10.00 10.00 

Zirconium dioxide (ZrO2) - - 14.85 - - 

Chlorophyll - - 200 ppm - - 

PMMA 88.30 87.80 - 16.55 89.25 

PMMA-Methacrylic acid (P(MMA/MA)) - - 83.55-84.65 - - 

PMMA-styrene copolymers P(MMA/ST) - - - 82.26 - 

LIQUID COMPONENTS      

NN Dimethyl P Toluidine (DmpT) 0.40 0.99 2.13 2.48 2.75 

Hydroquinone 15-20 ppm 15-20 ppm 64 ppm 75 ppm 75 ppm 

Mehtylmethacrylate (MMA) 98.66 98.07 97.87 97.51 97.25 

Ethanol 0.92 0.92 - - - 

Ascorbic Acid 0.02 0.02 - - - 

Chlorophyll - - 267 ppm - - 

Gentamicin sulphate - -  - - 

Table 1. Compositions of six commercial formulations of bone cement (Lewis 1997).  
The compositions are given in percent (w/w) except where stated otherwise. 

3.2 Polymerisation reaction 
PMMA is an amorphous polymer, which is plasticised on the addition of the monomer 
methyl methacrylate (MMA). When bone cement is mixed two processes occur, firstly the 
monomer is absorbed by the PMMA beads and secondly, a free radical polymerisation 
reaction occurs (Kuehn et al. 2005). This reaction is shown schematically in Figure 6 below.  
During this reaction the DmpT causes the BPO to decompose leaving a benzoyl radical, and 
a benzoyl anion (Figure 6a). These benzoyl radicals then initiate the polymerisation of the 
MMA by combining and forming an active centre (Figure 6b). These active centers then 
combine with multiple molecules to form a polymer chain (Figure 6c). This reaction forms a 
viscous fluid allowing the polymerising cement to be moulded as required, i.e. this is the 
stage when the surgeon would inject the bone cement into the prepared bone canal prior to 
implanting the stem. As the monomer begins to polymerise, the cement hardens around the 
stem, holding it in place. This reaction is highly exothermic, an example of a temperature 
plot of bone cement during polymerisation is shown in Figure 7. The heat energy produced 
during polymerisation is 57 kJ per mole MMA, resulting in temperatures, which can exceed 
100ºC. These elevated temperatures can cause cellular bone necrosis which can ultimately 
contribute to aseptic loosening (Dunne and Orr 2002; Stanczyk and van Rietbergen 2004; 
Kuehn et al. 2005). It should be noted though that the polymerisation temperatures 
experienced in vivo have been much lower (between 40–47 °C) at the bone interface 
(Toksvig-Larsen et al., 1991). This is due to the reduced thicknesses of bone cement mantle, 
the presence of blood circulation, and the dissipation of heat through the implant and  
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Fig. 6. (a) Schematic diagram showing the decomposition of BPO leaving a benzoyl radical, 
and a benzoyl anion; (b) How these benzoyl radicals initiate polymerisation of MMA; (c) 
formation of a polymer chain. 
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surrounding tissue (Kuehn et al. 2005). It has been shown that volumetric shrinkage can 
occur due to thermal contraction on cooling and the changing density as polymerisation 
progresses (Gilbert et al. 2000; Kuehn et al. 2005). Gilbert et al. (2000) reported that volumetric 
shrinkage as a result of density variation, due to the exothermic polymerisation was 
between 5.1 % and 6.5 % depending on mixing method employed and type of cement. Both 
shrinkage mechanisms have been identified as factors which influence the levels of residual 
stresses within the cement (Gilbert et al. 2000; Orr et al. 2003). 
 

 

Fig. 7. A typical curing curve for acrylic bone cement where Tmax is the maximum 
temperature reached, Tset is the setting temperature and Tamb is the ambient temperature. 

As illustrated in Figure 7, the time that has elapsed after initial mixing when the cement 
takes a homogeneous dough-like state is known as the ‘dough time’. This point may be 
identified with temperature or, average molecular weight of the polymer. However, as 
specified in the British Standard BS 7253 (ISO 5833:2002), it is the point at which the cement 
will no longer stick to powderless surgical gloves (typically 2-3 minutes after initial mixing). 
The time from the end of dough time until the cement can no longer be manipulated, is 
defined as the working time. During an operation this is the time during which the surgeon 
must insert the stem and adjust its position. Finally, the setting time is the time from the 
onset of mixing until the surface temperature reaches one half of the maximum temperature, 
as described in ISO 5833:2002.  

4. Current issues with acrylic bone cement 

4.1 Mechanical properties 
The main role of bone cement is to transfer load between bone and the metallic prosthesis. 
Several studies have shown that the composition of acrylic bone cement significantly 
influences the mechanical properties of the cement (including Harper and Bonfield 2000; 
Lewis 2000). It is during the polymerisation process that numerous cement properties, for 
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example viscosity, setting time, maximum cure temperature, and volumetric shrinkage etc, 
can be determined. These material characteristics may influence a cemented TJR 
performance. It has also been shown that the variability in the mechanical static and 
dynamic properties of commercial bone cements is significant, with greater relative 
differences reported in fatigue properties (Lewis 1997; Harper and Bonfield 2000). Harper 
and Bonfield (2000) found that there was some correlation between the static and fatigue 
strengths, however the ranking of the different cements tested did not match exactly. 
Mechanical properties are known to be affected by: cement composition, size and 
morphology of the PMMA beads, molecular weight, cement mixing technique, and the 
powder-liquid ratio (Harper and Bonfield 2000; Lewis 1997). The variation in tensile 
strength, for example, is reported to vary between 24–49 MPa for five different commercial 
bone cement formulations, depending on the mixing technique, specimen age and test 
conditions (Lewis 1997). 

4.2 Thermal properties 
As mentioned previously, in vivo temperatures during the exothermic polymerisation of 
bone cement can cause thermal necrosis (tissue death) of the bone cells and impaired local 
blood circulation, which can lead to early failure through aseptic loosening of the implant 
(Huang et al. 2005). It has been reported that  for epithelial cellular death to occur, an 
exposure time of 1 s is required for temperatures above 70 °C, 30 seconds for temperatures 
greater than 55 °C, and approximately five hours for temperatures greater than 45 °C (Starke 
et al. 2001). Collagen protein molecules are denatured at 45 °C, and experience irreversible 
damage at 60 °C if held at these temperatures for an hour. It has also been reported that 
thermal necrosis occurs in bone tissue when exposure is greater than 1 minute for 
temperatures above 50 °C and denaturation of sensory nerves occurs for temperatures above 
45 °C if exposure exceeds 30 minutes. The amount of heat generated during polymerisation 
is dependent on the amount of reacting monomer, however the maximum temperature 
reached is also dependent upon the rate of heat dissipation. In vitro testing completed by 
Stanczyk and van Rietbergen (2004) suggested that the tips of bone trabeculae protruding 
into setting cement may experience temperatures in excess of 70 °C. In the 1960s, upon first 
use of bone cement in TJR, Charnley believed that while temperatures of ~100 °C could be 
reached during polymerisation, in the presence of a metallic prosthesis, which would act as 
a heat sink, there was a reduction in the peak temperature experienced in vivo. (Charnley 
1960). Since then, numerical simulations and in vitro studies of thermal necrosis and peak 
exotherms in TJR, have helped establish two methods which may assist the reduction of 
thermal necrosis: (a) the use of thin cement mantle layers, and (b) pre-cooling of the bone 
surface (Chandler et al. 2006; Fukushima et al. 2002). 
An additional potential adverse consequence of using standard acrylic bone cements is the 
leaching of residual liquid monomer into the surrounding tissue, which may cause 
inflammation, chemical necrosis and even death. Average levels of residual monomer can be 
as high as 5%, however local concentrations may be as high as 15 %, increasing the likelihood 
of chemical necrosis (Stanczyk and van Rietbergen 2004). Vacuum mixing of acrylic bone 
cement has been associated with reduced levels of residual monomer as mixing bone cement 
at reduced pressures increases monomer polymerisation (Bettencourt et al. 2001). 
There is considerable variation in the chemical composition of different brands of cement 
(Table 2.1). Often this difference involves more than one of the basic constituents, making it 
difficult to draw any conclusions regarding the effect of composition on mechanical 

www.intechopen.com



 
Carbon Nanotubes – Growth and Applications 348 

properties of the cement. It is accepted that the intrinsic properties of the monomer units 
and the high molecular weight dictate their subsequent mechanical properties such as craze 
strength, creep resistance and fatigue performance (Sauer and Richardson 1980; Hull and 
Clyne 1996a). Lewis (2003) reviewed the effect of molecular weight on fatigue performance 
of bone cement, reporting that increasing the molecular weight of either the powder or the 
fully cured cement improves the fatigue performance of acrylic bone cement, assuming all 
other parameters remain fixed. Lewis (2003) suggested that this increase in mechanical 
performance was related to the increase in polymer chain entanglement due to increased 
molecular weight which in turn, increased the resistance of the bone cement to craze 
formation and lead to subsequent increased fatigue crack propagation resistance (Sauer and 
Richardson 1980; Lewis 2000). Deb et al. (2003) reported that increasing the quantity of 
initiator and activator increased the peak temperature reached during polymerisation 
reaction and, in addition, lowered the setting time. The content of the residual monomer in 
the cured bone cement specimens was additionally determined, and it was reported that the 
highest concentrations of initiator and activator provided the lowest content of residual 
monomer. However, the concentration of these compounds within the cement must be 
controlled as they have detrimental health implications when released into the patient. It has 
also been shown that the type of activator used in polymerisation may significantly 
influence the fatigue life and fracture toughness of bone cement due to changes in the 
molecular weight of the resulting polymer (Deb et al. 2003). Residual MMA can result after 
incomplete polymerisation, and is known to influence the mechanical properties and fatigue 
performance of acrylic bone cement by acting as a plasticiser (Vallo et al. 1997; Lewis and 
Janna 2004). Unreacted MMA is also a possible source of toxicity in the surrounding tissue 
with possible effects such as hypotension, tissue irritation and alveolar lesions. It has been 
seen that complete polymerisation and therefore minimal residual MMA content, can be 
ensured by selecting a suitable initiator activator ratio without significantly affecting 
fracture toughness (Hasenwinkel et al. 2002). Alternatively, the presence of residual 
monomer can reduce the amount of shrinkage of the bone cement, assuming no other 
sources of shrinkage occur (Gilbert et al. 2000). 

4.3 Fatigue failure of bone cement - In vivo analysis 
Within a cemented implant femur, four main areas of weakness have been recognized as 
potential failure initiation sites, and can be identified as the: (1) cement, (2) bone-cement 
interface, (3) cement-prosthesis interface and (4) host bone. Jasty et al. (1991) used 
fractographic analysis to examine ex-vivo femoral components, reporting evidence of de-
bonding at the cement-prosthesis interface in the majority of the TJR investigated. Partial or 
complete fracture of the cement mantle was frequently coupled with de-bonding at the 
cement-prosthesis interface. In the early stages of failure, micro-cracking was evident at the 
cement-bone interface, although these micro-cracks were considered to be non-critical 
events as there was no evidence to suggest they were associated with complete fracture 
across the cement mantle. Fatigue damage accumulation is therefore common prior to 
overall loosening of the implant in vivo. Cemented hip replacements typically experience 
final failure after several fracture sites have developed, although single, longitudinal cement 
fractures causing loosening, and subsequent failure have also been recorded in vivo (Jasty et 
al. 1991; Topoleski et al. 1990). As mentioned previously, fractographic analysis performed 
on ex-vivo specimens of failed bone cement has allowed in vivo failure mechanisms to be 
observed and, as a result, several groups have demonstrated that in vitro testing can 
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replicate the micro-mechanisms of failure in vivo (Topoleski et al. 1990/1993; Verdonschot 
and Huiskes 1997a; Murphy and Prendergast 2002).  
Typically, fracture surfaces were identified with a stepped or irregular fatigue region, this 
region then evolved into a flat, rapid fracture region (Topoleski et al. 1990). This stepped or 
irregular surface can be attributed to the coalescence of micro-cracks that have formed 
ahead of the crack tip during crack propagation. Initiating micro-cracks (Figure 8) were 
believed to exist as a result of internal defects such as pores, aggregates of the radiopaque 
agent, inclusions from the bone at the bone-cement interface, residual stress-induced cracks 
at the cement-prosthesis interface, and implant design (Jasty et al. 1991; Bishop et al. 1996; 
McCormack and Prendergast 1996; Orr et al. 2003; Prendergast 2001b; Murphy and 
Prendergast 2002).  
 

 

Fig. 8. Scanning electron micrographs showing (a) micro fractures through pores near distal 
end of prosthesis and (b) an incomplete fracture through the cement mantle originating at 
the cement-prosthesis interface, Jasty et al. (1991). 

McCormack et al. (1998) used experimental and finite element modeling of the cemented 
construct to complete statistical analysis of micro-crack accumulation. Representation of 
micro-crack initiation and propagation was achieved for a longitudinal cross-section of the 
implanted construct. This allowed for the modeling of the bone-cement and cement-
prosthesis interactions. The damage accumulation was found to vary significantly over 
different regions of the cement mantle. It was reported that more significant cracking 
occurred at the lateral side of the cement mantle compared with the medial side, however an 
increased rate of crack formation was seen at the distal end (cf. proximal), with more cracks 
initiating from the bulk of the cement (cf. the interfaces). It was also noted that a greater 
incidence of cracks originating from the bone-cement interface was seen to occur compared 
to the cement-prosthesis interface. Alternative studies have reported that the location at 
which a fracture initiates depends on the type of loading applied to the specimen. 
McCormack and Prendergast (1999) reported a greater occurrence of fatigue cracks initiated 
from pores within the cement mantle when examining cement under bending loads. Under 
torsional loads, they observed that cracks initiated most often at the interfaces (McCormack 
et al. 1999). Additionally, as previously mentioned in a study by Jasty et al. 1991, ex-vivo 
observations reported evidence of cracks initiating from the cement-prosthesis interface and 
from voids within the bulk of the cement, suggesting both crack growth scenarios may be 
important. Prendergast (2001b) confirmed the dependence of crack initiation on loading 
type, and also suggested that in order to reduce this damage accumulation, the volume of 
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cement stressed to a critical degree must be minimised. There is some disagreement as to the 
predominant source of fatigue damage accumulation; in vitro test specimens demonstrate 
the benefits of a reduced porosity within the cement (Dunne et al. 2003). However, the 
associated complexity of the in vivo cement mantle, in addition to the stress singularities 
introduced at sharp corners of the implant, and the cement interfaces, may over-shadow the 
stress amplifying effect of porosity (Janssen et al. 2005b). It is however, widely accepted that 
porosity has a marked influence on damage accumulation, as pores have the potential to act 
as initiation sites or aid crack coalescence. It should be noted that failure of the cemented 
construct is not just influenced by damage accumulation and final fracture of the cement 
mantle. Wear particles associated with the breakdown of cement during de-bonding and 
fracture, may be transported throughout the implant, leading to an immune-response and 
the development of osteolysis. Resultant bone degradation will ultimately lead to aseptic 
loosening of the implant (Anthony et al. 1990). A further feature of bone cement is its ability 
to creep under sustained loading (either static or fatigue), which may contribute to damage 
development over time. The relationship between creep and damage accumulation is 
complex. Creep is thought to promote stress relaxation within the cement mantle, reducing 
the damage accumulation rate (Stolk et al. 2004). However, it may also serve to increase 
levels of implant migration, but the magnitude of this has been shown to be insignificant 
(Verdonschot and Huiskes 1997b). 

4.4 Mechanisms of failure in bone cement – In vitro analysis 
4.4.1 Fatigue crack initiation 
In vitro strain measurements completed by O'Connor et al. (1996) have shown the variation 
in stresses within the cement mantle. The presence of stress raisers within the cement mantle 
(e.g. porosity) have the potential to sufficiently raise stresses and cause fatigue crack 
initiation, and subsequent failure. Whilst extensive research has been conducted on the 
factors that cause crack initiation, a full understanding of the micromechanics involved is 
yet to be achieved (Lewis 2003). In vitro studies by Orr et al. (2003) suggested that cracks 
may be present prior to the loading of the implant, i.e. once the cement has polymerised. 
Whether cracks are more likely to occur at the bone-cement interface or at the cement-
prosthesis interface is a source of discussion. Bishop et al. (1996) reported that pores may be 
more likely to occur at the cement-prosthesis interface due to the presence of a temperature 
gradient. If a prosthesis conditioned at room temperature is implanted into bone at body 
temperature, the polymerisation process will begin at the bone-cement interface, hence the 
cement-prosthesis interface will polymerise later. Porosity at the cement-prosthesis interface 
due to cement shrinkage will cause reductions in the static and dynamic properties. In 
contrast, Orr et al. (2003) reported that voids and micro-cracks are more likely to occur at the 
cement-bone interface due to the presence of residual stresses caused by thermal shrinkage 
around the metallic implant, with a small proportion of cracks initiating from pores within 
the mantle. McCormack and Prendergast (1999) proposed that initial levels of new crack 
initiation are higher early on in the loading history, due to stress relief occurring at regions 
of stress intensity. Furthermore, McCormack and Prendergast (1999) suggested that crack 
growth rate is the same for all types of micro-cracks, whether “pre-loaded” (i.e. cracks 
formed as a result of stress relief during cement shrinkage or, from regions of high stress 
concentration) or ‘load-initiated’ (i.e. cracks formed due to fatigue loading). As a result it is 
believed that pre-loaded cracks play a critical role in the aseptic loosening process and thus, 
the overall failure of cement mantle. Any improvement made to the mixing process 
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(reduction in porosity) and to the level of shrinkage during polymerisation, may then, in 
theory, impede levels of damage accumulation.  

4.4.2 Fatigue crack growth 
Fatigue crack growth can propagate in two different phases and are typically observed as 
a flat, rapid fracture region proceeded by an irregular, or stepped fatigue region 
(Topoleski et al. 1990). The stepped or irregular region, is representative of the early stages 
of slow crack growth, and may be accounted for in polymers by a process known as 
“discontinuous crack growth” (DCG). DCG refers to a single burst of fatigue crack 
advance after several hundred fatigue cycles (Takemori 1984). At high stress intensity 
factors (ΔK), striated growth usually occurs at the crack tip. Striations refer to the growth 
bands visible on a fracture surface whose spacing is equivalent to crack growth rate per 
stress cycle. Striations are orientated perpendicular to the direction of crack growth.  
Striations are often confused with DCG bands, with the main differences being that the 
DCG band spacing is significantly greater than the crack length increment per cycle and 
these bands arise at low ΔK values. Once crack initiation has occurred, it will be in the 
DCG regime, and the mechanisms by which the crack develops throughout this regime 
will ultimately determine the fatigue crack growth resistance of the material (Takemori 
1984). Fractographic studies have shown that DCG is of relevance for acrylic bone cement 
with distinct bands being observed in ex-vivo samples (Jasty et al. 1991; Topoleski et al. 
1990). DCG is a function of the testing and specimen preparation conditions, 
environmental effects and compositional changes, all factors that influence the fracture 
properties of the polymer (Takemori 1984). Changes to the bone cement that influence 
these factors must be carefully considered with respect to their affect on the overall 
structural performance of the cement. During the early stages of fatigue crack 
propagation, DCG band formation is favoured by the development and growth of crazes 
ahead of the crack tip (Skibo et al. 1977). Crazes are identifiable as dense arrays of fibrils 
inter-dispersed with elongated voids that appear ahead of the crack tip, effectively 
reducing the density of the polymer in that region. Crazes are generally perpendicular to 
the applied stress, which result in inelastic deformation by craze widening in the local 
principal stress direction. In amorphous glassy polymers (e.g. PMMA) brittle fractures 
occur through crazing and crack propagation (Scheirs 2000b). Crazing has been reported 
in detail for PMMA by Pulos and Knauss (1998a/b/c). Pulos and Knauss (1998a/b/c) 
described how damage (identifiable with crazing) ahead of the fatigue crack tip may 
occur over many cycles, causing a sudden jump in the crack. As  mentioned previously, 
crazing is prominent in polymers ahead of the crack tip at low ΔK values and DCG may 
occur within this craze zone once the maximum opening of the craze zone reaches a 
critical value (Figure 9). 
Crazing is a common form of polymer deterioration. Crazing is often a precursor to crack 
growth and failure, however in thermoplastics the presence of crazing can aid fracture 
toughening. In these cases, the mechanism of crazing enables polymers to absorb energy 
through the matrix (in-elastic) deformation. This is possible because the energy used to 
initiate crazing, and crack growth is large and allows the energy to be dissipated over a 
large area (Luo et al. 2004; Topoleski et al. 1990). Alternatively, in thermosetting plastics, 
crazing may lower the strength of the polymer and lead to premature failure (Scheirs 
2000b). Crack propagation through a polymer may also be retarded through crack 
bridging and, to some extent, micro-cracking; this effect may influence both static and 
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cyclic failure. Previous work in the literature suggests that secondary cracks are present in 
cement failure (a result of tensile stress relief) (Verdonschot and Huiskes 1997b), therefore 
consideration of these toughening mechanisms may be appropriate. Non-uniform 
extension of a crack tip can result in un-cracked ligaments. It should be noted that micro-
cracks only act as a toughening mechanism when they are constrained; otherwise they are 
detrimental to the fracture toughness as they propagate and develop into long cracks 
(Nalla et al. 2004). 
 

 

Fig. 9. Illustration of discontinuous band growth (DCG) within the craze zone, ahead of a 
crack tip. 

4.5 Effect of residual stresses and cement shrinkage 
It is well accepted that residual stresses are generated within the cement mantle following 
polymerization and have a direct influence on the stress distribution at the cement-
prosthesis interface. Knowledge and understanding of these processes may allow a more 
accurate prediction of load transfer and in-service conditions in the cement mantle (Nuno 
and Amabili 2002; Nuno and Avanzolini 2002; Orr et al. 2003; Roques et al. 2004). Stresses 
due to shrinkage, exist in cement surrounding the stem in both the longitudinal and the 
hoop direction (Roques et al. 2004). These stresses will be at their greatest immediately post-
operatively, with a reduction occurring with time as stress relaxation, and creep occur 
(Verdonschot and Huiskes 1997a; Nuno and Amabili 2002; Nuno and Avanzolini 2002; Stolk 
et al. 2004). This may create more favourable stress distributions at the interfaces between 
the cement-bone, and cement-prosthesis, as finite element modelling of bonded and un-
bonded stems predicts that an increase in compressive stresses at these regions may occur 
(Verdonschot and Huiskes 1997a). The presence of pores at either interface has been 
attributed to volume shrinkage of the cement during polymerization. Some polymerization 
shrinkage will occur while the cement is still viscous and hence can be accommodated by 
flow (Orr et al. 2003). However, as polymerization progresses, this flow may not 
accommodate shrinkage and cracks can initiate in high stress areas as a mechanism of stress 
relief. While residual stresses do exist in fully polymerized bone cement, the additional 
presence of porosity, high stress concentrations or excessive heat generated during 
polymerization may still be required for large cracks to initiate. As residual stresses alone 
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may not be enough to generate cracks (Lennon and Prendergast 2002). The ultimate tensile 
strength of various bone cements range between 24 and 49 MPa (Lewis 1997), whereas 
residual stresses of between 2.5 MPa (Nuno and Avanzolini 2002) and 12.6 MPa (Orr et al. 
2003) have been reported. The direction in which the cement will shrink is of great 
significance. Orr et al. (2003) reported this has a direct relation to the levels of micro-cracking 
that may occur as a result of shrinkage stress, although the use of acoustic emission has 
provided evidence for the shrinkage of the cement onto the femoral implants (Roques et al. 
2004). Furthermore, shrinkage is known to be affected by the volume fraction of monomer 
content (Gilbert et al. 2000). 

4.6 The role of porosity 
Lewis (1997) identified four main reasons why porosity occurs in bone cements;  
i. The entrapment of air between the polymer powder and monomer liquid as the powder 

is wetted by the monomer upon mixing, 
ii. Evaporation of the liquid monomer during polymerisation, 
iii. Entrapment of air during mixing,  
iv. Entrapment of air upon transfer of the dough into the cement gun (depending on 

mixing method). 
Materials engineering principles and the relevant literature explain that the presence of 

pores within the cement mantle act as stress raisers, which may then act as crack initiation 

sites under applied loads. Many researchers have demonstrated that reduced porosity 

allows for improved compressive, flexural and fatigue properties of acrylic bone cement 

(Lewis 1997; Murphy and Prendergast 2000; Dunne and Orr 2002; Dunne et al. 2003), 

therefore the level of porosity (both macro- and micro-pores) should be minimised. Pores of 

diameter ≥1 mm are deemed macro-pores, and are generally introduced during the mixing 

process when air is trapped within the cement mixture. These macro-pores are often cited as 

being the cause of low fatigue life for test specimens as crack initiation is often associated 

with a single pore. Micro-pores have diameters ≤1 mm, and may be established due to the 

evaporation of the liquid monomer during the polymerisation process and/or entrapment 

of air during mixing (Dunne et al. 2003). It is often observed that multiple smaller pores (≤1 

mm) in close proximity are more detrimental than one larger pore (≥2 mm); this is often a 

result of the type of mixing method employed (Murphy and Prendergast 2000). A multiple 

pore arrangement is typically observed for hand mixed specimens (Figure 10) where the 

combined interaction of the pores produces a stress concentration large enough to cause 

fatigue crack initiation. In contrast, vacuum mixing (Figure 11) usually generates a smaller 

distribution of pores. There is evidence to suggest that hand mixed cement reduces the level 

of shrinkage that cement experiences due to the high level of porosity introduced during 

mixing, (Dunne et al. 2003), as only the cement shrinks during polymerisation and not the 

voids (Kuehn et al. 2005). However, porosity may be beneficial to reduce residual stresses 

prior to loading; this benefit could be outweighed by the adverse effects observed for fatigue 

crack initiation and propagation. When the propagating crack tip reaches a pore, failure is 

considered to occur instantly across the void area, effectively causing the crack propagation 

rate to increase. Conversely though, there are studies that suggest that pores act as crack 

“blunters” thereby increasing the fatigue life of the bone cement (Topoleski et al. 1993), 

although crack acceleration into the void must also occur due to the local stress 

concentration at such a defect. 
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Fig. 10. Scanning electron micrograph of a hand-mixed fracture surface for commercial bone 
cement showing a large pore with a large number of small pores (Murphy and Prendergast 
2000). 

 

 

Fig. 11. Scanning electron micrograph of a vacuum mixed fracture surface of commercial 
bone cement, with a larger pore size compared to hand mixed cement (Murphy and 
Prendergast 2000). 

4.7 Presence of radiopaque agent 
Radiopaque agents are included in bone cement formulations (approximately 10-15 % wt.) 
to allow the cement to be distinguishable from the surrounding body tissues on 
radiographs. Barium sulphate (BaSO4), Zirconium dioxide (ZrO2) and iodine-containing 
copolymers are a few of the possible radiopaque agents used, however BaSO4 is most 
commonly used. It has been reported that BaSO4 particles do not influence the 
polymerisation reaction or handling properties of bone cement (Pascual et al. 1996). 
Additional studies reviewed by Lewis (2003) shown that radiopacifiers may have a positive 
effect on the fatigue life of acrylic bone cement, although this depended on the particle size 
and morphology, with the inclusion of “nanoparticles” of BaSO4 (~100 nm in diameter) 
leading to significant increases in the fatigue life (Ginebra et al. 2002). This improvement in 
fatigue life was attributed to crack tip blunting, possibly due to the increased number of 
BaSO4 particles encountered by the crack tip. This is in agreement with Vallo et al. (1997) 
who proposed that it is the interactions between the crack front and secondary phase 
particles that account for an increase in toughness; such a mechanism would involve ‘crack 
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pinning’ and, in effect, an increase in crack length. Conversely, detrimental effects on 
bending strength, bending modulus and impact strength have been reported after 
increasing the loading of radiopaque agents (Liu et al. 2001). These reductions have been 
linked to limited bonding between the BaSO4 particles and the host polymeric matrix 
(Molino and Topoleski, 1996). Furthermore, it has been observed that large agglomerations 
of BaSO4 can act as fatigue crack initiation sites with the potential of causing overall failure 
(Kurtz et al. 2005). 

4.8 Micromechanical analysis of fatigue failure 
When examining the fatigue life of PMMA bone cement, Topoleski et al. (1993) suggested 
that micro-crack propagation occurred primarily through the inter-bead matrix, in addition 
to micro-crack formation ahead of the crack tip, as is modeled in Figure 12. Topoleski et al. 
(1993) also stated that the PMMA beads themselves may experience cleavage or crazing 
during rapid fracture. Other works by Murphy and Prendergast (2002) suggested that 
micro-cracks propagate primarily through the inter-bead matrix, but indicated that crack 
arrest could occur within pre-polymerised beads. 
 

 

Fig. 12. Schematic of the proposed model of fatigue crack propagation and damage 
formation of Topoleski et al. (1993). 

In relation to the porosity that remains after mixing, it is well established that the lower the 
porosity, the better the static and dynamic properties of cement (Dunne and Orr 2002). 
Murphy and Prendergast (2000/2002) suggested that pore initiated fractures may be linked 
to  mechanical stress concentration, caused by adjacent PMMA beads at the pore surface, as 
seen in Figure 13. Topoleski et al. (1993) also suggested that pores situated within the fatigue 
crack damage zone act as micro-crack nucleation sites (see Figure 14), effectively increasing 
the area of the fatigue damage zone ahead of the crack tip. Conversely, the presence of 
porosity promotes levels of micro-crack initiation and could be considered to increase rates 
of crack propagation. Hence porosity can be seen as being both destructive and constructive. 
Finite element (FE) analysis showed that pores contributed to both fatigue crack acceleration 
and deceleration, depending on the location of the pores within the stress field, irrespective 
of size (Janssen et al. 2005a). Crack retardation was prominent when pores existed near to 
the propagating crack, but not close enough to initiate the crack deviating from its original 
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path. The presence of the pore in this scenario reduced the stress in the cement by causing 
the formation of secondary cracking initiating at the pore.  
 

 

Fig. 13. SEM micrograph of (a) microcracks propagating from a pore and (b) a crack 
initiation site at a stress concentration between PMMA beads (Murphy and Prendergast 
2002). 

 

 

Fig. 14. Expansion of the fatigue crack due to porosity at the crack tip, as suggested by 
Topoleski et al (1993). (a) Damage zone remains linear when no pores are at the crack tip.  
(b) Expansion of damage zone as a result of micro-crack nucleation (i.e. pores). 
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In general, it is understood that crack propagation characteristics of bone cement at a 
microstructural level are heavily reliant on whether the failure regime is a fatigue crack or a 
fast ‘impact’ fracture (Prendergast 2001b). Fatigue crack propagation is directly influenced 
by bone cement microstructure, porosity, residual stresses and agglomerations of 
radiopaque agent. An impact or fast failure however, does not have a dependence on these 
same parameters. For any polymer, the success in achieving improved mechanical 
performance remains in the materials’ potential to inhibit or delay crack initiation and 
improve its resistance to crack propagation. 

5. Developments in acrylic bone cement 

5.1 Mechanical properties 
The intrinsic mechanical properties of acrylic bone cement (such as strength, fracture 
toughness and fatigue crack propagation resistance) in addition to the presence of extrinsic 
factors such as porosity, agglomerates of radiopaque agents and other such stress 
concentrations may limit its long-term survival (Lewis 2003). Within the current literature 
there have been many attempts to improve the fatigue performance of Acrylic bone cement. 
Most studies have tried to control the extrinsic factors, in particular porosity (Norman et al. 
1995; Murphy and Prendergast 2000; Lewis 2003) by means of vacuum mixing or 
centrifugation. However, this does not address the underlying intrinsic factors which can be 
broadly categorised into two areas: (a) mechanical studies, focusing on improving 
mechanical performance, and (b) biological studies where the focus may be on the effect of 
bioactive inclusions or the addition of antibiotics. 

5.2 Mechanical performance 
A significant portion of the literature is directed towards discussing the potential to increase 
mechanical performance of acrylic bone cement via reinforcement with fibres or secondary 
phase particles: for example, carbon (Pilliar et al. 1976; Robinson et al. 1981; Pal and Saha 
1982; Wright and Robinson 1982; Saha and Pal 1986), polyethylene (Yang et al. 1997; Narva et 
al. 2005), titanium (Topoleski et al. 1998; Kotha et al. 2006), hydroxyapatite (HA) (Serbetci et 
al. 2004), glass beads (Shinzato et al. 2000), glass flake (Franklin et al. 2005), glass fibres 
(Narva et al. 2005), and steel fibers (Kotha et al. 2004). Mechanical properties that have been 
reported to improve include: compressive, tensile, and bending strength, elastic modulus, 
fracture toughness and fatigue resistance, when compared to cement without reinforcement. 
In addition to the mechanical improvements provided by these fillers, further benefits have 
been identified with respect to the peak temperature reached during polymerisation. As 
mentioned previously, high temperatures experienced in vivo can cause thermal necrosis of 
the bone cells surrounding the cement mantle, in addition to the coagulation of blood, which 
can potentially lead to aseptic loosening of the implant, and ultimately implant failure 
(Lewis 1997). Reduced in situ polymerisation temperatures have been observed for, but not 
limited to, steel, carbon fibres (CF) and multiwalled carbon nanotube (MWCNT) reinforced 
bone cement (Pilliar et al. 1976; Saha and Pal 1986; Kotha et al. 2004, Marrs et al., 2006). A 
number of researchers have investigated adding CF as a reinforcing agent using clinically 
applicable cement mixing techniques for both in vitro testing (Robinson et al. 1981; Pal and 
Saha 1982; Wright and Robinson 1982; Saha and Pal 1986;) and for in vivo applications 
(Pilliar et al. 1976). Pilliar et al. (1976) reported that the inclusion of randomly oriented CF 
(0.6 cm) improved fatigue performance, tensile strength, Young’s modulus and impact 
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resistance (i.e. indicative of toughness), compared to cement without reinforcement. The 
thermal properties were also observed for the two cement types; the dough time and the 
setting time were unaffected by the addition of CF, whilst the maximum curing temperature 
was lowered for the cement with added CF (53 ºC compared to 57 ºC). Interestingly these 
research groups found that the addition of CF increased the viscosity of the cement above 
the required level by ASTM standards (ASTM F451–99a), meaning that use of these cements 
in a clinical setting would not be ideal. Fractographic analysis identified poor distribution of 
CF, and evidence of poor CF-PMMA bonding, although fibre pullout was noted. This CF-
reinforced cement was used in vivo with no detrimental mechanical or biological response 
observed after 18 months. During the 1980s, problems associated with the high starting 
viscosity of the cement, and subsequent reduced levels of intrusion, were investigated in 
vitro following the development of low viscosity cement. Robinson et al. (1981) confirmed 
that CF-reinforcement of a commercial cement increased fracture toughness of both regular 
and low viscosity cements. However, the low viscosity cements (both reinforced and 
conventional) displayed a reduction in fracture toughness when compared to the equivalent 
regular viscosity cement. For the reinforced cement, Wright and Robinson (1982) reported a 
decreased crack growth rate versus the unreinforced cement). Saha and Pal (1986) 
investigated the effect of mechanically, or hand-mixed CF-reinforced bone cements, and 
found that mechanical mixing provided superior performance. They attributed this to the 
improved dispersion of CFs throughout the cement matrix.  
Investigations concerning the addition of titanium (Topoleski et al. 1998; Kotha et al. 2006) 
or CF (Pilliar et al. 1976; Saha and Pal 1986) to bone cement suggested that commercially 
viable mixing methods are indeed possible. Topoleski et al. (1998) used SEM analysis to 
confirm that before cement failure, a good bond between the fibers and the host matrix 
existed, although subsequent damage led to evidence of fiber de-bonding, plastic 
deformation and ductile rupture of the fibers. Topoleski et al (1998) also reported that the 
presence of the fibers prevented crack propagation (Topoleski et al. 1998). Additionally, 
fiber based additives have been shown to dissipate energy associated with static crack 
propagation, resulting in improved fracture toughness of acrylic bone cement, through 
crack diversion and crack tip blunting (Gilbert et al. 1995). Orientation and dispersion of 
the fibers, in addition to good interfacial bonding, were all identified to have a positive 
effect on improving mechanical properties due to reinforcement (Gilbert et al. 1995; Yang 
et al. 1997). 

5.3 Biological performance 
Bone cement is a biologically inert component of the implant construct. Conventional acrylic 
bone cement does not normally promote bone ingrowth. Several studies however have 
attempted to improve the biological performance of bone cement. These have included the 
incorporation of bioactive agents, such as HA based powders, glass ceramic particles or 
glass beads (Lee et al. 1997; Mousa et al. 2000; Shinzato et al. 2000). Each of these additives 
has been reported to enhance the biocompatibility of bone cement, thus reducing the 
formation of fibrous tissue at the bone-bone cement interface. Mousa et al. (2000) used 
apatite-wollastonite glass ceramic (AW-GC) particles to reduce the amount of monomer 
required for polymerisation, which lead to a reduction in the peak exotherm, and thermally 
induced bone necrosis as well as decreasing the levels of cement shrinkage. Similar results 
have been reported for cements containing glass beads, which have also been shown to 
improve bioactivity (i.e. osteoconductivity) compared with HA powder (Shinzato et al. 
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2000). Additionally, it has been reported that many of these bioactive cement composites 
exhibited no detrimental influence on mechanical performance, and in some cases 
improvements were observed (Mousa et al. 2000; Shinzato et al. 2000).   
Concerns regarding biological performance include the use of antibiotics, which are 
integrated to reduce risk of infection and associated revision (Kuehn et al. 2005); many 
antibiotic-loaded cements are currently commercially available and, for those containing 
gentamicin sulphate, are believed to not cause any adverse affect on the fatigue performance 
(Baleani et al. 2003). 

6. Polymer matrix composites 

The mechanical success of any polymer composite is governed by the successful transfer 
of load between the matrix and the reinforcement. This transfer of load is dependent upon 
the volume fraction, dispersion, orientation of the reinforcing phase, the host matrix-
reinforcement interface and the individual mechanical properties of the phases that are 
present (Gilbert et al. 1995; Hull and Clyne 1996b; Yang et al. 1997). Within fibre-reinforced 
composites four main microstructural regions exist: (1) the matrix, (2) the fibre, (3) the 
interface, and, in some composite systems, (4) the interphase. An interphase may be 
present if a mechanical or chemical interaction takes place between the polymer matrix 
and the reinforcing phase (examples includes adsorption of the polymer onto the surface 
of the reinforcing agent in particulate-reinforced polymers, inter-diffusion of the 
components during blending and chemical reactions at the polymer/fibre interface) 
(Pukanszky 2005).  
Fibres aligned in the direction of applied load are particularly effective at reinforcing 
composites. Corresponding mechanical properties which effect failure performance may be 
identified, with a complex interaction between individual phase properties, the interface 
strength between the host polymer and the reinforcing fibres and the composite 
microstructure. Polymers are the most common form of composite matrix and are often 
reinforced with a low fraction of fillers such as glass, CF or Aramid. This results in 
composites of high specific strength and modulus as the low levels of additives allows a 
more homogeneous dispersion (Callister 2000a). Of these three reinforcements, CF 
composites often exhibit the best resistance to fatigue failure due to superior mechanical 
properties as well as the higher thermal conductivity of carbon fibres which assists in the 
dissipation of heat during cyclic loading (Scheirs 2000a). In compression, the mechanical 
performance of fibre-reinforced composites is dependent on the interaction between the host 
polymer matrix and the fibre. For optimum reinforcement, the matrix would provide lateral 
stabilisation to the fibre preventing subsequent buckling. Alternatively, the tensile 
behaviour is governed by the tensile strength of the fibre additive (Hull and Clyne 1996a). 
Fatigue failure in polymer composites is commonly characterised by a gradual reduction in 
stiffness (Scheirs 2000c). Without reinforcement, fatigue failure typically occurs 
perpendicular to the applied load; in contrast, the presence of fibres generally results in a 
diffuse damage zone due to the combination of a number of sub-critical failure modes and 
crack shielding mechanisms. In general, crack propagation through fibre-reinforced 
polymers may be considered as a multi-faceted interaction between the polymer matrix, the 
fibre reinforcement and the associated interface/interphase regions. A combination of 
mechanisms may occur and subsequently, fibre inclusions may impede crack growth by 
three main mechanisms (Mandell et al. 1980; Sauer and Richardson 1980): 
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i. Debonding of interface/interphase between fibre and matrix – as a crack approaches, 
failure of the interface occur serving to blunt the crack tip and reduce crack 
propagation. 

ii. Crack bridging – transferring load across a given matrix crack, reducing the crack. 
iii. Fibre pullout, subsequent to crack bridging, may also absorb energy due to matrix 

deformation and/or interface friction. 

7. Carbon nanotubes 

It was in 1980 that Sumio Iijima first recorded an ‘onion-shaped particle’ in the order of 0.8 – 
1 nm in diameter. It was not until five years later that Iijima realised that this ‘onion-like 
structure’ was the fullerene C60, which was believed to be discovered by Kroto, Heath, 
O’Brien, Curl and Smalley in 1985, (Figure 15).  
 

 

Fig. 15. Carbon C60 molecule (Iijima, 1991). 

Although Curl et al. (2001) later confirmed that it was Osawa who first documented the 
concept in 1970. It was in 1991, whilst working as an electron microscopist that Iijima’s 
study of soot deposited on the cathode during the arc-evaporation synthesis of fullerenes 
led to the sighting of a needle-shaped material. What was originally described as 
“microtubules of graphitic carbon” is now commonly known as carbon nanotube (CNT). Whilst 
being considered an accidental discovery, Iijima believes it was the “power of serendipity”. 
Initially, Iijima produced individual tubes of graphitic carbon with diameters of 4-30 nm 
and a length of up to 1 μm using arc-discharge evaporation methods (Iijima 1991). At 
present, CNT can be synthesised via electric arc discharge (Iijima 1991; Shi et al. 2000), laser 
ablation (Zhang et al. 1998; Zhang and Iijima 1998) or, more commonly chemical vapour 
deposition (Sinnott et al. 1999; Andrews et al. 2002). Extensive research has been conducted 
on these processing methods by Andrews et al. (2002), and Thostenson et al. (2001). 
CNT can occur as either single-walled nanotube (SWCNT) or multiwalled nanotube 
(MWCNT) structures. SWCNT consist of a single graphene sheet rolled up as a seam-free 
tube. They can be thought of as a linearly extended fullerene (Ajayan 1997; Iijima 1991/2002; 
Baughman et al. 2002). SWCNT usually exist as agglomerations due to the van der Waals 
forces between each tube, with diameters on average between 0.7-2 nm, whilst their lengths 
are often 5-30 μm (Ajayan 1997; Colbert 2003). MWCNT can be described as an array of 
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SWCNT that are concentrically arranged inside one another with an internal diameter as 
small as 2.2 nm. The distance between the individual SWCNT that constitute MWCNT (or 
the graphite inter-layer separation) is typically 0.34 nm (Ajayan 1997; Iijima 1991/2002) 
(Figure 16). Iijima (1991) used electron diffraction to establish that the crystal axis of the 
graphene tubes consisted of carbon-atom hexagons arranged in a helical manner about the 
tube axis (Figure 17). The ends of CNT are closed off by the presence of pentagonal carbon 
rings near the tip regions, whilst deformations and imperfections of the cylinder occur as 
pentagons or heptagons within the main structure of the tube (Ajayan 1997). 
 

 

Fig. 16. Transmission electron micrograph (TEM) of MWCNT (Iijima 1991). 

SWCNT, are known to be stiff and exceptionally strong (high Young’s modulus and high 
tensile strength). Furthermore, SWCNT can stretch beyond 20% of their original length and 
bend over double without kinking (Baughman et al. 2002; Colbert 2003). However, the 
mechanical properties of individual CNT, whether SWCNT or MWCNT are the subject of 
much research with a significant variation in recorded properties existing. The use of CNT in 
various matrices can greatly enhance mechanical properties. Wong et al. (1997) provided an 
insight into the potential uses of CNT. Atomic force microscopy (AFM) was employed to 
determine the elasticity, strength and toughness of individual silicon carbide nanorods (SiC 
NRs) and MWCNT that were attached to molybdenum disulphide surfaces. The average 
bending strength of the MWCNT was 14.2 ± 8.0 GPa; with the maximum bending strength 
being substantially smaller than that of the SiC NRs at 53.4 GPa. In contrast, whilst both 
nanostructures exhibited high values for the Young’s modulus (highlighting their suitability as 
reinforcing agents in ceramic, metal and polymer matrix composites) the Young’s modulus for 
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the MWCNT was almost double that of the SiC NRs (1.28 ± 0.59 TPa and ~600 GPa, 
respectively). The Young’s modulus value for the in-plane modulus of highly orientated 
pyrolytic graphite was recorded at 1.06 TPa (Blakslee et al. 1970) and is believed to be the 
largest known for a bulk material. Wong et al. (1997) concluded that while the stiffer MWCNT 
had a lower ultimate strength, the elastic buckling displayed by the MWCNT (i.e. the energy 
storing capabilities of CNT before failure) showed them to be the “tougher” nanostructure. 
More recently, Demczyk et al. (2002) investigated the direct failure of individual MWCNT 
under tension using TEM. While the mode of failure, either ductile or brittle, could not be 
determined, results confirmed a tendency to fail via a mode now known as ‘telescopic failure’, 
with initial failure observed in the outermost walls followed by a ‘sword in sheath effect’ of the 
inner cylinders. TEM observations also confirmed the elastic capabilities of MWCNT during 
deformation in bending, even after being highly distorted.  
 

 

Fig. 17. Helical arrangement of carbon atom hexagons that make up a graphene sheet in a 
MWCNT (Iijima 1991). 

It is clear that CNT offer significant potential to improve the properties for many existing 
materials; the challenge remains for the superior properties exhibited by CNT individually 
to be successfully applied and optimised in practical applications such as nanocomposites. 
Not only do the properties of the CNT themselves vary due to impurities during processing 
(Baughman et al. 2002), but on addition of CNT to a matrix, the problem becomes multi-
faceted: CNT dimensions, dispersion, alignment, concentration, CNT-matrix 
interface/adhesion and choice of matrix are some of the many issues that govern the final 
properties of the composite material. At present, production of high purity SWCNT still 
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remains costly and of a low yield: purification reduces yield further, adds to cost and 
damages the structure (Andrews et al. 2002). Low manufacturing costs and high yields of 
aligned MWCNT are now possible however, making them the preferred choice in bulk 
composite material development. 

8. Properties of CNT-reinforced polymers  

Since the discovery of CNT in 1991, research incorporating them into various matrix 
materials has been plentiful.  This increase in research can be attributed to the fact that CNT 
have extremely high aspect ratios (typically >150:1), modulus and low density. The addition 
of CNT to polymer composite materials has enhanced mechanical (Wong et al. 1997; 
Andrews et al. 2002), electrical (Baughman et al. 2002; Colbert 2003) and thermal properties 

(Kim et al. 2001; Baughman et al. 2002; Colbert 2003), in matrices including polycarbonate 

(Ding et al. 2003; Eitan et al. 2006), polystyrene (Andrews et al. 2002; Thostenson and Chou 
2003; Park et al. 2005) ultrahigh molecular weight polyethylene (Ruan et al. 2003) and PMMA 
(Hwang et al. 2004; Marrs et al. 2005).  
Extensive literature has explored the effects of CNT on mechanical properties of various 
polymer matrices. It has been shown that the addition of CNT can increase the toughness of 
polymer matrices due to crack bridging, changes in morphology of the matrix and the 

additional energy required for de-bonding and nanotube pullout (Dalton et al. 2003; Ruan et 
al. 2003; Andrews and Weisenberger 2004). As with other polymer composites, increases in 

modulus may be identified with stress transfer from the matrix to the CNT. It should be 
noted though that the presence of agglomerations of CNT can have significant adverse 
influence on the mechanical properties of CNT-polymers, acting as stress concentrations and 
fracture initiation points within the composite microstructure. This effect was recorded by 
Marrs et al. (2005), who incorporated MWCNT at various levels of loading in to PMMA bone 
cement. They characterised the fatigue, quasi-static tensile and bend properties for these 
MWCNT-PMMA nanocomposites. They found that the optimal performance was for the 
addition of 2 wt% MWCNT. They also report that loadings above this resulted in reduced 

mechanical properties, although results were still superior when compared to pure PMMA 
(Marrs et al. 2005). Cadek et al. (2004) reported an increase in Young’s modulus by a factor of 
two after the addition of 0.6 vol% CNT to poly (vinyl alcohol), an effect which they 
attributed to nanotube diameter and resultant surface area. Varying levels of reinforcement 
as a result of a change in nanotube diameter suggested that MWCNT of smaller diameter 
provided optimal reinforcement due to increased surface area. Whilst the enhancing effects 
of CNT with respect to tensile strength and modulus have been recorded (Ruan et al. 2003), 
it has been established that theoretical predictive models such as Rule of Mixtures approach 
or the Halpin-Tsai model predict superior reinforcement capabilities than experimental data 
provides. Part of this discrepancy may be due to factors such as poor interfacial bonding, 
inhomogeneous dispersion, and CNT quality (Andrews et al. 2002; Fisher et al. 2002; 
Andrews and Weisenberger 2004). Poor adhesion/bonding at the interface between the host 
polymer and the CNT may have a detrimental effect on the mechanical properties of CNT-
composites (Andrews et al. 2002). Nanotube pullout experiments, using atomic force 
microscopy, may be used to determine the force required to separate a single CNT from a 
polymer matrix (Barber et al. 2003; Baroud et al. 2004). It is widely accepted that a strong 
interfacial adhesion between the reinforcing nanotube and the polymer matrix leads to the 
effective transfer of load (Cooper et al. 2002; Barber et al. 2003; Goh et al. 2003, Marrs et al., 
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2007). Barber et al. (2003) measured the average interfacial stress required to remove a single 
MWCNT from a polyethylene-butene matrix as 47 MPa. Comparing this value to the 10 MPa 
measured for poorly bonded interfaces in other fibre-reinforced polymers, Barber et al. 
(2003) suggested that this enhancement was due to the presence of covalent bonding at the 
interface between CNT and the host polymer, potentially due to a chemical interaction 
between the polyethylene-butene matrix and defects on the surface of the nanotube. 
Moreover, it is believed that the mechanical properties of the polymer immediately 
surrounding the nanotube may be enhanced when compared to the bulk of the polymer. 
Nano pullout test results by Barber et al. (2003) showed no evidence of the polymer yielding, 
even at pullout stresses that were ten times higher than average tensile strength of the 
polymer matrix. This may be explained using differential scanning calorimetry (DSC) 
measurements to determine the polymer crystallinity. Cadek et al. (2004) compared polymer 
crystallinity for PVA after the addition of 0.6 vol. % CNT and measured a linear increase in 
crystallinity with increasing volume fraction of CNT, suggesting a crystalline polymer 
coating is formed at the nanotube surface. Observations of the fracture surface using SEM 
confirmed that polymer wetting of the nanotube surface was achieved (Figure 18); 
diameters of the nanotubes in the composite were larger than the as-received CNT (Ding et 
al. 2003).  
 
 

 

Fig. 18. High-resolution SEM image highlighting MWCNT coated with a polymer  
sheath protruding from a MWCNT-polycarbonate fracture surface, as observed by  
Ding et al. (2003). 

The interface between the host matrix and reinforcement phase, in addition to the 
interphase region may play a pivotal role in optimising the mechanical performance of a 

polymer composite (Gilbert et al. 1995; Hull and Clyne 1996b; Yang et al. 1997; Eitan et al. 

2006). When investigating the effect of MWCNT on the crystallinity of PVA and PVA 

nanocomposites Ryan et al. (2006) used dynamic mechanical analysis (DMA) to confirm 
significant improvements in the Young’s modulus. Ryan et al.(2006) also confirm the 

findings reported by Marrs et al. (2005), reporting that limits in the amount of CNT added to 
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the polymer exist for achieving optimal mechanical performance. Ryan et al. (2006) 
explained that improvements in mechanical properties are seen for lower fractions of CNT 

with detrimental effects introduced at higher levels of loadings due to the higher incidence 
of CNT agglomerations. Of further interest is the degree of crystallinity present at the CNT-

polymer interface: reported for CNT-reinforced PVA, the large increases in Young’s 
modulus were attributed to the variations in crystallinity. A consequence of the ability of 

CNT to act as nucleation sites for crystals in both the solution and melt/solid-state phase 
(Coleman et al. 2004; Ryan et al. 2006). It is the presence of a well-bonded crystalline interface 

between the polymer matrix and the nanotubes that may account for the improved 
mechanical properties due to the increased levels of stress transfer (Cadek et al. 2004; 

Coleman et al. 2004). This would allow for failure/crack deflection to occur at the matrix-
crystalline interface rather than at the nanotube interface. It has been highlighted that the 

presence of CNT agglomerations, particularly seen with the use of SWCNT, limits the ability 
of PVA to act as crystal nucleation sites and, as a result inferior mechanical performance are 

not seen. Similar findings have been reported for other semi-crystalline polymers (Hull and 
Clyne 1996a) such as UHMWPE (Ruan et al. 2003), polypropylene (Leelapornpisit et al. 2005; 

Seo et al. 2005) and polyamide (Chao et al. 2006). These reports highlighted the need for 
careful selection of the processing method that allows for optimal levels of crystallisation at 

the nanotube-matrix interface (Coleman et al. 2004). To date, limited work has been 
published regarding the crystallisation of PMMA at the nanotube-matrix interface: Coleman 

et al. (1998) proposed that PMMA would be unable to bond to CNT due to the spatial 
arrangement of the polymer. Alternative mechanisms have been sought to improve the 

interface and interphase properties of CNT- amorphous polymers. The most commonly 
employed approach is the covalent attachment of chemically functional groups to the CNT 

at the defect sites. This is completed in order to achieve similar polymer sheathing effects 
around the nanotube. In chlorinated polypropylene, Coleman et al. (2004) reported that the 

thickness of the polymer sheath surrounding the nanotubes depends on the volume 
occupied by the functional groups. Upon failure, fracture was seen to occur away from the 

CNT-polymer matrix interface. Immobilisation of the polymer chains in the region 
surrounding the nanotubes was proposed as an additional reinforcement mechanism 

associated with MWCNT-reinforcement of amorphous polycarbonate. Functionalisation of 
the MWCNT surface led to an increase in thickness of this interphase region, subsequently 

improving load transfer capabilities between the matrix and the nanotubes (Eitan et al. 

2006). This suggestion was highlighted by Jia et al. (1999), they reported that PMMA can 

bond with CNT, although this was dependent on the processing methods utilised. Using in 

situ polymerisation, initiated using the free radical initiator, Azobisisobutyronitrile (AIBN), 
to form the polymer, additions of MWCNT (both unfunctionalised and carboxyl 

functionalised) resulted in nanocomposites of improved mechanical properties (in 
particular, tensile strength, toughness and hardness), with the carboxyl functionalised 

nanotubes out-performing their unfunctionalised counterparts. High interfacial strengths 
were associated with bonding between the open π-bonds of the CNT (believed to be 

initiated by the AIBN) and the open bonds in the PMMA possibly creating a C-C bond 
between the PMMA and the CNT. Jia et al. (1999) also reported that higher loadings of 

MWCNT led to a more brittle polymer with reduced toughness and tensile strength. 
Velasco-Santos et al. (2003) demonstrated the use of an amorphous polymer matrix is 

potentially advantageous over semi-crystalline polymers like PVA; clear reasoning behind 
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this is not given although the presence and nature of the interphase region may be an 
explanation. 

9. Mechanisms of failure of CNT-polymers 

Andrews et al. (2002) reported that CNT within polymer matrices under tensile stress may 
align themselves parallel to the direction of the applied load, enabling crack bridging behind 
a crack tip. Andrews et al. (2002) explained that this phenomenon reduced the  
stress concentration in the region surrounding the crack tip, and ultimately reduced  
crack propagation. Key reinforcement mechanisms that have been identified in CNT-
polymer systems are nanotube pullout, bending of nanotubes (often due to surface  
defects such as iron oxide catalyst inclusions from the CNT production process) and 
telescopic fracture of nanotubes (Andrews et al. 2002; Cooper et al. 2002; Demczyk et al. 2002; 
Ding et al. 2003; Hwang et al. 2004). Such phenomena are schematically illustrated in  
Figure 19. 
 
 

 

Fig. 19. Schematic illustration of (A) a CNT bridging a crack, (B) telescopic failure of a 
CNT and (C) CNT fibre pullout experienced in CNT-reinforced polymers (Sinnott and 
Andrews 2001). 
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Crack bridging of the matrix may arise in CNT-containing polymers. Hwang et al. (2004) 
directly observed nanotube pullout. (Figure 20b) and failure of the graphene layers resulting 
in telescopic failure (Figure 20c). 
 

 

Fig. 20. TEM images of MWCNT-containing PMMA showing (a) breaking of graphene layers, 
(b) MWCNT pullout and (c) final telescopic failure of the MWCNT (Hwang et al. 2004). 

10. Biocompatibility of CNT 

The Royal Society and the Royal Academy of Engineering, UK, published a report (2004) 
discussing the associated ethical, health and safety, and social implications of nanotechnology 
(The Royal Society and the Royal Academy of Engineering 2004). With an increased interest in 
the use of nanotechnology, the Government later published its own report (‘Characterising the 
potential risks posed by engineered nanoparticles’, November 2005) and follow-up studies (‘First 
quarterly update on the Voluntary Reporting Scheme for engineered nano-scale materials’, December 
2006). The full report addressed many issues concerning the potential use of nanotechnology 
and CNT. Concerns have been raised that the properties that promote the use of nanoparticles 
in certain applications may also have health implications, such as their high aspect ratios, 
surface reactivity and their ability to cross cell membranes (The Royal Society and the Royal 
Academy of Engineering 2004; Kagan et al., 2005; Fadeel et al., 2007). The report highlighted 
that the main risks associated with CNT stem from their high surface to volume ratio to which 
a target organ may be exposed, in addition to the chemical reactivity of the surface, the 
physical dimensions of the nanoparticles and their solubility. Speculation surrounding the use 
of CNT has equated their effect on health to that of asbestos (due to their similar size and 
shape). CNT are therefore suspected as being potentially carcinogenic, and additionally, may 
cause inflammation or functional changes to proteins due to their large surface area. However, 
it has been argued that no new risks to health have been introduced as a result of the 
increasing use of nanoparticles as part of composite materials, and that most concerns derive 
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from the possibility of detached, or ‘free’ nanoparticles and nanotubes from the matrix (The 
Royal Society and the Royal Academy of Engineering 2004). It is believed that, if airborne, the 
likelihood of CNT existing as individual fibres is improbable as electrostatic forces cause the 
CNT to agglomerate which reduces their ability to be inhaled into the deeper areas of the 
lungs. However, when investigating of the inhalation of stable non-purified SWCNT aerosols 
in mice, Shvedova et al. (2008) reported that the chain of pathological events was realised 
through an early inflammatory response and oxidative stress culminated in the development 
of multifocal granulomatous pneumonia and interstitial fibrosis (Figure 21).  
 

 

Fig. 21. Representative image of lung section from the SWCNT inhalation study depicting 
granuloma formation on day 28 post treatment. Fibrosis is indicated by blue staining in this 
Masson's Trichrome stained section of the lung (Shvedova et al. 2008). 

Smart et al. (2006) reviewed the often conflicting findings pertaining to the cytotoxicity and 
biocompatibility of CNT. They concluded that, as-received (i.e. untreated, or 
unfunctionalised) CNT exhibited some degree of toxicity (observed both in vitro and in vivo) 
with detrimental effects associated with the presence of transition metal ions, used as 
catalysts in the CNT production. Smart et al. (2006) also reported that CNT that have been 
chemically functionalised have yet to demonstrate toxicity effects. It is highlighted that the 
tendency for CNT to aggregate may impact the reported results, although quantification of 
this fact has yet to be investigated. With research into the use of CNT, and nanotechnology 
ever increasing, the uncertainty regarding toxicity has been brought to public attention. As a 
result, it has been recommended that further research is necessary regarding the biological 
impacts of nanoparticles and nanotubes, including their exposure pathways within the 
body, and that methodologies for in situ monitoring should also be developed (The Royal 
Society and the Royal Academy of Engineering 2004). Recent studies have addressed the 
issue of CNT uptake by different cell types. While the results seem to be controversial, it is 
apparent that the presence or absence of specialised signals determined the recognition and 
subsequent interactions of CNT with cells. Overall, pristine CNT carrying no recognisable 
signals were poorly taken-up whereas CNT modified chemically (e.g. oxidatively modified 
and functionalised) or by adsorbed macromolecules (e.g. proteins, lipids) were more readily 
recognised and engulfed by cells (Shvedova et al., 2010). Several in vitro studies support the 
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concept that pristine CNT are not readily taken up by lung cells. Davoren et al. (2007) 
reported no measurable uptake of CNT in A549 cells (a human alveolar type II cancer cell 
line). Likewise, Herzog et al. (2007) reported no uptake of CNT in either A549 cells or BEAS-
2B cells (a human bronchial epithelial cell line). Lastly, no evidence of uptake of CNT was 
reported after electron microscopic evaluation of exposed RAW 264.7 cells (mouse 
peritoneal macrophage cell line) (Shvedova et al., 2005). In contrast, functionalistion of 
SWCNT with a phospholipid signal, phosphatidylserine, made CNT recognisable in vitro by 
different phagocytic cells, including murine RAW264.7 macrophages, primary monocyte-
derived human macrophages and dendritic cells, and microglia from rat brain (Figure 22) 
(Shvedova et al., 2009).  
 

 

Fig. 22. Representative transmission electron micrograph (A) and scanning electron 
micrograph (B) of RAW264.7 macrophages with engulfed PS-coated SWCNT. Arrows 
indicate SWCNT. (Shvedova et al., 2009). 
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11. CNT-reinforced biomaterials 

Nanotechnology in biomaterials is not a new idea (Hrkach et al., 1997). Nanomaterials have 
been used as implant coatings, bulk materials, drug delivery, actuators, diagnostic tools and 
devices (Sinha and Yeow, 2005). When biomaterials incorporating nanomaterials are 
studied, much of the emphasis is on the interaction between the biological tissue and the 
biomaterial at a molecular level. Using the interface between bone, and a metallic implant as 
an example, a positive biological interaction is essential if a good fixation is to be obtained. 
Chun et al. (2004) examined this interaction by coating titanium (Ti) substrates with helical 
rosette self-assembled organic nanotubes (HRN). HRN display chemical and structural 
similarities to various constituents of bone (Figure 23). Chun et al. (2004) found that the 
HRN-coated titanium displayed enhanced interaction with the naturally-occurring 
nanostructures’ constituents such as collagen fibres and HA; this was measured as a 
function of the cell adhesion of human fetal osteoblas (hFoBs) cells (Figure 24).  
 

 

Fig. 23. Diagram of helical rosette nanotube (HRN) (Chun et al., 2004). 

Webster et al. (2004) incorporated carbon nanofibres (CNF) into polycarbonate-urethane 
(PCU) for neural or orthopaedic prosthetic devices. They reported that this material had the 
potential to increase neural and osteoblast functions, as cell attachment increased with CNF 
loading. Additionally they stated that the functions of cells that contributed to glial scar-
tissue formation for neural prostheses (astrocytes) and fibrous-tissue encapsulation for bone 
implants (fibroblasts) decreased on the PCU composites containing increasing amounts of 
CNFs. In this manner, this study provided the first evidence that CNF formulations may 
interact with neural and bone cells, which is important for the design of successful neural 
probes and orthopaedic implants. Furthermore, Webster et al. (2004) summarised that using 
nanotechnology in biological systems may be potentially feasible as biological systems are 
governed by molecular behaviour at the nanoscale, and therefore the properties of which are 
accustomed to high levels of interaction at this nanoscale. This study by Webster et al. 
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highlighted the potential for CNT to be used in PMMA bone cement to encourage cell 
growth at the bone-cement interface with the aim of reducing aseptic loosening by 
enhancing the mechanical interlock in the cancellous bone.  
 

 

Fig. 24. Fluorescently stained cells on Ti substrates. (a) HRN coated Ti. (b) Uncoated Ti. 

(Magnification: 20×; inset magnification 200×). Scale bars = 60 µm, inset bars = 50 and 100 

µm for (a) and (b), respectively (Chun et al., 2004). 

CNT exhibit many unique mechanical, thermal, and electrical properties. However, their 
potential use for bioengineering applications and medical materials is almost wholly 
dependent on their biocompatibility. Cui et al. (2005) investigated the effect of SWCNT on 
human HEK293 cells (human embryo kidney cells). Results showed that SWCNT can inhibit 
HEK293 cell proliferation, inducing cell apoptosis (programmed cell death as controlled by 
the nuclei in normally functioning cells) and decreasing cellular adhesive ability in a dose 
and time-dependent manner. Their results also showed that HEK293 cells initiated active 
responses such as secretion of small ‘isolation’ proteins to isolate the cells attached to the 
SWCNT from the rest of the cell mass; a response that offers potential for medical chemistry 
and disease therapy. 
Synthetic bone scaffolds is an area where the biocompatibility of materials used, such as 
polymers or peptide fibers, is still an issue where possible rejection by the body is feasible. 
CNT offer mechanical advantages over the polymers or peptide fibers currently used in 
bone scaffolds. Zhao et al. (2005), investigated the use of chemically functionalised SWCNT 
as a scaffold material for the growth of artificial bone, they identified the potential for the 
self-assembly of HA on the surface of SWCNT. They suggested that this was possibly due to 
the presence of negatively charged functional groups on the SWCNT that attract the calcium 
cations present in HA (Zhao et al. 2005). The group also proposed that it is the high tensile 
strength, high degree of flexibility, and low density of CNT that make these materials ideal 
for the production of bone. The diameters of SWCNT used in the study by Zhao et al. (2005) 
are of similar order and magnitude to the triple helix collagen fibres within bone, and as 
such can act as scaffolds for the nucleation and growth of HA.  
The potential for CNT to be used within bioengineering applications is by no means endless, 
however while many more applications could be discussed, the following papers offer 
further information on the use of nanotechnology for biomedical applications: Sinha and 

(b)(a) 
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Yeow (2005), Webster et al. (2004) and Bellare et al. (2002). Investigations concerning the 
cytotoxic response of CNT-containing materials have reported encouraging results 
confirming their potential use in orthopaedic applications (Smart et al. 2006); however, many 
questions remain unanswered and as yet, the understanding of the toxicity and 
biocompatibility of CNT-reinforced materials is not fully established. 

12. CNT-reinforced bone cement 

12.1 Mechanical properties 
MWCNT offer the potential to augment mechanical properties of PMMA bone cement due 
to their strength and aspect ratio. The addition of MWCNT to PMMA bone cement has been 
shown to significantly improve the static mechanical properties (Marrs et al., 2006 and 
Marrs, 2007; Ormsby et al., 2010a; Ormsby et al., 2010b), and the fatigue performance of 
MMA-co-Sty copolymer based bone cement (Marrs et al., 2006). Marrs et al. (2006) 
investigated the influence of unfunctionalised MWCNT in PMMA based bone cements. 
They reported moderate improvements (13-24 %) in the static properties when 2 wt. % 
MWCNT was incorporated into PMMA bone cement. Marrs (2007) reported significant 
improvements (>300 %) in the dynamic properties of methyl methacrylate-styrene 
copolymer (MMA-co-Sty), a chief component of commercial bone cement when 
unfunctionalised MWCNT (2 wt. %) were added. However, both studies (Marrs et al., 2006 
and Marrs, 2007) used non-clinically relevant methods to ensure optimal dispersion of the 
MWCNT. The MWCNT were dispersed through a molten matrix of pre-polymerised 
commercial bone cement powder using stainless steel counter rotating rotors in a mixing 
chamber at 220 oC. The two materials were heated and subjected to high-shear mixing. Once 
the molten composite had cooled and hardened, it was crushed into pellets and hot pressed 
under vacuum to form films. These films were subsequently machined into testing 
specimen. Each specimen was then annealed at 125ºC for a minimum of 15 h to alleviate any 
residual stresses that formed during machining.  
The uniform distribution of CNT within the polymer matrix is critical for maximising the 
interfacial bond between the CNT and polymer matrix and therefore achieving optimal 
improvements in mechanical properties (Andrews et al., 2002; Marrs, 2007). It has also been 
reported that alignment and optimum dispersion of the CNT is important in the context of 
improving the thermal properties of a nanocomposite (Xie et al., 2005). The CNT must create 
a well dispersed, overlapping network facilitating the transport of electrons, phonons, and 
heat energy.  
Many processing techniques have been employed to uniformly disperse CNT within 
polymer matrices (Xie et al., 2005; Andrews et al., 2002). The two most commonly used 
techniques involve (i) in situ dispersion (sonication of the CNT in solution) and (ii) high 
temperature shear mixing. These techniques are primarily used to separate the 
entanglements and agglomerations of the as-produced CNT, and secondly to disperse the 
individual CNT throughout the matrix. Andrews et al. (2004) stated that these techniques 
produce more favourable results when small concentrations of CNT are used, however, 
mixing higher concentrations of CNT (>5 wt. %) increases the viscosity of the mixture 
irrespective of the state of the polymer. Andrews et al. (2002) postulated that an elevated 
viscosity hinders effective dispersion of the CNT into the polymer matrix, therefore, the 
energy induced into the mixing process must be increased, but, at the risk of shortening the 
CNT or irreversibly damaging the matrix material. Moreover, it has been reported that the 
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efficacy of MWCNT reinforcement is largely dependent on the level of loading of MWCNT, 
the dispersion of these MWCNT and the peak stress of dynamic loading cycle (Marrs et al., 
2006; Marrs, 2007).  
Ormsby et al. (2010a) addressed the limitations of the studies by Marrs et al., (2006; Marrs, 
2007) by incorporating unfunctionalised (MWCNT-UNF) and carboxyl (MWCNT-COOH) 
functionalised MWCNT (0.1 wt. %) into PMMA bone cement using three different 
preparation techniques. CNT were either added to the liquid MMA component of the 
cement via magnetic stirring or ultrasonic disintegration, or dry blended with the polymer 
powder component. A contemporary vacuum mixing system was subsequently used to mix 
the bone cement following the normal protocol for a joint replacement surgical procedure. 
Improvements in static mechanical properties and thermal properties of the MWCNT-
PMMA nanocomposite cement were observed (Ormsby et al., 2010a). Ormsby et al., (2010a) 
demonstrated that adding MWCNT (0.1 wt. %) to the polymer powder or liquid monomer 
components prior to cement mixing with a proprietary mixing system, improved the 
mechanical properties of the resultant cement, provided the appropriate method for 
incorporating the MWCNT was used (≈21 %). This was a significant finding because 
mechanical failure of the bone cement mantle remains a major problem in joint replacement 
surgery (Topoleski et al., 1990). Like typical fibre-reinforced composites, mechanical failure 
of PMMA bone cement is believed to take place in three phases, (1) crack initiation due to an 
initial imperfection in material stability, (2) slow crack growth, and (3) rapid propagation to 
fracture (Figure 25a) (Topoleski et al., 1995). Although mixing the cement under the 
application of a vacuum and injecting the cement into the surgical site using a closed 
delivery system have improved the mechanical performance of the cement, residual 
material voids and poor surgical technique can contribute to weak or thin regions within the 
cement mantle causing these regions to be more susceptible to mechanical failure (Marrs et 
al., 2006).  
Ormsby et al., (2010a) reported that adding MWCNT to the liquid monomer by magnetic 
stirring had an overall negative effect on the mechanical performance of the bone cement. 
This was largely attributed to the poor dispersion of MWCNT in the liquid monomer and 
resulting in MWCNT agglomerations within the cement matrix (Figure 25b).  
These agglomerations acted as stress concentrations within the cement, providing a 
mechanism for premature failure of the cement when subjected to load. In contrast, dry 
blending MWCNT in the polymer powder or disintegrating the MWCNT in the liquid 
monomer using ultrasonic agitation suitably disentangled the nanotubes and homogenously 
dispersed the MWCNT in the resulting nanocomposite (Ormsby et al., 2010a). Andrews and 
Weisenberger (2004) also reported that ultrasonic disintegration was an effective method for 
dispersion of MWCNT at low levels (<5 wt. %) of concentration (Andrews and 
Weisenberger, 2004). Marrs et al. (2006) stated that care is needed when dispersing MWCNT 
within a polymer matrix, and reported the adverse effects of sporadic, inadequately 
dispersed, clumps of MWCNT, particularly at levels of loading greater than 5 wt.%. 
The presence of well-dispersed MWCNT in PMMA cement with their anticipated strong 
nanotube-matrix bonding and high tensile properties, suggests that a percentage of the 
MWCNT would be orientated with their longitudinal axis perpendicular to the crack wave. 
Such MWCNT were effective in bridging the initial crack and preventing crack propagation, 
further enhancing the longevity of the cement mantle (Figures 25c and 25d), by 
improvement in mechanical properties. These improvements are clinically beneficial for the 
use of reinforced PMMA bone cement in TJR due to a reduction in the rate of crack 
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propagation. This effect may be most important for improperly placed femoral implants 
with thinner cement mantle layers, which continues to be cited as a factor that may reduce 
implant longevity (Morscher and Wirz, 2002). Additionally PMMA dental prostheses 
(dentures) are also known to fail prematurely through thin connectors due to impact and 
fatigue loading (Ormsby et al., 2010a). There could be an application for MWCNT inclusion 
in PMMA dental prostheses, enhancing the functionality of denture-based acrylic materials 
when subjected to fatigue loading (Polyzois et al., 1996).  
 

 

Fig. 25. SEM images showing (a) A large pore on the short rod chevron notched fracture 
surface of the control cement (X 300). (b) Unfunctionalised MWCNT dry blended in the 
PMMA polymer powder cement showing an agglomeration of barium sulphate, which was 
the fracture initiation point for this specimen (X 150). (c) Functionalised MWCNT 
disintegrated in the MMA liquid monomer by ultrasonication, MWCNT can be seen to 
bridge a micro-crack across the cement surface, X 5,000, (d) Functionalised MWCNT 
ultrasonically disintegrated within the MMA liquid monomer, MWCNT can be seen to 
bridge a micro-crack on the cement surface, X15,000 (Ormsby et al., 2010a). 

The filler/matrix interface in fibre-reinforced polymer composites is critical in controlling 
load transfer from the matrix to the fibre, failure mechanisms, and degradation (Ormsby et 
al., 2010a). Gojny et al. (2003) reported that functionalisation of MWCNT led to reduced 
agglomeration and improved interaction between the nanotubes and the polymer resin. 
Ormsby et al., (2010a) used MWCNT that were surface modified with a carboxyl grouping, 
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as it has been reported that the static mechanical properties of PMMA polymer resin can be 
significantly improved with this arrangement (Pande et al., 2008). Ormsby et al. (2010a) 
observed that surface modification of the MWCNT with carboxyl groups did not result in 
significant improvements in the compressive or bend properties of the PMMA cement on a 
consistent basis. However, the fracture toughness of the PMMA cement was significantly 
enhanced (p-values<0.001) when the MWCNT were surface modified with carboxyl groups. 
It is unclear currently as to whether the improvements in performance of the MWCNT-
PMMA cements are a direct consequence of good MWCNT dispersion within the PMMA 
matrix, providing mechanical reinforcement, or is due to a chemical interaction between the 
MWCNT and PMMA matrix (Ormsby et al., 2010a). Eitan et al., (2006) used strain dependent 
Raman spectroscopy to show that there is load transfer from the matrix to the nanotubes, 
and that the efficiency of the load transfer is improved by surface modification of the 
MWCNT.  
It is also interesting to observe that significant improvements in fracture toughness did not 
correlate to improvements of the same magnitude for strength and modulus of the different 
cement combinations tested. Ormsby et al. (2010a) postulated that the methods adopted for 
specimen preparation, specimen configuration and the different modes of loading employed 
during testing could account for this. It has been reported that different loading regimes 
evaluate differing reinforcement mechanisms within the specimen microstructure, therefore 
dissimilar responses are expected (Lewis and Mladsi, 2000; Wagner and Chu, 2006). Wagner 
and Chu (2006) also found distinctions in mechanical properties when testing three dental 
core ceramic based materials. They found significant differences in the biaxial flexural 
strength, but reported no significant difference for the indentation fracture toughness for the 
materials tested (Wagner and Chu, 2006). 
Subsequent to this investigation, Ormsby et al. (2010b) also published a study investigating 
the efficacy of adding different concentrations of MWCNT to PMMA bone cement of 
varying functionality as a means of improving MWCNT dispersion and thus augmenting 
the mechanical properties of the PMMA bone cement further. The bone cement was 
prepared using the optimal method for MWCNT incorporation, as determined in their 
previous study (Ormsby et al., 2010a). Ormsby et al. (2010b) reported that adding MWCNT 
at low loadings (≤0.25 wt. %) to MMA monomer, prior to cement mixing with a proprietary 
mixing system, improved the mechanical properties of the resultant nanocomposite cement. 
Adding carboxyl and amine functional groups enhanced the dispersion of the MWCNT 
within the cement matrix and potentially increased the interaction between the carbon 
nanotubes and the cement, thereby improving the mechanical integrity of the resultant 
nanocomposite cement. These improvements in mechanical strength are potentially 
significant as mechanical failure of the bone cement mantle remains a prevalent issue in 
total joint replacement surgery often leading to revision surgical procedures. Adding 
MWCNT at higher loadings (≥0.5 wt. %) provided a negative effect on the mechanical 
performance of the nanocomposite cement. This was attributed to poor dispersion of 
MWCNT resulting in agglomerations forming within the cement matrix. In contrast, low 
loadings (≤0.25 wt. %) of MWCNT were more readily disentangled by the application of 
ultrasonic energy and homogenously dispersed in the resulting nanocomposite. The 
presence of well-dispersed MWCNT in PMMA cement with their anticipated strong 
nanotube-matrix bonding and high tensile properties, suggests that a percentage of the 
MWCNT would be orientated with their longitudinal axis perpendicular to the crack wave. 
Such MWCNT were effective in bridging the initial crack and preventing crack propagation, 
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further enhancing the mechanical integrity of the cement mantle. These improvements could 
have clinical benefits for the application of MWCNT-PMMA nanocomposite cement in TJR 
surgery, due to a reduction in the rate of crack propagation through the reinforced 
nanocomposite cement mantle. This effect may have greatest significance for misaligned 
femoral implants resulting in areas of thinner cement mantle thickness, which continues to 
be cited as a main factor of cement mantle failure (Ormsby et al., 2010b).  
Gojny et al., (2003) also reported that the addition of chemical functional groups to the 
MWCNT can provide a negative charge to the MWCNT and thus reduced agglomeration 
and improve interaction between the nanotubes and the host polymer. The results of this 
study by Ormsby et al., (2010b) concurred with the findings of Gojny et al. (2003). The 
PMMA bone cement with MWCNT-UNF exhibited least significant improvements (p-
value<0.1) for all mechanical properties measured. This reduced improvement in 
mechanical properties was attributed to poor dispersion of MWCNT within the cement 
matrix, resulting in the occurrence of MWCNT agglomerations. The MWCNT-UNF 
provided a degree of mechanical reinforcement at lower loading (≤0.25 wt. %), largely due 
to the reduced tendency for MWCNT agglomerations. MWCNT-COOH provided the most 
significant (p-value<0.001) improvements in all mechanical properties of the PMMA cement. 
It is proposed these significant improvements are a result of a homogenous dispersion of the 
MWCNT within the PMMA matrix aided by the negatively charged carboxyl groups. This 
homogeneous dispersion in tandem with interfacial interactions between the functionalised 
MWCNT and PMMA matrix could provide improved mechanical properties of the resultant 
nanocomposite. The bone cements incorporating amine functionalised MWCNT (MWCNT-
NH2) also improved mechanical properties. These improvements were less significant p-
value<0.01 when compared with the addition of MWCNT-COOH. It is postulated that this 
is due to the lower level of functional groups present on the MWCNT-NH2 when compared 
with the MWCNT-COOH (that is 0.5% vs. 4.0%, functional groups, respectively). This lower 
concentration of MWCNT-NH2 functional groups may result in a more heterogeneous 
dispersion of the MWCNT within the cement matrix, therefore resulting in a less successful 
transfer of stress through the cement mantle.  

12.2 Thermal properties 
PMMA bone cement is produced by a free radical reaction on mixing the polymer powder 
and liquid monomer constituents. The polymerisation reaction is a highly exothermic 
chemical reaction and as a consequence the peak temperatures typically reach 80-100 ºC. It 
has been reported that polymerizing bone cement has the potential to cause thermal necrosis 
of the surrounding bone cells, which is one of the mitigating factors for aseptic loosening of 
an implant fixed with PMMA bone cement (Dunne and Orr, 2002).  
Reducing the polymerisation reaction of PMMA bone cement, therefore lowering the extent 
of thermal necrosis has been investigated by many research groups. Meyer et al. (1973) 
reported reducing the temperature (22 ºC) prior to bone cement mixing had a significant 
influence on the polymerisation reaction of the PMMA cement. They concluded that mixing 
PMMA cement at a temperature of 4ºC resulted in a peak temperature (Tmax) of 53 ºC, while 
mixing the same cement at 37 ºC increased the peak temperature to 125 ºC. Meyer et al. 
(1973) also investigated the effects of pre-chilling the femoral prosthesis prior to 
implantation into the bone cavity; they found adopting this approach did not influence the 
peak temperature. Larsen et al. (1991) also investigated the effects of pre-chilling the femoral 
prosthesis, however, they reported a 5 ºC reduction in the peak temperature at the bone–
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cement interface. Additionally, Lidgren et al. (1987) found using chilled water to pulse-
lavage the bone cavity prior to cement delivery had a significant effect on the extent of the 
polymerisation reaction, the peak temperature was subsequently reduced from 59 ºC to 45 
ºC. The mixing method used to prepare the PMMA bone cement prior to delivery into the 
bone cavity also has a role in its polymerisation reaction. Dunne and Orr (2002) reported the 
level of heat generated for bone cement prepared under the application of a vacuum was 
significantly reduced when compared to the same cement prepared under atmospheric 
conditions using a bowl and spatula mixing arrangement. Other methods can be used to 
reduce the degree of polymerisation reaction of PMMA bone cement, such as altering the 
compositions or constituents of the cement. However, this can have a significant influence 
on the mechanical and handling performance of the bone cement (Lewis et al., 2007).  
CNT incorporation has previously been reported to improve the thermal properties of a 
range of polymers, including polyethylene (McClory et al., 2010), polyurethane (Marrs et al., 
2006), polystyrene (Andrews and Weisenberger, 2004), polyvinyl alcohol and methyl 
methacrylate-styrene copolymer (Xie et al., 2005). 
Andrews and Weisenberger (2004) proposed that the thermal property improvements for 
CNT-polymer composites are a function of CNT type, degree of dispersion, CNT loading, 
CNT alignment and polymer matrix. Xie et al. (2005) reported a significant improvement 
(≈125%) in the thermal conductivity of an epoxy when 1.0 wt. % SWCNT powder was added. 
Choi et al. (2003) observed an increase (≈300%) in the thermal conductivity of an epoxy for a 
SWCNT loading of 3.0 wt. %. The thermal properties of PMMA bone cement have been 
modified with MWCNT by Ormsby et al., (2010a). Incorporating either unfunctionalised or 
carboxyl functionalised MWCNT into the PMMA powder or liquid monomer prior to mixing 
both components together had a significant effect on the exothermic polymerisation reaction. It 
was observed that maximum temperature and the setting properties exhibited during 
polymerisation were significantly reduced by the inclusion of 0.1wt. % (unfunctionalised or 
carboxyl functionalised) MWCNT into the PMMA cement, irrespective of the method of 
introduction. Other studies have also reported reductions in the thermal properties of PMMA 
cement on addition of 5-15 wt. % steel fibres (Kotha et al., 2002). Dunne and Orr (2002) 
reported that reduction of the polymerisation exotherm will decrease the likelihood of residual 
stresses developing within the cement mantle, which can cause premature failure of the 
cement when subjected to mechanical loading.  
The importance of minimising the bone cement exothermic reaction has been stressed, as it 
may result in a permanent cessation of blood flow and bone tissue necrosis, which shows no 
sign of repair after 100 days (Moritz and Henriques, 1947; Feith, 1975; Eriksson and 
Alberksson, 1983; Mjoberg et al., 1984). The cumulative TNI (Thermal Necrosis Index) has 
been used previously to assess the level of irreparable damage bone cement caused by heat 
generation (Moritz and Henriques, 1947; Dunne and Orr, 2002). If TNI exceeds one there is 
the possibility of thermal damage to the living tissue cells. The thermal necrosis index is 
typically calculated at two temperatures; >44 oC and >55 oC, chosen because the 
temperature threshold for impaired bone regeneration has been reported to be in the range 
of 44-47 oC (Moritz and Henriques, 1947; Eriksson and Alberksson, 1983). The incorporation 
of MWCNT to PMMA based bone cement may reduce the incidence of polymerisation 
induced hot spots and thermal necrosis of the surrounding tissue adjacent to the cement 
mantle, which is believed to be observed radiographically (Linder, 1977). Reducing the 
occurrence of such tissue damage may improve the mechanical integrity of the cement-bone 
interface, thereby promoting implant longevity.  
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Ormsby et al., (2010a) report that the incorporation of unfunctionalised or carboxyl 
functionalised MWCNT assisted in the dissipation of the heat produced during the 
exothermic polymerisation reaction of PMMA bone cement, irrespective of the method of 
introduction. With unfunctionalised MWCNT, this reduction was not below the levels 
necessary to prevent thermal tissue damage as the TNI was greater than one. In contrast, 
surface modification of the MWCNT with carboxyl groups and subsequent addition to the 
liquid monomer using magnetic stirring did reduce the TNI values at >44 oC and >55 oC to 
levels below one.  
In a subsequent study by Ormsby et al., (2011) the incorporation of unfunctionalised, amine, 

and carboxyl functionalised MWCNT at increasing wt. % assisted in the dissipation of the 

heat produced during the polymerisation of PMMA bone cement. It was observed that any 

effect on the reaction exotherm was dependant on MWCNT loading. The greater reductions 

in exotherm were reported for the highest level of MWCNT loading (1.0 wt. %). Saha and 

Pal (1986) reported a similar finding when examining carbon fibre reinforced bone cement. 

The greatest reductions in peak exothermic temperature were associated with the highest 

levels of carbon fibre. It is important to note that the types of MWCNT used within the 

study by Ormsby et al., (2011) had thermal conductivity values of >3000Wm-1 k-1. It was 

therefore proposed that the MWCNT act as a heat sink within the PMMA bone cement and 

therefore assist in the dissipation of the heat generated during the polymerisation reaction 

(Ormsby et al., 2011). This behaviour is also a function of the extent of MWCNT dispersion 

and distribution throughout the PMMA bone cement matrix, such that uniform dispersion 

of MWCNT within the cement will dissipate the thermal energy throughout the cement 

matrix. This is further aided by the interconnectivity of MWCNT entanglements and the 

very large surface area of MWCNT (600-1000 m2/g) (Peigney et al., 2009). Bonnet et al. (2007) 

found a similar effect on the addition of 7 vol. % of SWCNT to PMMA reporting a 55 % 

increase in the thermal conductivity. It is therefore hypothesised that the thermal 

conductivity of the PMMA bone cement described here will have also increased due to 

MWCNT addition. 

It has been stated that for composites incorporating CNT to be thermally conductive, they 

must form a percolated network of overlapping or touching CNT for the transport of heat 

energy (Marrs, 2007). Therefore bone cements with relatively poor levels of MWCNT 

dispersion (≥0.5 wt. %) within the PMMA matrix, due to agglomerations (Figure 26), 

demonstrated the greatest reduction in thermal properties.  

It is possible to use this theory to explain why the MWCNT of different chemical 

functionality provided differing thermal properties. The addition of MWCNT-UNF and 

MWCNT-NH2 provided more significant reductions in the polymerisation reaction when 

compared to the MWCNT-COOH. It is suggested by Ormsby et al., (2011) that this may be 

due to a less homogeneous dispersion of the MWCNT-UNF and MWCNT-NH2 within the 

cement in comparison to the improved dispersion of the MWCNT-COOH. 

Ormsby et al. (2010b) added MWCNT of various chemical functionality at increasing 

loadings to PMMA cement and assessed the mechanical properties of the resultant 

composites. They reported significant improvements in mechanical properties at low levels 

of MWCNT loading (≤0.5 wt. %). Ormsby et al. (2010b) showed that MWCNT-COOH 

provided the greatest improvement in mechanical properties, due to the improved MWCNT 

dispersion associated with improved interfacial interactions between these MWCNT and 

PMMA through enhanced van der Waals attraction and hydrogen bonding. 
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Fig. 26. SEM image of 1.0 wt% MWCNT filled PMMA bone cement showing MWCNT-UNF. 

It is noteworthy that the MWCNT inclusion altered the rate of PMMA polymerisation. A 
slower rate of polymerisation extended the time taken for the bone cement to fully 
polymerise, which in turn reduced the Tmax and TNI values. It is postulated that the 
presence of MWCNT in the cement not only altered the kinetics of the polymerisation 
reaction, but additionally played a role dissipating heat energy. Incorporation of carboxyl 
and amine functionalised MWCNT had a greater influence on the polymerisation reaction of 
the bone cement used in this study, compared to the unfunctionalised (Ormsby et al., 2011).  

12.3 Rheology properties 
The efficacy of PMMA bone cement in anchoring a TJR is affected by many fundamental 
characteristics.  Among these are the rheological, polymerisation, and handling properties, 
whose significance is two-fold (Ormsby et al., 2011). Firstly, the ease with which the cement 
flows into the intramedullary bone canal facilitates the controlled positioning of the 
prosthesis. This is critical as it has been reported that initial prosthesis position is a 
contributory factor to the longevity of the cemented implant (Jones et al., 1992; Lewis and 
Carroll, 2001). Secondly, the rheological properties of the cement may play an important role 
in the development of pores in the cement during mixing and delivery.  Such pores may act 
as sites for the initiation of cracks, which, in turn, can cause or contribute to aseptic 
loosening of the prosthesis (Jones et al., 1992). 
To date, there have been limited studies examining the viscoelastic properties of PMMA bone 
cement, with oscillatory shear rheometry (OSR) being the most common method employed. 
Harper et al. (2000) observed that the complex viscosity (η*) of VersaBond ™ and Palacos® R 
cements increased from 1000 Pa.s at 2.5 min to 5000 Pa.s at 6 min. They defined this sharp 
increase in η* as the onset of cure. Spiegelberg and McKinley (1998) determined the critical gel 
time of Simplex P™ cement as 9.7 min. Farrar and Rose (2001) investigated the initial 
polymerisation reaction of several commercial bone cements. They examined η* over a range 
of temperatures and concluded the polymerisation of bone cement is strongly dependent on 
temperature. Ormsby et al., (2011) have assessed the influence of differing MWCNT 
(unfunctionalised, carboxyl functionalized or amine functionalised) on the rheological 
properties and cure kinetics of the polymerising PMMA bone cement. They investigated how 
the differing MWCNT systems influenced the time at which the onset of polymerisation 
occurred, as well as the time at which polymer gelation occurred. Ormsby et al., (2011) found 
that MWCNT addition significantly influenced the rheological behaviour of the polymerising 
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cement. For each cement investigated, η* increased with time.  Ormsby et al., (2011) explained 
this trend applying the Krieger–Dougherty equation (Equation 1) (Krieger and Dougherty, 
1959), which describes the viscosity of a concentrated suspension (η).  
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where, ηs is the viscosity of the suspending medium, φ is the phase volume of the particles 
in the suspension, φm is the maximum packing fraction of those particles, and η is the 
intrinsic viscosity.  This equation may be used to comment on the variation of the 
polymerizing bone cement’s η* as a function of time, although its application is limited as it 
primarily applies to Newtonian suspensions. During the initial stages of mixing the powder 
and liquid components, the high initial viscosity is attributed primarily to the swelling of the 
polymer beads within the cement powder (Lewis and Carroll, 2001).  As elapsed time from 
start of mixing increases and swelling causes both φm and η to decrease. Thus, η* increases 
with t, a trend observed in the present results of the studies of Lewis and Carroll, (2001), and 
Ormsby et al., (2011).  
Ormsby et al., (2011) found that the incorporation of chemically functionalised MWCNT 
(MWCNT-COOH and MWCNT-NH2) into PMMA bone cement significantly extended the 
onset of cure. This effect was more pronounced as MWCNT loading was increased. 
Indicating the time delay before the onset of cure for these composite cements is in part due 
to the role the functional groups play in altering the polymerisation reaction, in addition to 
physically preventing cross-linking of the polymer chain. The onset of cure of the PMMA 
cements with MWCNT-UNF addition was also delayed, but to a lesser extent. In all cases, 
MWCNT addition to PMMA bone cement prevented macro-gelation from occurring. 
It was also significant to observe that on addition of MWCNT-COOH, gel-times increased 
up to a loading of ≤0.5 wt. %, but at 1.0 wt. % the gel-time decreased, compared to the 
control sample. This finding is commonly reported for heavily-filled polymers, as the 
cement may exhibit solid-like properties from the onset of mixing. Therefore, initially the 
filled bone cement will have a higher viscosity than the control, but the actual onset of 
polymerisation may not occur until much later in the reaction. Lalko et al. (2009) reported a 
similar behavior after incorporating increasing fractions of functionalised CNT into 
polycarbonate. 
Lower loadings of MWCNT-COOH (≤0.5 wt. %) did extend gel-times, when compared to 
the control (MWCNT free bone cement), again supporting the hypothesis that the reduced 
rate of polymerisation is due to chemical interactions between functional groups present on 
the surface of the MWCNT and the polymer matrix, as the time before gelation occurs 
increased with level of loading (and thus concentration of functional groups). Ormsby et al., 
(2011) have suggested that the physical presence may indeed affect the rate of 
polymerisation, but the functional chemical groups may be the predominant influence. 
This hypothesis is supported by the theory that if the functional groups on the MWCNT 
were indeed interrupting the polymerisation reaction by terminating polymer chains via 
formation of covalent bonds, then the onset of cure (sudden increase in complex viscosity) 
would never occur and the cement would never reach a hardened state. It is noteworthy 
though, for this to occur, the MWCNT loading would need to be significantly higher than 
1.0 wt. % (Ormsby et al., 2011). Interestingly, the gel-times remain relatively unchanged for 
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the bone cement with MWCNT-UNF, with no clear pattern evident irrespective of MWCNT-
UNF loading.  These results would indicate that the prolonged time before the onset of cure 
experienced in the bone cements with MWCNT-COOH is dependent on the carboxyl 
functional group.  

13. Summary and conclusions 

As the number of primary TJR continues to increase each year and, even with the reported 
decrease in the proportion of cemented TJR performed, PMMA bone cement is still required 
for the majority of TJR procedures. At present with longer life expectancy and younger 
patient populations requiring TJR, an increase in cemented revisions seems inevitable. 
Aseptic loosening is continually cited as being the most common indication for revision. It is 
well established that for cemented implants a number of factors contribute to aseptic 
loosening, of which, fatigue damage of the cement mantle has been observed in vivo. 
Therefore, a crucial requirement exists for the development of new technologies and 
biomaterials for the treatment of traumatic injuries and chronic diseases, which allow less 
tissue damage and more tissue regeneration and are conducive to rapid patient recovery. 
Particularly for biomaterials and devices designed to replace a degenerated or diseased 
joint, bone structure, many questions need to be answered. Such devices and implants 
would benefit significantly from availability of a material that is multi-functional and can 
meet the biomechanical and biological requirements. 
The conventional biomaterials available today are reaching their maximum capabilities, 
notwithstanding their successful application in treating and preventing different medical 
conditions. There is a need for the development of new biomaterials which must satisfy 
several requirements ranging from physical, mechanical, biological, toxicological and other 
characteristics, depending on the final clinical application.  
Carbon is chemically inert and CNT not only demonstrate superior mechanical, chemical 
and electrical properties, but also have the potential to be biocompatible particularly when 
appropriately functionalised. Also, encapsulation of other materials within CNT could 
potentially create applications for therapeutic use in medicine. Incorporation of MWCNT 
into PMMA based orthopaedic bone is a case in point, whereby a high degree of MWCNT-
polymer matrix interaction has been shown to increase the fracture resistance during 
mechanical loading. Furthermore, it has been reported that MWCNT-PMMA bone cement 
leads to increased viscosity and reduced polymerisation temperatures. Reducing the 
temperature generated during polymerisation could reduce the thermal cellular necrosis 
experienced in vivo, reducing the probability of aseptic loosening. Furthermore, a reduction 
in the exotherm of bone cement will reduce residual stresses within the cement mantle as a 
consequence of excessive shrinkage.   
To fully exploit the use of MWCNT in PMMA bone cement further development and 
research is required. In particular a detailed investigation of the biocompatibility of the 
MWCNT composite cements is required. This would require exposing human osteoblast 
cells to the composite MWCNT-PMMA bone cements, ultimately leading to in vivo cell 
work. This would provide a clearer indication of the MWCNT composite cements potential 
integration into the body. 
Regardless of this interest, there are many issues and limitations to be considered. The field 
of nanomaterials for biomedical and bioengineering applications is still very much in its 
infancy and many difficult questions remain unanswered, including manufacturing, safety 
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and regulatory issues. Preliminary investigations substantiate the enormous potential of 
MWCNT systems for biomedical and bioengineering applications either as a structure, 
coating, scaffold or composite; although most of these are only at laboratory-scale and in 
vitro testing. There is a major requirement for interdisciplinary collaboration and exchange 
of knowledge at many levels to effectively address the current issues, before being able to 
fully understand and explore the true potential of CNT for biomedical and bioengineering 
applications. 
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