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1. Introduction  

The current technological age brings the knowledge and the means to continuously improve 
the quality of life of human beings. One example can be seen in the recent advances done in 
the field of biometrics, where those physiological (fingerprints, iris, hand geometry, face, 
etc.) and/or behavioural (voice, gait, keystroke dynamics, signature, etc.) characteristics of 
human beings, unique and different to each individual, are used in order to either 
authenticate or identify individuals in a more reliable way, enhancing thus those existing 
personal recognition applications based on physical tokens (ID cards, keys, etc.), PINs or 
passwords. The deployment of automatic biometrics-based personal recognition systems 
and their acceptance by the society depends on several factors such as the ease of use, the 
non-intrusive methods of operation and their related privacy concerns; as well as their 
recognition accuracy, reliability and security levels, response time and system costs. All 
these factors will determine the successful spread of the biometric security in a wide range 
of daily use applications such as electronic payment, access systems, border control, health 
monitoring, etc. all over the world.  
Among the different human traits analyzed in the field of biometrics, this work is focused 
on fingerprints. Fingerprints are the oldest and most deeply used signs of identity. Personal 
recognition based on fingerprints has been successfully deployed in law enforcement, 
government, and forensic applications for more than one century. The first recognition 
systems were based on human experts in charge of matching fingerprints. However, the 
current technological age demands the development of less expensive and fully automated 
fingerprint-based personal recognition systems, not only in the cited fields of application 
but also in many other daily use consumer applications (mobile phones, personal digital 
assistant devices, laptops, automatic teller machines, internet, e-commerce, etc.). Although 
big advances have been made in recent years, automatic and reliable biometric recognition 
is still an open research problem today. That ideal personal recognition algorithm able to 
unequivocally authenticate the identity of any user from his/her legitimate fingerprint 
features does not exist. The way to overcome the present limitations and improve the 
accuracy performance of current biometrics-based authentication systems consists of adding 
further processing stages into the recognition algorithms, which directly affects the 

www.intechopen.com



  
Recent Application in Biometrics 

 

240 

complexity, the processing power and the costs of the physical systems where to implement 
those applications. 
This works focuses on the search of the proper system architecture able to face those 
demanding constraints for the application: a high computational power needed to achieve 
reliable recognition performances in terms of False Acceptance and False Rejection rates 
(FAR/FRR), a high security level in order to stand any kind of external attacks 
(cryptographic systems), real-time performance, and low cost. A novel approach of 
embedded system based on programmable logic devices such as field programmable gate 
arrays (FPGA), hardware-software co-design techniques, and the exploitation of run-time 
reconfigurable hardware is proven to successfully address the above requirements. 
This chapter is split in nine sections and in each of the sections specific research topics are 

addressed. Section 2 provides a general overview of the proposed application to be dealt in 

this work: the development of an Automatic Fingerprint-based Authentication System 

(AFAS) in charge of verifying the identity of any individual based on the analysis of that 

distinctive information available in fingerprints. A description of the proposed personal 

recognition algorithm to be used as reference in this work and to be implemented under 

different processing platforms is presented. The accuracy performance achieved by the 

suggested algorithm when evaluated on a large database of fingerprints is addressed in 

Section 3. One public database composed of up to 800 fingerprint images corresponding to 

100 different individuals is used for evaluation purposes. Impostor and Genuine 

distributions, as well as performance indicators such as FAR, FRR or EER (Equal Error Rate) 

are given in order to objectively compare the reached performance with the performance of 

other published algorithms evaluated with the same open database. After presenting the 

accuracy performance exhibited by the proposed recognition algorithm, Section 4 aims at 

defining the proper system requirements for the physical platform in charge of the 

authentication process. The main goal is to find a flexible and high-performance processing 

platform able to deploy the biometric security in a wide range of daily use applications at 

low cost, therefore an embedded system architecture is suggested. Two different 

implementations of the same recognition algorithm are carried out in this work. The first 

implementation, covered in Section 5, is based on purely software-based solutions. One high 

performance computing (HPC) platform under Windows operating system and three 

different embedded system platforms based on low-cost and mid-performance 

microprocessors are evaluated. The strengths and weaknesses of each of the architectures 

are pointed out, and based on that information, a different embedded system architecture is 

suggested in Section 6 to overcome the main limitations exhibited by the previous systems. 

An embedded system architecture based on a general-purpose microprocessor acting as 

application core processor, and a programmable and run-time reconfigurable logic region 

where to instantiate –multiplexed in time and under demand– application-specific hardware 

coprocessors in charge of the execution of those time-intensive tasks is proposed as 

alternative solution. Both the microprocessor unit and the hardware accelerators, together 

with memory blocks and other peripherals are all embedded under a System-on-

Programmable-Chip (SoPC) device to provide a highly integrated and more reliable 

solution. The second implementation of the AFAS application under the proposed 

embedded system architecture is covered in Section 7. The performance achieved in this 

new scenario is compared against that of previous scenarios. An outstanding improvement 

in performance is achieved at a reasonable cost. The work ends with some concluding 
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remarks in Section 8, and the citation of some research references in Section 9. The reached 

results prove that the suggested system architecture based on hardware-software co-design 

techniques under run-time reconfigurable FPGA devices is a cost-effective alternative 

solution to those existing software-based processing platforms in the deployment of AFAS 

applications. 

2. Fingerprint-based personal recognition algorithm 

The personal recognition process is composed of two main phases, as depicted in Fig. 1: the 
enrolment phase and the authentication phase. 
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Fig. 1. Processing phases of an Automatic Fingerprint-based Authentication System 

The enrolment phase is generally performed off-line, and consists in the registration of that 
set of biometric features extracted from the digital impression of the user’s fingertip –known 
as template– together with any other relevant information of the user within the 
authentication system, either in a secure database or a personalized smart card. The 
authentication phase however is normally done on-line, and aims at validating the user’s 
identity by comparing the set of on-line extracted biometric features –known as query– 
against those saved in the authentication system during the enrolment stage and linked to 
the legitimate individual claimed by the user –template–. The matching of both feature sets 
delivers a similarity score that is used to determine whether the user is really who claims to 
be, or on the contrary is an impostor who attempts to access the system fraudulently. 
As it is indicated in Fig. 1, both phases –enrolment and authentication– are composed of a 
set of sequential stages. Each of the stages is, at the same time, split into smaller processing 
operations called tasks, and some of the stages/tasks carried out with the template and 
query fingerprints are common, as shown in Fig. 2. The aim of the authentication system is 
the execution of both phases of the processing; therefore the system has to be designed to 
afford any of the requested tasks along the application. 
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Fig. 2. Enrolment and authentication stages decomposition 

The proposed recognition algorithm in charge of the enrolment and the authentication 

processes is not developed from scratch but based on some existing reference biometric 

algorithms and known techniques well described in the scientist literature. Specific image 

processing operations like convolutions, filters, etc. and other signal computations in the 

field of trigonometrics, statistics, etc. are performed on the acquired images in order to 

deduce that distinctive information available in the fingerprints. For a better understanding 

of the involved computational tasks refer to the authors’ work (Fons et al., 2010). Fig. 3 

shows the different processing steps that take place in the suggested fingerprint-based 

personal verification flow. A hybrid fingerprint matching algorithm that relies on the field 

orientation map and the set of minutia points extracted from the fingerprints is proposed for 

its physical implementation. Those classical biometric traits are considered as the genuine 

marks of identity of any individual. The computational load of the suggested algorithm is 

equivalent to those other similar or dissimilar algorithms that define the state of the art in 

fingerprint personal recognition today (Maltoni et al., 2009; Nanni & Lumini, 2009; Yang & 

Park, 2008). 
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Fig. 3. Intermediate results in the processing of template (left side) and query (right side) 
fingerprints 

A summary of the processing stages involved in the suggested personal recognition 

algorithm can be deduced from Fig. 3 when authenticating one query fingerprint (right side, 

red arrows) against one previously enrolled template fingerprint (left side, blue arrows). Up 

to 11 different tasks (A-K) are carried out along the processing, covering the image 

enhancement stage (tasks A-G), the feature sets extraction stage (tasks H-I), the feature sets 

alignment (task J) and the feature sets matching (task K) stages: 

- Task A refers to the image segmentation process, which takes as input the acquired 
fingerprint impression and aims at isolating the valid fingerprint area, also known as 
foreground, from the rest of the image, also known as background. 

- Task B refers to the image normalization process, which aims at adapting the variation of 
grey level intensities along ridges and valleys in the different regions of the fingerprint. 

- Task C refers to the isotropic filtering of the image, which aims at removing some of the 
hazard noise that could be present in the fingerprint impression. 

- Task D refers to the field orientation map computation, which consists in the calculation 
of the dominant direction of ridges and valleys in each local region of the fingerprint. 

- Task E refers to the filtered field orientation map computation, which pursues the 
enhancement of the previously computed field orientation map. 

- Task F refers to the image binarization process, which aims at discriminating ridges and 
valleys based on the directional filtering of the image according to the enhanced field 
orientation map. 

- Task G refers to the image smoothing process, which aims at enhancing the black and 
white representation of the image by removing some of the noise that could be present 
in the binary version of the fingerprint image. 
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- Task H refers to the image thinning process, which aims at progressively removing the 
ridge pixels of the image preserving the geometric topology of the ridge-valley pattern 
till obtaining one skeleton of one single pixel wide to make easy the subsequent 
identification of minutia points. 

- Task I refers to the minutia extraction process, which aims at deducing those salient 
features spatially distributed along the ridge-valley pattern such as the ridge endings 
and the ridge bifurcations. Those features will be used as discriminatory information of 
the fingerprint, together with the filtered field orientation map. 

- Task J refers to the image alignment process, which aims at looking for any spatial 
correspondence between both template and query images based on the extracted 
feature sets. In case of positive alignment, the overlapped area between both fingerprint 
impressions is deduced. The overlapped area becomes the region of interest for 
comparison of template and query prints in the next stage. 

- Task K refers to the image matching process and the authentication result (match/non-
match) computation based on the comparison of the feature sets (field orientation maps 
and minutia points) previously aligned. 

Most of the cited tasks deal with fingerprint images and/or big amounts of data so a high 
computational demand is expected for the physical platform in charge of the processing. 
Although a first implementation of the recognition algorithm under a personal computer 
platform has been developed in order to validate the accuracy performance reached by the 
suggested algorithm, more cost-effective system solutions have also been evaluated in this 
work in order to make easy the spread of those fingerprint-based biometric applications in 
the consumer arena, accessible to whomever, wherever and whenever.  

3. Recognition accuracy performance 

In order to prove the validity of the suggested fingerprint recognition algorithm it is needed 
to proceed with the evaluation of its accuracy performance when submitted to test under a 
large fingerprint database. The fingerprint recognition algorithm needs to be properly tuned 
to the environment conditions (fingerprint sensor, sensing technique, attended/unattended 
acquisition method, etc.) of the real application. The selected database corresponds to the 
database DB3 of the Fingerprint Verification Competition FVC2004 contest (Maio et al., 
2004). This public database is 110 fingers wide, and 8 samples per finger in depth, which 
results in a total of 880 fingerprint images. All the images were collected by using a thermal 
sweeping sensor. The complete database is split in two subsets A and B. The subset A is 
composed of 100 fingers (800 images) and the subset B is composed of 10 fingers (80 
images). The subset B is firstly used in order to adjust some of the parameters of the 
algorithm to the properties of the fingerprint images acquired with the selected sensor, and 
once the algorithm is properly tuned, the subset A is used in order to verify the real 
performance of the application. The performance evaluation procedure follows the same 
criteria than in FVC contests: 
i. In order to get the impostor distribution, one sample of each finger in the subset A is 

collected. A total of 100 images are used, and each of the images is matched against the 
others to compute the False Match Rate –FMR– or False Acceptance Rate –FAR– 
distribution. If the matching of g against h is performed, the symmetric one (i.e., h 
against g) is not executed in order to avoid correlation. A total of 4950 matches are 
carried out. 
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ii. In order to deduce the genuine distribution, each of the samples corresponding to one 
finger is matched against the other samples of the same finger. Similarly to the impostor 
distribution procedure, if the matching of g against h is performed, the symmetric one 
(i.e., h against g) is not executed in order to avoid correlation. The total number of 
genuine tests results in 2800, and from them it is possible to compute the False Non-
Match Rate –FNMR– or False Rejection Rate –FRR– distribution. 

 

0

2

4

6

8

10

12

I (s)

G (s)
G (t)

I (t)

% Population

t10 0.5 0.6 0.7 0.8 0.90.40.30.20.1

0

2

4

6

8

10

12

I (s)

G (s)
G (t)

I (t)

G (t)

I (t)

% Population

t10 0.5 0.6 0.7 0.8 0.90.40.30.20.1

 

Fig. 4. Genuine and Impostor distributions 

Given one template and one query fingerprints, the recognition algorithm provides a 

similarity score between both images within [0,1]. Similar images, understood as images 

belonging to the same finger, will have scores close to 1, while dissimilar images, 

understood as images from different fingers, will present scores close to 0. After 

performance evaluation with the subset A, the algorithm features an Equal Error Rate 

EER=4.162%. The Genuine and Impostor distributions –I(t) and G(t)–, the representations of 

the performance indicator rates FMR and FNMR as a function of the similarity threshold 

score t –FMR(t) and FNMR(t)–, and the Receiver Operating Characteristic (ROC) curve of 

the tested algorithm are shown in Figs. 4, 5 and 6 respectively. 

The parameter EER is the main indicator used to evaluate the performance of the 

recognition algorithms in FVC contests. If comparing the performance of the proposed 

algorithm against those presented in FVC2004 with the same database, the proposed 

algorithm would be ranked in 17th position from a total of 41 participants in the open 

category (executed by one personal computer platform without resources constraints), 

where the winner algorithm presented an EER=1.18% and the last classified algorithm an 

EER=43.95%; or ranked in 5th position from a total of 26 participants in the light category 

(executed by a personal computer platform with restrictions on the execution time and the 

memory resources), where the winner algorithm presented an EER=2.92% and the last 

classified algorithm an EER=54.28%. 
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Fig. 5. False Match and False Non-Match distributions 
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Fig. 6. Receiver Operating Characteristic curve 

The first implementation of the recognition algorithm is carried out under a personal 

computer platform and uses floating point operations in order to be as much accurate as 

possible in the different computations (statistical analysis parameters like standard 

deviation, square root calculation, trigonometric computing, etc.) carried out along the 

recognition process. After proving the validity of the proposed algorithm, a new version of 

the algorithm is developed by replacing those floating point operations by fixed point 
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operations in order to reduce the complexity of the processing and the computational 

demands of the physical platforms where to implement the AFAS application. A new 

evaluation performance loop of the modified version of the algorithm is performed with 

very similar results –the EER evolves from 4.162% to 4.242%–. Therefore the new version of 

the algorithm is also accepted and used as reference to be implemented under low-cost and 

low-performance microprocessors without floating point units (FPU) on embedded system 

platforms in the next stage. 

4. Application execution time requirements definition 

Nowadays most of the applications that exploit biometrics-based personal recognition 

demand a fast response time to the physical systems in charge of the processing. In case of 

fingerprint-based authentication systems, soft real-time performance is normally required. 

In this specific context, soft real-time is understood as providing the proper recognition 

response within a reaction time short enough to be unnoticed by the user. This reaction time 

covers the interval elapsed since the user presents his identity credentials to the system and 

puts his finger on the sensing surface of the capture device till the moment when the 

automatic authentication system provides the result of the verification process. Reaction 

times in the range between 1.5s and 3.5s are usually accepted as normal and valid 

authentication response times for any AFAS application. Therefore, this work focuses on the 

evaluation of the execution time performance of the proposed fingerprint recognition 

algorithm when implemented on different computational platforms in order to determine 

those efficient architectures able to meet the execution time requirements at the lowest 

possible cost. 

 

 

Fig. 7. Template and Query fingerprints used in the evaluation process 

In order to perform a fair comparison between platforms, the same template and query 

fingerprints have to be used in all scenarios. Among the different images of FVC2004 DB3 

database, two fingerprint impressions taken from the same finger have been selected as 

template and query fingerprints respectively thus it is possible to build some representative 

enrolment and authentication processes to be used as reference for evaluation purposes. The 

two greyscale images depicted in Fig. 7, of size 268x460 pixels and with a resolution of 8 bits 

and 500 dpi, are used as reference in order to properly compare the same processing effort 

in all scenarios. 
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5. Proof of concept I: software-only implementation 

Different computational platforms addressing the execution of software-based applications 

have been selected for processing speed evaluation purposes. The scope covers from high-

cost and high-performance personal computer platforms to low-cost and mid-performance 

embedded system platforms based on general-purpose hard-core or soft-core processors. 

One personal computer and three embedded system platforms have been evaluated, as 

indicated in Table 1. The evaluation procedure permits to point out in an easy way which 

advantages and disadvantages in performance are featured by each of the suggested 

architectures. 

 

Technical 
Features 

Personal 
Computer 
Platform 

Embedded 
System 

Platform 1 

Embedded 
System  

Platform 2 

Embedded 
System  

Platform 3 

Platform 
Acer  

Aspire  
9420 

Altera  
Excalibur 
EPXA10 

Xilinx  
Spartan  

3AN 

Xilinx  
Virtex4  
ML401 

Family 
MPU Intel  
Core 2 Duo 

SoPC 
EPXA10F1020C1

FPGA 
XC3S700AN 

FPGA  
XC4VLX25 

Processor 
Intel Core 2 
Duo T5600 

ARM922T MicroBlaze MicroBlaze 

Processor data bus 64 bits 32 bits 32 bits 32 bits 

Number of cores 2 1 1 1 

Type of core Hard-core Hard-core Soft-core Soft-core 

Technology 65 nm 180 nm 90 nm 90 nm 

Clock speed 1.83 GHz 200 MHz 66.667 MHz 100 MHz 

Bus speed 667 MHz 200/100 MHz 133.3/66.6 MHz 200/100 MHz 

Cache 2 MB L2 8 KB Inst. Cache
8 KB Inst. Cache
8 KB Data Cache

32 KB Inst. Cache 
64 KB Data Cache 

Operating system Windows XP – – – 

AFAS  
program code 

DDR2 SDRAM
(2 GB) 

SoPC SRAM 
(256 KB) 

DDR2 SDRAM 
(64 MB) 

DDR SDRAM 
(64 MB) 

AFAS  
application data 

DDR2 SDRAM
(2 GB) 

DDR SDRAM 
(128 MB) 

DDR2 SDRAM 
(64 MB) 

DDR SDRAM 
(64 MB) 

SDRAM/SRAM 
data bus 

64 bits 32 bits 16 bits 32 bits 

SDRAM 
frequency 

≥ 200MHz 125 MHz 133.333 MHz 100 MHz 

Table 1. Computational platforms used in the execution time performance evaluation 
process 

The execution time performance reached in each of the platforms, in both enrolment and 

authentication stages, is presented in Tables 2 and 3 respectively. The enrolment process of 

the template fingerprint and the authentication process of the query fingerprint with the 

enrolled template are evaluated. The authentication execution times are obviously longer 
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than the enrolment times. Special attention needs to be done to the authentication stage 

since, unlike the enrolment stage, the authentication process is normally carried out on-line 

in the real application so real-time response is usually requested. The enrolment stage tends 

to be less critical since it is normally carried out off-line –under the supervision of 

application staff to guarantee the reliable enrolment of the user in the system– so no real-

time performance is usually demanded. 

 

Task 
ID 

Processing Stage
Personal 

Computer 
Platform 

Embedded 
System 

Platform 1 

Embedded 
System 

Platform 2 

Embedded 
System 

Platform 3 

Task 1 
Image 
segmentation 

2.810 ms 1083.219 ms 299.578 ms 227.035 ms 

Task 2 
Image 
normalization 

0.470 ms 178.940 ms 46.960 ms 32.772 ms 

Task 3 
Image isotropic 
filtering 

7.030 ms 5304.010 ms 719.703 ms 467.329 ms 

Task 4 Field orientation 2.190 ms 834.062 ms 344.651 ms 244.916 ms 

Task 5 
Filtered field 
orientation 

0.620 ms 97.061 ms 26.646 ms 17.294 ms 

Task 6 
Image directional 
filtering and 
binarization 

13.440 ms 3792.712 ms 860.133 ms 609.518 ms 

Task 7 Image smoothing 12.350 ms 1536.114 ms 360.012 ms 229.732 ms 

Task 8 Image thinning 1.250 ms 1695.930 ms 547.847 ms 404.085 ms 

Task 9 
Minutiae 
extraction and 
minutiae filtering 

0.630 ms 76.626 ms 35.404 ms 23.982 ms 

Total Execution Time: 40.790 ms 14598.674 ms 3240.934 ms 2256.663 ms 

Table 2. Enrolment process execution time performance 

As it can be deduced from the tables, the real-time performance requested to the application 

is not achieved in all the scenarios. The personal computer platform is able to meet the 

requested performance, but those other scenarios based on low-cost and mid-performance 

embedded processors running at low operation frequencies are far away from the requested 

timing performance. The big latency exhibited by the embedded system platform 1 with 

regard to the other two embedded system platforms is justified by the fact that no data 

cache is enabled in that scenario, which severely affects the final performance of the 

application.  

On the one hand, although the powerful processor embedded in the personal computer 

platform is able to reach the requested performance, its cost is excessive for those low-cost 

consumer applications demanding biometric recognition. On the other hand, although the 

embedded system platforms tested in this work are able to meet the system cost 

requirements of the consumer applications arena, the exhibited execution time performances 

are clearly insufficient. Therefore, it is needed to find alternative system architectures able to 

meet both key requirements: high performance and low cost. 
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Task 
ID 

Processing Stage
Personal 

Computer 
Platform 

Embedded 
System 

Platform 1 

Embedded 
System 

Platform 2 

Embedded 
System 

Platform 3 

Task 1 
Image 
segmentation 

2.810 ms 1083.219 ms 299.578 ms 227.035 ms 

Task 2 
Image 
normalization 

0.470 ms 178.940 ms 46.960 ms 32.772 ms 

Task 3 
Image isotropic 
filtering 

7.030 ms 5304.010 ms 719.703 ms 467.329 ms 

Task 4 Field orientation 2.500 ms 987.089 ms 407.445 ms 289.661 ms 

Task 5 
Filtered field 
orientation 

0.620 ms 113.959 ms 30.987 ms 20.171 ms 

Task 6 
Image directional 
filtering and 
binarization 

15.940 ms 4460.569 ms 1014.939 ms 720.095 ms 

Task 7 Image smoothing 14.220 ms 1752.322 ms 412.503 ms 261.745 ms 

Task 8 Image thinning 1.410 ms 1767.383 ms 552.091 ms 402.946 ms 

Task 9 
Minutiae 
extraction and 
minutiae filtering

0.630 ms 93.783 ms 45.002 ms 29.487 ms 

Task A 
Field orientation 
maps alignment 

3224.530 ms 279636.069 ms 210269.854 ms 138208.006 ms 

Task B 

Minutiae 
alignment, 
feature sets 
matching and 
authentication 
decision 

4.220 ms 370.712 ms 161.973 ms 107.972 ms 

Total Execution Time: 3274.380 ms 295748.055 ms 213961.035 ms 140767.219 ms 

Table 3. Authentication process execution time performance 

6. Run-time reconfigurable embedded system design 

There exist in the market many automatic biometrics-based personal authentication systems 

implemented on high performance computer platforms –HPCs, PCs, etc.– (One Touch SDK, 

n.d.; Verifinger SDK, n.d.), embedded general-purpose or application-specific processors –

MPUs, MCUs, GPUs, ASSPs– (FxIntegrator, n.d.; plusID, n.d.; SDA, n.d.), embedded digital 

signal processors –DSPs– (MV1210 and MV1250, n.d.; SFM, n.d.; TMS320, n.d.), or 

embedded systems based on central processing units –CPUs– plus application-specific 

hardware accelerators –ASICs– off-chip or on-chip (FPC2020 and FPC-AM3, n.d.; 

ML67Q5250, n.d.; SecurASIC, n.d.; TCD50D, n.d.). Furthermore, many research articles have 

been published dealing with the acceleration of some of the stages that take place in one 

personal recognition algorithm by means of field programmable logic –FPGAs, SoPCs– (Liu-

Jimenez et al, 2006; Lopez-Ongil et al, 2004; Pavan Kumar et al, 2007; Yang et al, 2006). 

However, to the best of the authors’ knowledge, up to date there is no work that takes 
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advantage and exploits the dynamic reconfigurability performance of FPGAs (Becker et al, 

2007) in the physical implementation of a complete personal recognition application based 

on biometrics. 

Time-to-market pressures and cost constraints are pushing embedded systems to new levels 
of flexibility and system integration. In this work, a novel embedded system architecture is 
proven to successfully address the demands of today’s biometrics-based personal 
recognition systems in terms of computational complexity, real-time performance, 
development cycles and cost. The proposed embedded system architecture is based on five 
key factors to afford the challenging demands: 
a. General-purpose microprocessor system. 
As in most of the embedded systems in the market today, the usage of low-cost and mid-

performance microprocessors (of 16-bits or 32-bits, running at operating frequencies of up to 

200-600MHz) provides certain flexibility required in any application. Software-based 

solutions have additional advantages such as the rapid development of the application by 

making use of a set of libraries with application-specific functions, which avoids writing the 

software application from scratch, and provides a cost-effective solution.  However, in those 

applications demanding a high computational power and real-time performance, certain 

limitations exist when trying to develop the entire application with purely software 

platforms based on either one single processor (MPU, MCU, DSP, etc.) or 

multicore/multiprocessor systems due to the inherent limitations in working frequency, 

restricted data path, shared resources, sequential workflow execution, and reduced 

parallelism characteristics featured by those standard products. 

b. Programmable logic device embedded in the system. 
When purely software-based systems are not enough to meet the expected real-time 

performances of one real-world application, the usage of hardware-based accelerator 

devices as complementary processing units has been proven to be an efficient solution. 

Programmable logic devices such as FPGAs are much more flexible than semi-custom or 

custom devices like ASSPs or ASICs. ASSPs and ASICs have a fixed peripheral set that 

limits the number of applications that they can be efficiently used in; but FPGAs allow 

implementing custom peripherals and made-to-measure glue logic tailored to the 

requirements of any application. Over recent years, FPGA devices have gained an enormous 

amount of processing power and functionality thanks to the continuous advances in silicon 

technologies. The current FPGAs are able to embed much more memory and logical 

resources, as well as many DSP blocks, multiple clock management units and big amounts 

of high-speed transceivers for fast communication purposes in one single device. The 

technology has evolved till the point that the size of today’s FPGAs is several orders of 

magnitude higher than the first FPGAs, reaching values above two millions of flip-flops and 

LUTs. The programmability performance of FPGAs make them unique in the market and 

the continuous improvements in the semiconductors field permits reducing the costs of 

FPGA devices, making them more and more competitive. The flexibility of FPGAs 

eliminates the long design cycle associated with ASICs, and the usage of IP libraries written 

in standard hardware description languages and automated design/verification tools 

reduce the development cycles of those applications based on programmable logic devices. 

c. Hardware-software co-design techniques. 
The usage of one general-purpose MPU and one FPGA as a companion chip offers a much 
greater degree of flexibility and allows the development of any application by means of 

www.intechopen.com



  
Recent Application in Biometrics 

 

252 

hardware-software co-design techniques. The exposed system architecture approach gives 
flexibility at two levels: at software level, with the MPU-based application management; and 
at hardware level, with the design of modular cores synthesized in the FPGA. 
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Fig. 8. Physical implementation of one computational platform based on a general-purpose 
MPU (system CPU), several hardware cores (HW coprocessors) and one memory block. 
Process execution flow example of one image processing task carried out by one of the 
application-specific hardware coprocessors instantiated in the system 

The FPGA is introduced in the system as a general-purpose device where to instantiate 

those application-specific hardware coprocessors required to speed up those critical tasks of 

the application. It permits to design an adaptive and highly-integrated multiprocessor 

system oriented to the development of real-time applications. Apart from the inherent 

flexibility featured by the microprocessor, the programmable logic device provides 

additional flexibility and a high degree of parallelism in the implementation of functional 

circuits. In the FPGA it is possible to instantiate either additional microprocessors (e.g. 

VHDL instances of soft-core processors) or made-to-measure VLSI hardware accelerators 

in charge of specific tasks aiming at offloading those MPU algorithm-intensive operations, 

as shown in Fig. 8. With an improved bandwidth among the MPU –system CPU-, the 

FPGA, the memory resources and the rest of peripherals available in the embedded 

system, soft and hard real-time applications can be successfully developed through this 

approach. 

d. Run-time reconfigurable FPGAs. 
The FPGA device embedded in the system allows exploiting the parallelism and 

acceleration features inherent to the programmable logic design, so it is possible to meet 

real-time performance by spreading the functionality across the different core resources 

(MPU and FPGA) available in the system. However, the resources available in the FPGA are 

not unlimited, and the cost of those resources increases exponentially when the size of the 

FGPA increases. Therefore, it is convenient to reduce the size of the FPGA in the design to 

reach affordable costs for the complete system. In this direction, and owing to the fact that 

the proposed biometrics-based personal recognition applications feature a sequential 
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nature (the personal recognition algorithm consists of a set of mutually exclusive image 

processing tasks executed one after the other), it is possible to exploit the reconfigurability 

performance featured by some FPGA devices in order to minimize the system hardware 

needs. 

Dynamic partial reconfigurability performance of some existing FPGAs refers to the ability 

of modifying the functional content of one portion of the FPGA –reconfigurable region– on-

the-fly while keeping the rest of the FPGA –static region– fully operative without 

interruption. The main benefit of doing so is the optimization in the functional density of the 

device: the same hardware resources available in the reconfigurable region of the FPGA can 

be time-multiplexed in order to allocate different functionalities (FPGA contexts) along the 

application execution time. Therefore the amount of needed resources in any application can 

be minimized, and the total size of the FPGA can be reduced in comparison to the static 

implementation of all the functionalities instantiated permanently in a bigger FPGA. The 

main constraint in the usage of run-time reconfigurable FPGAs is the reconfiguration 

overhead: the time needed in order to modify the functional content of the reconfigurable 

region in the different contexts. Therefore the minimization of the reconfiguration latencies 

plays an important role in those systems. Fig. 9 shows the comparison between static and 

dynamic FPGA-based design concepts. 

 

 

Fig. 9. Comparison between static FPGA-based design concept (left side) and run-time 
reconfigurable-FPGA-based design concept (right side). The coloured boxes represent each 
of the different functional blocks in which the application is partitioned 

Any application that can be structured as a sequence of mutually exclusive tasks can be 

proposed to be implemented by means of run-time reconfigurable FPGAs. Fig. 10 shows the 

scheduling of one application into a sequence of mutually exclusive stages, and the 

partitioning of each of the processing stages present in the chain into either series or parallel 

tasks. Each of the tasks can be executed by hardware or by software. Those critical tasks are 

implemented by hardware to take advantage of higher processing bandwidths and 

acceleration data path architectures. In this direction, it is possible to make the process truly 

parallel and at the same time to free some master CPU resources. The rest of less expensive 

tasks remain as software tasks to be handled by the master CPU of the system. The final 

partitioning of the application into software tasks, static hardware tasks and dynamically 

reconfigurable hardware tasks mainly depends on the cost (resources availability, power 

consumption, etc.) and timing (real-time performance) constraints demanded to the 

system. 
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Fig. 10. Deployment of one application as a set of mutually exclusive stages that can be 
implemented through dynamic reconfigurable embedded systems. Partitioning of each of 
the stages into hardware and software tasks executed either sequentially or in parallel 
taking advantage of programmable logic 

e. System-on-programmable chip platform. 
The usage of a general-purpose MPU together with programmable and reconfigurable logic 

gives a high level of flexibility to the system and provides the mechanisms to achieve real-

time performance. However, higher integration means lower costs. Therefore, the 

integration of those main resources and other key peripherals such as memory, timers, 

interrupt controllers, etc. on a single chip provides an efficient way of optimizing the whole 

system cost. Embedded biometric recognition is therefore possible by making use of highly 

integrated platforms. Additional benefits of the system integration are the improvements in 

reliability and security. It is possible to embed most of the processing in a single SoPC 

device well-protected against external attacks by means of security protocols and 

cryptographic processors dealing with the exchange of information between the SoPC 

device and the external world. For this reason, the usage of SoPC or system-on-chip devices 

that embed one FPGA is especially encouraged in the experimental tests carried out in this 

work. 

The suggested system architecture is depicted in Fig. 11. At least one run-time 

reconfigurable region is present in the programmable logic device to synthesize those 

flexible application-specific hardware coprocessors that can be dynamically instantiated on 

demand along the application execution time. One specific reconfiguration controller is in 

charge of the reconfiguration task, supervised by the master processing unit. The AFAS 

application is connected to the external world by means of a series or parallel 

communication link with a Host. All or some of the functional blocks depicted in Fig. 11 are 

embedded in the same chip. 

www.intechopen.com



Exploiting Run-Time Reconfigurable Hardware  
in the Development of Fingerprint-Based Personal Recognition Applications 

 

255 

STATIC

COPROCESSORS

STATIC

COPROCESSORS

RECONFIGURABLE REGION

DYNAMIC

COPROCESSORS

VOLATILE

MEMORY PROCESSING

UNIT

FINGERPRINT

SENSOR

SYSTEM BUS

DATA & INSTRUCTION

CACHES

TIMER

CONTROLLER

COMMUNICATIONS

CONTROLLER

APPLICATION

USER INTERFACE

INTERRUPT

CONTROLLER

VOLATILE

MEMORY

NON-VOLATILE

MEMORY

MEMORY

CONTROLLER

HOST, NETWORK OR

OTHER PERIPHERALS

RECONFIGURATION
CONTROLLER

STATIC
COPROCESSORS

DYNAMIC
COPROCESSORS

STATIC

COPROCESSORS

STATIC

COPROCESSORS

RECONFIGURABLE REGION

DYNAMIC

COPROCESSORS

VOLATILE

MEMORY PROCESSING

UNIT

FINGERPRINT

SENSOR

SYSTEM BUS

DATA & INSTRUCTION

CACHES

TIMER

CONTROLLER

COMMUNICATIONS

CONTROLLER

APPLICATION

USER INTERFACE

INTERRUPT

CONTROLLER

VOLATILE

MEMORY

NON-VOLATILE

MEMORY

MEMORY

CONTROLLER

HOST, NETWORK OR

OTHER PERIPHERALS

RECONFIGURATION
CONTROLLER

STATIC
COPROCESSORS

DYNAMIC
COPROCESSORS

 

Fig. 11. Run-time reconfigurable embedded system architecture 

7. Proof of concept II: hardware-software implementation 

A run-time reconfigurable embedded system is presented in this section as general-purpose 
processing platform where to implement the AFAS application by means of hardware-
software co-design techniques. A commercial development board ML401 based on the 
system-on-programmable-chip device Virtex-4 XC4VLX25 from Xilinx Inc. is used to verify 
the validity of the proposed system architecture. Additionally to the highly-integrated 
ML401 development platform, a fingerprint sensor has been connected to the I/O expansion 
ports of the evaluation board in order to make possible the acquisition of fingerprints in the 
application, and one RS-232 link has been established between the evaluation board and a 
personal computer platform in order to simulate the interface between the recognition 
module and the host or high-level application that makes use of the personal recognition 
result, as shown in Fig. 12. 
The selected SoPC/FPGA device is partitioned in two regions in the biometric application: 
one static region and one partially reconfigurable region (PRR). In the static region, different 
components that will be permanently present along the application execution time are 
instantiated such as one 32-bit MicroBlaze soft-core processor (CPU), data and instruction 
caches, local memory, one memory management unit (MMU) and other memory controllers 
to access on-chip and off-chip memory blocks, one dedicated reconfiguration controller in 
charge of the dynamic reconfiguration of the device, other standard peripherals such as 
interrupt controller, timer, UART, general-purpose input/output ports, etc. and one specific 
interface between the static region and the reconfigurable region based on FIFO memories 
and dedicated 32-bit registers. In the reconfigurable region, application-specific hardware 
coprocessors will be instantiated under demand along the application execution time in 
order to perform those image and signal processing tasks required by the AFAS 
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application. Table 4 shows the amount or resources available in the proposed system-on-
programmable-chip and the partitioning of the device into the static and the 
reconfigurable regions. 
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Fig. 12. Run-time reconfigurable embedded system architecture proposed in the physical 
implementation of an Automatic Fingerprint-based Authentication System 

 

Resources Xilinx XC4VLX25 
Spatial Partitioning 

Static Region Reconfigurable Region 

1-bit Flip Flop 21504 10240 11264 

4-input LUT 21504 10240 11264 

1-bit RAM 1327104 921600 405504 

DSP Block 48 4 44 

Table 4. Spatial partitioning of the programmable logic device into one static region and one 
reconfigurable region 

The proposed system-on-programmable-chip is a SRAM-based device. Only volatile 
memory is embedded on the chip. Additionally to the on-chip volatile memory, the 
suggested platform is provided with off-chip volatile and non-volatile memory ICs, as it is 
shown in Fig. 12. Two different types of off-chip non-volatile memories are used: 
- The Platform FLASH memory block (4 Mbytes) stores the initial bitstream that defines 

the configuration of the FPGA upon power up. This initial configuration is composed 
of the hardware content of the static region (master CPU, memory controllers and 
other peripherals), and one bootloader application which is executed by the master 
CPU and is in charge of initializing the system. The initial content of the 
reconfigurable region of the FPGA remains blank after power up. The transfer of the 
initial bitstream from the platform FLASH to the internal configuration memory of the 
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FPGA is automatically done during power up through a dedicated SelectMAP 
interface present in the FPGA. 

- The Linear FLASH memory block (8 Mbytes) contains the definition of those 
reconfigurable hardware coprocessors to be instantiated in the reconfigurable region of 
the FPGA along the application execution time, as well as the AFAS program code to be 
executed by the master CPU. Moreover, the linear FLASH is used in the AFAS 
application as storage memory where to save the templates of those genuine users 
registered into the system in the enrolment stage. The reconfiguration process of the 
PRR is done by means of the dedicated hardware reconfiguration controller instantiated 
in the static region and the ICAP controller inherent to the device. 

Apart from the off-chip FLASH memories, one off-chip SDRAM memory block is also 

present in the system. During the power up sequence, the bootloader is in charge of 

initializing the different controllers instantiated in the static region of the FPGA and 

transferring to the SDRAM memory block (64 Mbytes) the content of the linear FLASH, that 

is, the AFAS program code and the partial bitstreams that define each of the contexts in 

which the reconfigurable region is time-multiplexed along the AFAS application. In this 

way, the off-chip SDRAM memory acts as program and data memory in the application and 

can be accessed by either the CPU through the PLB bus or the MMU master controller 

through a dedicated NPI bus. Once all the information is properly transferred to the 

SDRAM memory, the bootloader gives the control to the AFAS application, and the AFAS 

application starts. 

A multi-bus system architecture permits the interconnection between the different 

processing blocks. Two specific made-to-measure memory management units –MMU 

master and slave in Fig. 12– are instantiated in the static region, which aim at interfacing 

the master CPU and the rest of controllers provided in the static region with those 

reconfigurable coprocessors instantiated in the reconfigurable region. The interface 

between the static and reconfigurable regions is built through specific Bus Macros (BM) 

and some bidirectional FIFO memories intended for a fast exchange of big amounts of 

data. Moreover, some 32-bit registers are instantiated in the static region in order the 

master CPU to configure the static and reconfigurable hardware coprocessors, and to 

control and monitor the application processing flow. The interface between the MMU 

master and the PRR reconfiguration controller present in the static region is also 

implemented through a dedicated FIFO memory, as depicted in Fig. 12. The reconfiguration 

controller is in charge of reading the partial bitstreams previously saved in the SDRAM 

memory block during power up, and transferring them to the ICAP, which configures the 

reconfigurable region of the FPGA with the new functional content defined by each 

bistream. Another FIFO memory block is instantiated in the static region, which acts as a 

temporary buffer of that information that needs to be shared between different contexts of 

the PRR region. Before reconfiguring a new context in the PRR region, those parameters 

that have to be used in the next contexts are saved in that FIFO. After the reconfiguration 

process, the content of that dedicated FIFO is transferred again to the reconfigurable 

region in order the new reconfigurable coprocessors instantiated in the PRR to make use 

of such information. 

The interface between the master CPU and those application-specific hardware coprocessors 

instantiated in the FPGA, either in the static or reconfigurable regions, is provided with 

some interrupt lines in order any of those hardware coprocessors to be able to notify to the 
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master CPU about the end of the processing task that is being executed by hardware. 

Furthermore, in order to reduce the reconfiguration time of the PRR, the size of the 

reconfigurable region has been minimized as much as possible. A specific reconfiguration 

controller is instantiated in the static region of the FPGA in order to allow fast 

reconfiguration without impacting on CPU load. The CPU is only responsible for 

indicating to the reconfiguration controller the specific partial bitstream that has to be 

downloaded in the PRR at any time, and once this is defined, the reconfiguration 

controller is in charge of the reconfiguration process without the need of any further 

action by the master CPU. Once the reconfiguration is done, the reconfiguration controller 

notifies the end of the task to the CPU, and the master CPU continues driving the AFAS 

application program flow. The soft-core processor (master CPU) has been configured to 

operate at a maximum frequency of 100MHz, and the hardware coprocessors instantiated 

in the FPGA are designed to operate at either 100MHz or 50MHz depending on the 

specific task. 

The required skills to develop any design based on FPGAs or SoPCs are more demanding 
than those needed to develop purely software applications. Some background on electronic 
circuits and programmable logic design, as well as the knowledge of one hardware 
description language like Verilog or VHDL is required to develop applications based on 
such kind of architectures. Similarly to what happens with software programming 
languages and their libraries of functions, some libraries of Intellectual Property 
descriptions (IPs) of certain functionalities are available to speed up the development of 
designs based on programmable logic. Moreover, specific EDA tools dependent on the 
device vendor are normally available to reduce the development cycles when designing 
with FPGA devices, and the designer needs to get familiar with the processing flow of each 
automated tool.  
Although commercial non-volatile FPGAs have enjoyed great success as development, 

rapid-prototyping and testing platforms, their use in certain embedded applications has 

been limited due to their relative high cost in comparison with other solutions. At this level 

(using the FPGA to implement a static design which keeps invariant during all its 

execution), the design flow and development tools have been successfully deployed by 

many vendors (Altera, Actel, Atmel, Lattice, Xilinx, etc.) since decades. However, if the 

FPGA resources become static after configuration, the device turns into an expensive, 

power-hungry, low-performance on-field programmable ASIC solution. For FPGAs to 

become more practical as end-use devices it has been promoted their dynamic 

reconfiguration capability, i.e., once powered up, the FPGA can be partially reconfigured at 

run-time, while other part of the FPGA continues operating uninterrupted and 

automatically maintaining state information between two consecutive reconfigured 

contexts. In this way, the functions processed in the FPGA can be sequentially swapped in a 

similar way to the program flow of a CPU-based software application. For this more flexible 

FPGA conception, however, the designer needs to possess some specific background in 

those techniques linked to the exploitation of dynamic partial reconfiguration. Moreover, 

the development tools that automate the new design flow for those applications based on 

run-time reconfigurable hardware have been an open issue since a long time ago. Recently, 

however, this landscape experienced a great and definitive change. Xilinx Inc. pushed a 

definitive impulse to that long-time open issue related to the software tools needed in the 

PR design flow. Just in 2006, Xilinx presented the new PR design flow fully supported in 
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Virtex-4 devices. The new top-down design flow eliminated the weakest points highlighted 

in the previous flows. While still unreleased to the general public, these tools are nowadays 

presented in the way of an early access version restricted to a limited number of qualified 

partners who deploy them and contribute feedback to their improvement. This research 

work is focused on Virtex-4, the first device equipped with a level of PR performance (both 

technological aspects and supported development tools) acceptable for commercial 

perspectives. Once finished all the development of our proof-of-concept application, authors 

think that the current PR flow is today an accepted practice for expert developers with a 

deep knowledge of the FPGA low-level configuration architecture and, then, it is ready for 

industrial use. The current Xilinx toolset available in the Xilinx Early Access Partial 

Reconfiguration (EAPR) lounge and used in this work made possible to automate all the PR 

design methodology and finish all the phases of the design flow at a reasonable time with 

no concerns. The toolset used in this work is composed of EDK 9.2.02i to build the PLBv46 

bus processor system, PlanAhead 9.2.7 to constrain the floorplan in a friendly graphical 

way, ISE 9.2.04i_PR12 to generate the bitstreams, as well as ChipScope Pro 9.2i to facilitate 

the system debugging.  In Fig. 13 it is shown all the process to generate both partial and full 

bitstreams to be downloaded at run-time into the FPGA. 

The application is split into a set of sequential stages, and each stage is partitioned into 

hardware and software tasks. Only those tasks demanding a high computational power or 

those time-critical tasks that would take too much time if executed by the system CPU are 

ported to hardware. Specific hardware coprocessors are instantiated in the reconfigurable 

region of the device to execute such tasks meanwhile the remaining and computationally 

less expensive tasks are assigned to the system CPU, which furthermore acts as the master 

processor in charge of driving the application, scheduling the tasks, monitoring the 

execution flow, and handling the reconfiguration of the PRR when needed along the 

authentication process. Those partially or fully pipelined hardware coprocessors 

instantiated in the dynamically reconfigurable region of the FPGA play the role of slave 

processors in charge of executing those tasks commanded by the master CPU. The dynamic 

hardware coprocessors are present only when they are needed, thus the same hardware 

resources available in the reconfigurable region are reused to instantiate different circuits in 

the application. In Fig. 14 it is shown how the different coprocessors are downloaded into 

the FPGA to reach a time-multiplexing of the resources placed in the defined PR region of 

the FPGA. This work results one of the first contributions in the scientific literature that 

exploits the Xilinx Early Access Partial Reconfiguration electronic design automation tools. 

In Section 5 the algorithm has been ported to the presented embedded system (referenced as 
Embedded System Platform 3 in Tables 1, 2 and 3) and executed purely by software by its 
MicroBlaze core processor alone. No dedicated hardware was implemented in that scenario, 
and the application was not able to meet the demanded real-time performance. However, 
as a result of that implementation under a purely software-based embedded platform, it 
has been possible to identify those time-expensive computational tasks that constrain the 
real-time performance of the application in the embedded system. Those time-critical 
tasks identified in Section 5 are now transferred to hardware to speed up the processing. 
Owing to the limited resources available in the programmable logic device, up to 9 
different reconfigurable contexts have been needed in order to instantiate all the 
hardware coprocessors along the execution time. Outstanding real-time performances are 
achieved. 
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Tables 5 and 6 provide the execution time performance of the application in both enrolment 

and authentication stages in two different scenarios: (i) when the application is executed 

purely by software under the system CPU alone, and (ii) when the application is 

implemented by means of hardware-software co-design techniques making use of the 

dynamic reconfigurability performance of the suggested FPGA. The final partitioning of the 

application into hardware and software tasks is also detailed. In the second scenario all 

tasks are ported to hardware except the fingerprint acquisition process, which is kept as 

software task under the action of the system CPU. The FPGA resource usage in both the 

static and reconfigurable regions is shown in Table 7. 

 

Task  
ID 

Processing Stage 
Software-only 

Implementation (1)

Hardware-Software 
Implementation 

Sw-only Task Hw-Sw Task 

Task 0 Fingerprint acquisition 500.000 ms 500.000 ms  

Task 1 Image segmentation 232.046 ms 0.672 ms 

Task 2 
Reconfiguration 1 → 2 0.841 ms 

Image normalization 33.087 ms 0.850 ms 

Task 3 
Reconfiguration 2 → 3 1.045 ms 

Image isotropic filtering 512.171 ms 2.563 ms 

Task 4 
Reconfiguration 3 → 4 1.025 ms 

Field orientation 285.485 ms 0.669 ms 

Task 5 
Reconfiguration 4 → 5 1.046 ms 

Filtered field orientation 19.143 ms 0.419 ms 

Task 6 

Reconfiguration 5 → 6 1.107 ms 

Image directional filtering  
and binarization 

656.043 ms 2.465 ms 

Task 7 
Reconfiguration 6 → 7 1.045 ms 

Image smoothing 253.553 ms 0.447 ms 

Task 8 
Reconfiguration 7 → 8 0.974 ms 

Image thinning 416.316 ms 0.902 ms 

Task 9 

Reconfiguration 8 → 9 0.943 ms 

Minutiae extraction and 
minutiae filtering 

25.699 ms 4.919 ms 

Total Execution Time (2): 2433.543 ms 21.932 ms 
(1) : The software-only execution times are slightly higher than in the Embedded System 3 scenario of 
Table 2 because of the reduction of the cache memory size in this new scenario in order to allocate 
additional memories in the hardware coprocessors (only 8KB of Instruction and Data caches are 
instantiated in MicroBlaze interface instead of the initial 32KB Instruction cache and 64KB Data cache). 
(2) : Task 0 is not included in the computation of the total execution time. 

Table 5. Execution time performance reached in the enrolment stage: SW-only versus HW-
SW implementations 
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Task 
ID 

Processing Stage 
Software-only 

Implementation (1)

Hardware-Software 
Implementation 

Sw-only Task Hw-Sw Task 

Task 0 Fingerprint acquisition 500.000 ms 500.000 ms  

Task 1 Image segmentation 232.046 ms 0.672 ms 

Task 2 
Reconfiguration 1 → 2 0.841 ms 

Image normalization 33.087 ms 0.850 ms 

Task 3 
Reconfiguration 2 → 3 1.045 ms 

Image isotropic filtering 512.171 ms 2.563 ms 

Task 4 
Reconfiguration 3 → 4 1.025 ms 

Field orientation 337.419 ms 0.669 ms 

Task 5 
Reconfiguration 4 → 5 1.046 ms 

Filtered field orientation 22.178 ms 0.419 ms 

Task 6 

Reconfiguration 5 → 6 1.107 ms 

Image directional filtering  
and binarization 

774.750 ms 2.465 ms 

Task 7 
Reconfiguration 6 → 7 1.045 ms 

Image smoothing 287.507 ms 0.447 ms 

Task 8 
Reconfiguration 7 → 8 0.974 ms 

Image thinning 417.350 ms 0.820 ms 

Task 9 

Reconfiguration 8 → 9 0.943 ms 

Minutiae extraction and 
minutiae filtering 

32.497 ms 7.606 ms 

Task A 

Reconfiguration 9 → A 1.045 ms 

Field orientation maps 
alignment 

139935.838 ms 157.671 ms 

Task B 

Reconfiguration A → B 1.035  ms 

Minutiae alignment, feature 
sets matching and 
authentication decision 

108.608 ms 20.737 ms 

Total Execution Time (2): 142693.451 ms 205.025 ms 

(1) : The software-only execution times are slightly higher than in the Embedded System 3 scenario of 
Table 3 because of the reduction of the cache memory size in this new scenario in order to allocate 
additional memories in the hardware coprocessors (only 8KB of Instruction and Data caches are 
instantiated in MicroBlaze interface instead of the initial 32KB Instruction cache and 64KB Data cache). 
(2) : Task 0 is not included in the computation of the total execution time. 

Table 6. Execution time performance reached in the authentication stage: SW-only versus 
HW-SW implementations 
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Task  
ID 

Processing Stage 
Hardware Resources 

1-bit Flip 
Flop 

4-input 
LUT 

1-bit 
RAM 

DSP 
Block 

– 
Application flow  
(static design) 

7005 8888 755712 4 

Task 0 Fingerprint acquisition – – – – 

Task 1 Image segmentation 4978 4612 147456 20 

Task 2 Image normalization 371 334 0 8 

Task 3 Image isotropic filtering 5275 5831 92160 28 

Task 4 Field orientation 3339 3166 92160 8 

Task 5 Filtered field orientation 2857 2983 129024 0 

Task 6 
Image directional filtering  
and binarization 

5462 4166 313344 29 

Task 7 Image smoothing 4892 3265 147456 0 

Task 8 Image thinning 1013 2821 239616 0 

Task 9 
Minutiae extraction and 
minutiae filtering 

487 3379 55296 0 

Task A 
Field orientation maps 
alignment 

2632 8943 387072 0 

Task B 
Minutiae alignment, feature 
sets matching and 
authentication decision 

642 4379 258048 5 

Total Design Resources: 38953 52767 2617344 102 

Total Device Resources: 21504 21504 1327104 48 

Table 7. FPGA resources usage in each of the application contexts 

 

=+ →

HARDWARE COPROCESSORS
PARTIAL BITSTREAMS

SYSTEM CPU

STATIC BITSTREAM

HW/SW PROCESSING STAGES

FULL BITSTREAMS

FPGA FLOORPLAN

VIRTEX-4 XC4VLX25

=+ →

HARDWARE COPROCESSORS
PARTIAL BITSTREAMS

SYSTEM CPU

STATIC BITSTREAM

HW/SW PROCESSING STAGES

FULL BITSTREAMS

FPGA FLOORPLAN

VIRTEX-4 XC4VLX25  

Fig. 14. Temporal partitioning of the application in sequential tasks running in the PRR of a 
FPGA. The bitstream gets composed of a static region and a reconfigurable region (left). 
Spatial partitioning of the application floorplanned in both static and reconfigurable regions 
on the Xilinx Virtex-4 XC4VLX25 device (right) 
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The physical resources needed to implement each of the hardware coprocessors are detailed. 
From the resources usage shown in Table 7 it can be deduced that the reconfigurability 
performance of the FPGA permits a notorious reduction of the amount of resources needed 
in the programmable logic device in comparison with the amount of resources that would 
be needed in case of using a non-reconfigurable FPGA, where all coprocessors would be 
instantiated permanently in a static way. Thanks to the reconfigurability performance 
exhibited by the suggested device and the hardware-software partitioning of the application 
it has been possible to develop one application that demands 38953 1-bit flip-flops, 52767 4-
bit LUTs, 2617344 1-bit RAM cells and 102 DSP blocks with one device that features 21504 1-
bit flip-flops, 21504 4-bit LUTs, 1327104 1-bit RAM cells and 48 DSP blocks. The reuse of the 
hardware resources allows reducing the amount of resources at the expense of the 
reconfiguration overhead, which is also minimized by the design of an efficient 
reconfiguration controller. The amount of needed resources and the reached performances 
exhibited by the suggested run-time reconfigurable embedded system clearly outperform 
those featured by one PC platform. The total authentication execution time results in 205.025 

ms, which leads to a speed up of ×686.58 (or ×695.980 depending on the used cache) when 
compared against the purely software implementation of the recognition algorithm under 

the same embedded system platform, and a speed up of ×15.97 with regard to the 
application execution time featured by the PC platform presented in Section 5. 

8. Conclusion 

The successful spread of products and services that exploit the advantages provided by 
fingerprint biometrics in both public and private sectors depend on several factors today. 
Although the universality, distinctiveness and permanence characteristics of human 
fingerprints are proven facts that make them reliable signs of identity, the acceptance of 
automated fingerprint-based personal recognition systems, focused on either identification 
or authentication purposes, is constrained by social and technical factors. Among the social 
factors, the most important ones refer to the security and privacy concerns related to the 
protection of the user’s information integrity; and among the technical factors, the most 
limiting ones refer to the accuracy of the recognition system, the authentication response 
time and the cost of the whole application. All they are barriers to the broad adoption of that 
kind of systems worldwide. If fingerprint recognition technology continues to mature and 
efficient and reliable systems able to overcome all those barriers are designed, automated 
fingerprint-based recognition can have a profound influence on the way we conduct our 
daily business in the near future. 
As far as authors know at the moment of publication of the present work, there does not 
exist in the market any AFAS application based on dynamically reconfigurable hardware. 
Flexible and dynamically reconfigurable hardware allows a more efficient usage of the 
system resources by having hardware present in the FPGA device only when it is in use. 
Thus given a fixed size for the FPGA, it is possible to instantiate specific coprocessors at a 
given time, and to eliminate them after they have been used in order to allow further 
coprocessors to be instantiated making use of the same FPGA resources in the following 
stages of the application. This technique allows reducing the overall hardware system size at 
nearly null cost –FPGA reconfiguration overhead–. 
The results presented in this work prove that the suggested system architecture can be an 
efficient alternative to those existing AFAS based on either expensive personal computer 

www.intechopen.com



Exploiting Run-Time Reconfigurable Hardware  
in the Development of Fingerprint-Based Personal Recognition Applications 

 

265 

platforms or embedded systems that make use of MPUs, GPUs, DSPs, ASSPs or ASICs. This 
novel approach, focused on the exploitation of run-time reconfigurable FPGA devices and 
hardware-software co-design techniques, pursues two main objectives: (i) to meet the 
required expectations for the application, which means to fulfil the functionality demands 
(accurate FAR/FRR personal recognition rates) with the proper response time (real-time) 
and reliability levels (protection against fraudulent attacks); and (ii) to meet those 
requirements with the minimum possible cost for the system, and with the proper flexibility 
to allow future changes/improvements in the personal recognition algorithm (added-value). 
There are endless uses for embedded systems based on SoPC or FPGA devices in the 
consumer, military, aerospace, automotive, communications, and industrial markets 
worldwide. In this direction, the proposed embedded system architecture, based on run-
time reconfigurable hardware, is proven to be a valid and cost-effective solution that 
encourages the reduction of system resources in the physical implementation of those 
complex computational applications demanding high processing power and real-time 
performances such as the ones resulting from the biometrics field. As computer technology 
continues to advance and economies of scale reduce costs, fingerprint biometric systems 
based on the suggested topology can become a more efficient and cost-effective means for 
personal verification in both public and private sectors. The proposed system architecture 
can thus help in paving the way for the exploitation of biometric systems all over the world. 
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