
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900

13

Exploiting Run-Time Reconfigurable Hardware
in the Development of Fingerprint-Based

Personal Recognition Applications

Mariano Fons and Francisco Fons
Departament d’Enginyeria Electrònica, Elèctrica i Automàtica,

Univeristat Rovira i Virgili, Tarragona
 Spain

1. Introduction

The current technological age brings the knowledge and the means to continuously improve
the quality of life of human beings. One example can be seen in the recent advances done in
the field of biometrics, where those physiological (fingerprints, iris, hand geometry, face,
etc.) and/or behavioural (voice, gait, keystroke dynamics, signature, etc.) characteristics of
human beings, unique and different to each individual, are used in order to either
authenticate or identify individuals in a more reliable way, enhancing thus those existing
personal recognition applications based on physical tokens (ID cards, keys, etc.), PINs or
passwords. The deployment of automatic biometrics-based personal recognition systems
and their acceptance by the society depends on several factors such as the ease of use, the
non-intrusive methods of operation and their related privacy concerns; as well as their
recognition accuracy, reliability and security levels, response time and system costs. All
these factors will determine the successful spread of the biometric security in a wide range
of daily use applications such as electronic payment, access systems, border control, health
monitoring, etc. all over the world.
Among the different human traits analyzed in the field of biometrics, this work is focused
on fingerprints. Fingerprints are the oldest and most deeply used signs of identity. Personal
recognition based on fingerprints has been successfully deployed in law enforcement,
government, and forensic applications for more than one century. The first recognition
systems were based on human experts in charge of matching fingerprints. However, the
current technological age demands the development of less expensive and fully automated
fingerprint-based personal recognition systems, not only in the cited fields of application
but also in many other daily use consumer applications (mobile phones, personal digital
assistant devices, laptops, automatic teller machines, internet, e-commerce, etc.). Although
big advances have been made in recent years, automatic and reliable biometric recognition
is still an open research problem today. That ideal personal recognition algorithm able to
unequivocally authenticate the identity of any user from his/her legitimate fingerprint
features does not exist. The way to overcome the present limitations and improve the
accuracy performance of current biometrics-based authentication systems consists of adding
further processing stages into the recognition algorithms, which directly affects the

www.intechopen.com

Recent Application in Biometrics

240

complexity, the processing power and the costs of the physical systems where to implement
those applications.
This works focuses on the search of the proper system architecture able to face those
demanding constraints for the application: a high computational power needed to achieve
reliable recognition performances in terms of False Acceptance and False Rejection rates
(FAR/FRR), a high security level in order to stand any kind of external attacks
(cryptographic systems), real-time performance, and low cost. A novel approach of
embedded system based on programmable logic devices such as field programmable gate
arrays (FPGA), hardware-software co-design techniques, and the exploitation of run-time
reconfigurable hardware is proven to successfully address the above requirements.
This chapter is split in nine sections and in each of the sections specific research topics are

addressed. Section 2 provides a general overview of the proposed application to be dealt in

this work: the development of an Automatic Fingerprint-based Authentication System

(AFAS) in charge of verifying the identity of any individual based on the analysis of that

distinctive information available in fingerprints. A description of the proposed personal

recognition algorithm to be used as reference in this work and to be implemented under

different processing platforms is presented. The accuracy performance achieved by the

suggested algorithm when evaluated on a large database of fingerprints is addressed in

Section 3. One public database composed of up to 800 fingerprint images corresponding to

100 different individuals is used for evaluation purposes. Impostor and Genuine

distributions, as well as performance indicators such as FAR, FRR or EER (Equal Error Rate)

are given in order to objectively compare the reached performance with the performance of

other published algorithms evaluated with the same open database. After presenting the

accuracy performance exhibited by the proposed recognition algorithm, Section 4 aims at

defining the proper system requirements for the physical platform in charge of the

authentication process. The main goal is to find a flexible and high-performance processing

platform able to deploy the biometric security in a wide range of daily use applications at

low cost, therefore an embedded system architecture is suggested. Two different

implementations of the same recognition algorithm are carried out in this work. The first

implementation, covered in Section 5, is based on purely software-based solutions. One high

performance computing (HPC) platform under Windows operating system and three

different embedded system platforms based on low-cost and mid-performance

microprocessors are evaluated. The strengths and weaknesses of each of the architectures

are pointed out, and based on that information, a different embedded system architecture is

suggested in Section 6 to overcome the main limitations exhibited by the previous systems.

An embedded system architecture based on a general-purpose microprocessor acting as

application core processor, and a programmable and run-time reconfigurable logic region

where to instantiate –multiplexed in time and under demand– application-specific hardware

coprocessors in charge of the execution of those time-intensive tasks is proposed as

alternative solution. Both the microprocessor unit and the hardware accelerators, together

with memory blocks and other peripherals are all embedded under a System-on-

Programmable-Chip (SoPC) device to provide a highly integrated and more reliable

solution. The second implementation of the AFAS application under the proposed

embedded system architecture is covered in Section 7. The performance achieved in this

new scenario is compared against that of previous scenarios. An outstanding improvement

in performance is achieved at a reasonable cost. The work ends with some concluding

www.intechopen.com

Exploiting Run-Time Reconfigurable Hardware
in the Development of Fingerprint-Based Personal Recognition Applications

241

remarks in Section 8, and the citation of some research references in Section 9. The reached

results prove that the suggested system architecture based on hardware-software co-design

techniques under run-time reconfigurable FPGA devices is a cost-effective alternative

solution to those existing software-based processing platforms in the deployment of AFAS

applications.

2. Fingerprint-based personal recognition algorithm

The personal recognition process is composed of two main phases, as depicted in Fig. 1: the
enrolment phase and the authentication phase.

Fingerprint

Acquisition

Image

Enhancement

Feature Set

Extraction

Feature Set

Storage

Fingerprint

Acquisition

Image

Enhancement

Feature Set

Extraction

Feature Sets

Alignment

Authentication

Result

Individual A

Individual B

Enrolment Phase

Authentication Phase

A = B ?

or

A ≠ B ?

Feature Sets

Matching

Fingerprint

Acquisition

Image

Enhancement

Feature Set

Extraction

Feature Set

Storage

Fingerprint

Acquisition

Image

Enhancement

Feature Set

Extraction

Feature Sets

Alignment

Authentication

Result

Individual A

Individual B

Enrolment Phase

Authentication Phase

A = B ?

or

A ≠ B ?

Feature Sets

Matching

Fingerprint

Acquisition

Image

Enhancement

Feature Set

Extraction

Feature Set

Storage

Fingerprint

Acquisition

Image

Enhancement

Feature Set

Extraction

Feature Sets

Alignment

Authentication

Result

Individual A

Individual B

Enrolment Phase

Authentication Phase

A = B ?

or

A ≠ B ?

Feature Sets

Matching

Fingerprint

Acquisition

Image

Enhancement

Feature Set

Extraction

Feature Set

Storage

Fingerprint

Acquisition

Image

Enhancement

Feature Set

Extraction

Feature Sets

Alignment

Authentication

Result

Individual A

Individual B

Enrolment Phase

Authentication Phase

A = B ?

or

A ≠ B ?

Feature Sets

Matching

Fig. 1. Processing phases of an Automatic Fingerprint-based Authentication System

The enrolment phase is generally performed off-line, and consists in the registration of that
set of biometric features extracted from the digital impression of the user’s fingertip –known
as template– together with any other relevant information of the user within the
authentication system, either in a secure database or a personalized smart card. The
authentication phase however is normally done on-line, and aims at validating the user’s
identity by comparing the set of on-line extracted biometric features –known as query–
against those saved in the authentication system during the enrolment stage and linked to
the legitimate individual claimed by the user –template–. The matching of both feature sets
delivers a similarity score that is used to determine whether the user is really who claims to
be, or on the contrary is an impostor who attempts to access the system fraudulently.
As it is indicated in Fig. 1, both phases –enrolment and authentication– are composed of a
set of sequential stages. Each of the stages is, at the same time, split into smaller processing
operations called tasks, and some of the stages/tasks carried out with the template and
query fingerprints are common, as shown in Fig. 2. The aim of the authentication system is
the execution of both phases of the processing; therefore the system has to be designed to
afford any of the requested tasks along the application.

www.intechopen.com

Recent Application in Biometrics

242

ACQ ENH EXTR

ALIGN MATCH

Template

Fingerprint

ACQ ENH EXTR
Query

Fingerprint

AUTH Match / Non Match

ACQ

Template Fingerprint

ENH

EXTR

Legitimate ID

Template Features Set

ENROLMENT

ACQ

Query Fingerprint

ENH

EXTR

Claimed ID

Template Features Set

AUTHENTICATION

ALIGN

MATCH

Query Features Set

AUTH

Match / Non Match

FINGERPRINT-BASED PERSONAL RECOGNITION ALGORITHM STAGES

ACQ ENH EXTR

ALIGN MATCH

Template

Fingerprint

ACQ ENH EXTR
Query

Fingerprint

AUTH Match / Non Match

ACQ

Template Fingerprint

ENH

EXTR

Legitimate ID

Template Features Set

ENROLMENT

ACQ

Query Fingerprint

ENH

EXTR

Claimed ID

Template Features Set

AUTHENTICATION

ALIGN

MATCH

Query Features Set

AUTH

Match / Non Match

FINGERPRINT-BASED PERSONAL RECOGNITION ALGORITHM STAGES

Fig. 2. Enrolment and authentication stages decomposition

The proposed recognition algorithm in charge of the enrolment and the authentication

processes is not developed from scratch but based on some existing reference biometric

algorithms and known techniques well described in the scientist literature. Specific image

processing operations like convolutions, filters, etc. and other signal computations in the

field of trigonometrics, statistics, etc. are performed on the acquired images in order to

deduce that distinctive information available in the fingerprints. For a better understanding

of the involved computational tasks refer to the authors’ work (Fons et al., 2010). Fig. 3

shows the different processing steps that take place in the suggested fingerprint-based

personal verification flow. A hybrid fingerprint matching algorithm that relies on the field

orientation map and the set of minutia points extracted from the fingerprints is proposed for

its physical implementation. Those classical biometric traits are considered as the genuine

marks of identity of any individual. The computational load of the suggested algorithm is

equivalent to those other similar or dissimilar algorithms that define the state of the art in

fingerprint personal recognition today (Maltoni et al., 2009; Nanni & Lumini, 2009; Yang &

Park, 2008).

www.intechopen.com

Exploiting Run-Time Reconfigurable Hardware
in the Development of Fingerprint-Based Personal Recognition Applications

243

A

B

C

D E

F

H

G

I

J

K

A

B

C

H

G

DE

F

I

JA

B

C

D E

F

H

G

I

J

K

A

B

C

H

G

DE

F

I

J

Fig. 3. Intermediate results in the processing of template (left side) and query (right side)
fingerprints

A summary of the processing stages involved in the suggested personal recognition

algorithm can be deduced from Fig. 3 when authenticating one query fingerprint (right side,

red arrows) against one previously enrolled template fingerprint (left side, blue arrows). Up

to 11 different tasks (A-K) are carried out along the processing, covering the image

enhancement stage (tasks A-G), the feature sets extraction stage (tasks H-I), the feature sets

alignment (task J) and the feature sets matching (task K) stages:

- Task A refers to the image segmentation process, which takes as input the acquired
fingerprint impression and aims at isolating the valid fingerprint area, also known as
foreground, from the rest of the image, also known as background.

- Task B refers to the image normalization process, which aims at adapting the variation of
grey level intensities along ridges and valleys in the different regions of the fingerprint.

- Task C refers to the isotropic filtering of the image, which aims at removing some of the
hazard noise that could be present in the fingerprint impression.

- Task D refers to the field orientation map computation, which consists in the calculation
of the dominant direction of ridges and valleys in each local region of the fingerprint.

- Task E refers to the filtered field orientation map computation, which pursues the
enhancement of the previously computed field orientation map.

- Task F refers to the image binarization process, which aims at discriminating ridges and
valleys based on the directional filtering of the image according to the enhanced field
orientation map.

- Task G refers to the image smoothing process, which aims at enhancing the black and
white representation of the image by removing some of the noise that could be present
in the binary version of the fingerprint image.

www.intechopen.com

Recent Application in Biometrics

244

- Task H refers to the image thinning process, which aims at progressively removing the
ridge pixels of the image preserving the geometric topology of the ridge-valley pattern
till obtaining one skeleton of one single pixel wide to make easy the subsequent
identification of minutia points.

- Task I refers to the minutia extraction process, which aims at deducing those salient
features spatially distributed along the ridge-valley pattern such as the ridge endings
and the ridge bifurcations. Those features will be used as discriminatory information of
the fingerprint, together with the filtered field orientation map.

- Task J refers to the image alignment process, which aims at looking for any spatial
correspondence between both template and query images based on the extracted
feature sets. In case of positive alignment, the overlapped area between both fingerprint
impressions is deduced. The overlapped area becomes the region of interest for
comparison of template and query prints in the next stage.

- Task K refers to the image matching process and the authentication result (match/non-
match) computation based on the comparison of the feature sets (field orientation maps
and minutia points) previously aligned.

Most of the cited tasks deal with fingerprint images and/or big amounts of data so a high
computational demand is expected for the physical platform in charge of the processing.
Although a first implementation of the recognition algorithm under a personal computer
platform has been developed in order to validate the accuracy performance reached by the
suggested algorithm, more cost-effective system solutions have also been evaluated in this
work in order to make easy the spread of those fingerprint-based biometric applications in
the consumer arena, accessible to whomever, wherever and whenever.

3. Recognition accuracy performance

In order to prove the validity of the suggested fingerprint recognition algorithm it is needed
to proceed with the evaluation of its accuracy performance when submitted to test under a
large fingerprint database. The fingerprint recognition algorithm needs to be properly tuned
to the environment conditions (fingerprint sensor, sensing technique, attended/unattended
acquisition method, etc.) of the real application. The selected database corresponds to the
database DB3 of the Fingerprint Verification Competition FVC2004 contest (Maio et al.,
2004). This public database is 110 fingers wide, and 8 samples per finger in depth, which
results in a total of 880 fingerprint images. All the images were collected by using a thermal
sweeping sensor. The complete database is split in two subsets A and B. The subset A is
composed of 100 fingers (800 images) and the subset B is composed of 10 fingers (80
images). The subset B is firstly used in order to adjust some of the parameters of the
algorithm to the properties of the fingerprint images acquired with the selected sensor, and
once the algorithm is properly tuned, the subset A is used in order to verify the real
performance of the application. The performance evaluation procedure follows the same
criteria than in FVC contests:
i. In order to get the impostor distribution, one sample of each finger in the subset A is

collected. A total of 100 images are used, and each of the images is matched against the
others to compute the False Match Rate –FMR– or False Acceptance Rate –FAR–
distribution. If the matching of g against h is performed, the symmetric one (i.e., h
against g) is not executed in order to avoid correlation. A total of 4950 matches are
carried out.

www.intechopen.com

Exploiting Run-Time Reconfigurable Hardware
in the Development of Fingerprint-Based Personal Recognition Applications

245

ii. In order to deduce the genuine distribution, each of the samples corresponding to one
finger is matched against the other samples of the same finger. Similarly to the impostor
distribution procedure, if the matching of g against h is performed, the symmetric one
(i.e., h against g) is not executed in order to avoid correlation. The total number of
genuine tests results in 2800, and from them it is possible to compute the False Non-
Match Rate –FNMR– or False Rejection Rate –FRR– distribution.

0

2

4

6

8

10

12

I (s)

G (s)
G (t)

I (t)

% Population

t10 0.5 0.6 0.7 0.8 0.90.40.30.20.1

0

2

4

6

8

10

12

I (s)

G (s)
G (t)

I (t)

G (t)

I (t)

% Population

t10 0.5 0.6 0.7 0.8 0.90.40.30.20.1

Fig. 4. Genuine and Impostor distributions

Given one template and one query fingerprints, the recognition algorithm provides a

similarity score between both images within [0,1]. Similar images, understood as images

belonging to the same finger, will have scores close to 1, while dissimilar images,

understood as images from different fingers, will present scores close to 0. After

performance evaluation with the subset A, the algorithm features an Equal Error Rate

EER=4.162%. The Genuine and Impostor distributions –I(t) and G(t)–, the representations of

the performance indicator rates FMR and FNMR as a function of the similarity threshold

score t –FMR(t) and FNMR(t)–, and the Receiver Operating Characteristic (ROC) curve of

the tested algorithm are shown in Figs. 4, 5 and 6 respectively.

The parameter EER is the main indicator used to evaluate the performance of the

recognition algorithms in FVC contests. If comparing the performance of the proposed

algorithm against those presented in FVC2004 with the same database, the proposed

algorithm would be ranked in 17th position from a total of 41 participants in the open

category (executed by one personal computer platform without resources constraints),

where the winner algorithm presented an EER=1.18% and the last classified algorithm an

EER=43.95%; or ranked in 5th position from a total of 26 participants in the light category

(executed by a personal computer platform with restrictions on the execution time and the

memory resources), where the winner algorithm presented an EER=2.92% and the last

classified algorithm an EER=54.28%.

www.intechopen.com

Recent Application in Biometrics

246

0

10

20

30

40

50

60

70

80

90

100

FAR (s)

FRR (s)

t10 0.5 0.6 0.7 0.8 0.90.40.30.20.1

FNMR (t)

FMR (t)

% Population

0

10

20

30

40

50

60

70

80

90

100

FAR (s)

FRR (s)

t10 0.5 0.6 0.7 0.8 0.90.40.30.20.1

FNMR (t)

FMR (t)

FNMR (t)

FMR (t)

% Population

Fig. 5. False Match and False Non-Match distributions

1,0E-03

1,0E-02

1,0E-01

1,0E+00

1,0E-03 1,0E-02 1,0E-01 1,0E+00

FMR

FNMR

EER lin
e

1,0E-03

1,0E-02

1,0E-01

1,0E+00

1,0E-03 1,0E-02 1,0E-01 1,0E+00

FMR

FNMR

EER lin
e

Fig. 6. Receiver Operating Characteristic curve

The first implementation of the recognition algorithm is carried out under a personal

computer platform and uses floating point operations in order to be as much accurate as

possible in the different computations (statistical analysis parameters like standard

deviation, square root calculation, trigonometric computing, etc.) carried out along the

recognition process. After proving the validity of the proposed algorithm, a new version of

the algorithm is developed by replacing those floating point operations by fixed point

www.intechopen.com

Exploiting Run-Time Reconfigurable Hardware
in the Development of Fingerprint-Based Personal Recognition Applications

247

operations in order to reduce the complexity of the processing and the computational

demands of the physical platforms where to implement the AFAS application. A new

evaluation performance loop of the modified version of the algorithm is performed with

very similar results –the EER evolves from 4.162% to 4.242%–. Therefore the new version of

the algorithm is also accepted and used as reference to be implemented under low-cost and

low-performance microprocessors without floating point units (FPU) on embedded system

platforms in the next stage.

4. Application execution time requirements definition

Nowadays most of the applications that exploit biometrics-based personal recognition

demand a fast response time to the physical systems in charge of the processing. In case of

fingerprint-based authentication systems, soft real-time performance is normally required.

In this specific context, soft real-time is understood as providing the proper recognition

response within a reaction time short enough to be unnoticed by the user. This reaction time

covers the interval elapsed since the user presents his identity credentials to the system and

puts his finger on the sensing surface of the capture device till the moment when the

automatic authentication system provides the result of the verification process. Reaction

times in the range between 1.5s and 3.5s are usually accepted as normal and valid

authentication response times for any AFAS application. Therefore, this work focuses on the

evaluation of the execution time performance of the proposed fingerprint recognition

algorithm when implemented on different computational platforms in order to determine

those efficient architectures able to meet the execution time requirements at the lowest

possible cost.

Fig. 7. Template and Query fingerprints used in the evaluation process

In order to perform a fair comparison between platforms, the same template and query

fingerprints have to be used in all scenarios. Among the different images of FVC2004 DB3

database, two fingerprint impressions taken from the same finger have been selected as

template and query fingerprints respectively thus it is possible to build some representative

enrolment and authentication processes to be used as reference for evaluation purposes. The

two greyscale images depicted in Fig. 7, of size 268x460 pixels and with a resolution of 8 bits

and 500 dpi, are used as reference in order to properly compare the same processing effort

in all scenarios.

www.intechopen.com

Recent Application in Biometrics

248

5. Proof of concept I: software-only implementation

Different computational platforms addressing the execution of software-based applications

have been selected for processing speed evaluation purposes. The scope covers from high-

cost and high-performance personal computer platforms to low-cost and mid-performance

embedded system platforms based on general-purpose hard-core or soft-core processors.

One personal computer and three embedded system platforms have been evaluated, as

indicated in Table 1. The evaluation procedure permits to point out in an easy way which

advantages and disadvantages in performance are featured by each of the suggested

architectures.

Technical
Features

Personal
Computer
Platform

Embedded
System

Platform 1

Embedded
System

Platform 2

Embedded
System

Platform 3

Platform
Acer

Aspire
9420

Altera
Excalibur
EPXA10

Xilinx
Spartan

3AN

Xilinx
Virtex4
ML401

Family
MPU Intel
Core 2 Duo

SoPC
EPXA10F1020C1

FPGA
XC3S700AN

FPGA
XC4VLX25

Processor
Intel Core 2
Duo T5600

ARM922T MicroBlaze MicroBlaze

Processor data bus 64 bits 32 bits 32 bits 32 bits

Number of cores 2 1 1 1

Type of core Hard-core Hard-core Soft-core Soft-core

Technology 65 nm 180 nm 90 nm 90 nm

Clock speed 1.83 GHz 200 MHz 66.667 MHz 100 MHz

Bus speed 667 MHz 200/100 MHz 133.3/66.6 MHz 200/100 MHz

Cache 2 MB L2 8 KB Inst. Cache
8 KB Inst. Cache
8 KB Data Cache

32 KB Inst. Cache
64 KB Data Cache

Operating system Windows XP – – –

AFAS
program code

DDR2 SDRAM
(2 GB)

SoPC SRAM
(256 KB)

DDR2 SDRAM
(64 MB)

DDR SDRAM
(64 MB)

AFAS
application data

DDR2 SDRAM
(2 GB)

DDR SDRAM
(128 MB)

DDR2 SDRAM
(64 MB)

DDR SDRAM
(64 MB)

SDRAM/SRAM
data bus

64 bits 32 bits 16 bits 32 bits

SDRAM
frequency

≥ 200MHz 125 MHz 133.333 MHz 100 MHz

Table 1. Computational platforms used in the execution time performance evaluation
process

The execution time performance reached in each of the platforms, in both enrolment and

authentication stages, is presented in Tables 2 and 3 respectively. The enrolment process of

the template fingerprint and the authentication process of the query fingerprint with the

enrolled template are evaluated. The authentication execution times are obviously longer

www.intechopen.com

Exploiting Run-Time Reconfigurable Hardware
in the Development of Fingerprint-Based Personal Recognition Applications

249

than the enrolment times. Special attention needs to be done to the authentication stage

since, unlike the enrolment stage, the authentication process is normally carried out on-line

in the real application so real-time response is usually requested. The enrolment stage tends

to be less critical since it is normally carried out off-line –under the supervision of

application staff to guarantee the reliable enrolment of the user in the system– so no real-

time performance is usually demanded.

Task
ID

Processing Stage
Personal

Computer
Platform

Embedded
System

Platform 1

Embedded
System

Platform 2

Embedded
System

Platform 3

Task 1
Image
segmentation

2.810 ms 1083.219 ms 299.578 ms 227.035 ms

Task 2
Image
normalization

0.470 ms 178.940 ms 46.960 ms 32.772 ms

Task 3
Image isotropic
filtering

7.030 ms 5304.010 ms 719.703 ms 467.329 ms

Task 4 Field orientation 2.190 ms 834.062 ms 344.651 ms 244.916 ms

Task 5
Filtered field
orientation

0.620 ms 97.061 ms 26.646 ms 17.294 ms

Task 6
Image directional
filtering and
binarization

13.440 ms 3792.712 ms 860.133 ms 609.518 ms

Task 7 Image smoothing 12.350 ms 1536.114 ms 360.012 ms 229.732 ms

Task 8 Image thinning 1.250 ms 1695.930 ms 547.847 ms 404.085 ms

Task 9
Minutiae
extraction and
minutiae filtering

0.630 ms 76.626 ms 35.404 ms 23.982 ms

Total Execution Time: 40.790 ms 14598.674 ms 3240.934 ms 2256.663 ms

Table 2. Enrolment process execution time performance

As it can be deduced from the tables, the real-time performance requested to the application

is not achieved in all the scenarios. The personal computer platform is able to meet the

requested performance, but those other scenarios based on low-cost and mid-performance

embedded processors running at low operation frequencies are far away from the requested

timing performance. The big latency exhibited by the embedded system platform 1 with

regard to the other two embedded system platforms is justified by the fact that no data

cache is enabled in that scenario, which severely affects the final performance of the

application.

On the one hand, although the powerful processor embedded in the personal computer

platform is able to reach the requested performance, its cost is excessive for those low-cost

consumer applications demanding biometric recognition. On the other hand, although the

embedded system platforms tested in this work are able to meet the system cost

requirements of the consumer applications arena, the exhibited execution time performances

are clearly insufficient. Therefore, it is needed to find alternative system architectures able to

meet both key requirements: high performance and low cost.

www.intechopen.com

Recent Application in Biometrics

250

Task
ID

Processing Stage
Personal

Computer
Platform

Embedded
System

Platform 1

Embedded
System

Platform 2

Embedded
System

Platform 3

Task 1
Image
segmentation

2.810 ms 1083.219 ms 299.578 ms 227.035 ms

Task 2
Image
normalization

0.470 ms 178.940 ms 46.960 ms 32.772 ms

Task 3
Image isotropic
filtering

7.030 ms 5304.010 ms 719.703 ms 467.329 ms

Task 4 Field orientation 2.500 ms 987.089 ms 407.445 ms 289.661 ms

Task 5
Filtered field
orientation

0.620 ms 113.959 ms 30.987 ms 20.171 ms

Task 6
Image directional
filtering and
binarization

15.940 ms 4460.569 ms 1014.939 ms 720.095 ms

Task 7 Image smoothing 14.220 ms 1752.322 ms 412.503 ms 261.745 ms

Task 8 Image thinning 1.410 ms 1767.383 ms 552.091 ms 402.946 ms

Task 9
Minutiae
extraction and
minutiae filtering

0.630 ms 93.783 ms 45.002 ms 29.487 ms

Task A
Field orientation
maps alignment

3224.530 ms 279636.069 ms 210269.854 ms 138208.006 ms

Task B

Minutiae
alignment,
feature sets
matching and
authentication
decision

4.220 ms 370.712 ms 161.973 ms 107.972 ms

Total Execution Time: 3274.380 ms 295748.055 ms 213961.035 ms 140767.219 ms

Table 3. Authentication process execution time performance

6. Run-time reconfigurable embedded system design

There exist in the market many automatic biometrics-based personal authentication systems

implemented on high performance computer platforms –HPCs, PCs, etc.– (One Touch SDK,

n.d.; Verifinger SDK, n.d.), embedded general-purpose or application-specific processors –

MPUs, MCUs, GPUs, ASSPs– (FxIntegrator, n.d.; plusID, n.d.; SDA, n.d.), embedded digital

signal processors –DSPs– (MV1210 and MV1250, n.d.; SFM, n.d.; TMS320, n.d.), or

embedded systems based on central processing units –CPUs– plus application-specific

hardware accelerators –ASICs– off-chip or on-chip (FPC2020 and FPC-AM3, n.d.;

ML67Q5250, n.d.; SecurASIC, n.d.; TCD50D, n.d.). Furthermore, many research articles have

been published dealing with the acceleration of some of the stages that take place in one

personal recognition algorithm by means of field programmable logic –FPGAs, SoPCs– (Liu-

Jimenez et al, 2006; Lopez-Ongil et al, 2004; Pavan Kumar et al, 2007; Yang et al, 2006).

However, to the best of the authors’ knowledge, up to date there is no work that takes

www.intechopen.com

Exploiting Run-Time Reconfigurable Hardware
in the Development of Fingerprint-Based Personal Recognition Applications

251

advantage and exploits the dynamic reconfigurability performance of FPGAs (Becker et al,

2007) in the physical implementation of a complete personal recognition application based

on biometrics.

Time-to-market pressures and cost constraints are pushing embedded systems to new levels
of flexibility and system integration. In this work, a novel embedded system architecture is
proven to successfully address the demands of today’s biometrics-based personal
recognition systems in terms of computational complexity, real-time performance,
development cycles and cost. The proposed embedded system architecture is based on five
key factors to afford the challenging demands:
a. General-purpose microprocessor system.
As in most of the embedded systems in the market today, the usage of low-cost and mid-

performance microprocessors (of 16-bits or 32-bits, running at operating frequencies of up to

200-600MHz) provides certain flexibility required in any application. Software-based

solutions have additional advantages such as the rapid development of the application by

making use of a set of libraries with application-specific functions, which avoids writing the

software application from scratch, and provides a cost-effective solution. However, in those

applications demanding a high computational power and real-time performance, certain

limitations exist when trying to develop the entire application with purely software

platforms based on either one single processor (MPU, MCU, DSP, etc.) or

multicore/multiprocessor systems due to the inherent limitations in working frequency,

restricted data path, shared resources, sequential workflow execution, and reduced

parallelism characteristics featured by those standard products.

b. Programmable logic device embedded in the system.
When purely software-based systems are not enough to meet the expected real-time

performances of one real-world application, the usage of hardware-based accelerator

devices as complementary processing units has been proven to be an efficient solution.

Programmable logic devices such as FPGAs are much more flexible than semi-custom or

custom devices like ASSPs or ASICs. ASSPs and ASICs have a fixed peripheral set that

limits the number of applications that they can be efficiently used in; but FPGAs allow

implementing custom peripherals and made-to-measure glue logic tailored to the

requirements of any application. Over recent years, FPGA devices have gained an enormous

amount of processing power and functionality thanks to the continuous advances in silicon

technologies. The current FPGAs are able to embed much more memory and logical

resources, as well as many DSP blocks, multiple clock management units and big amounts

of high-speed transceivers for fast communication purposes in one single device. The

technology has evolved till the point that the size of today’s FPGAs is several orders of

magnitude higher than the first FPGAs, reaching values above two millions of flip-flops and

LUTs. The programmability performance of FPGAs make them unique in the market and

the continuous improvements in the semiconductors field permits reducing the costs of

FPGA devices, making them more and more competitive. The flexibility of FPGAs

eliminates the long design cycle associated with ASICs, and the usage of IP libraries written

in standard hardware description languages and automated design/verification tools

reduce the development cycles of those applications based on programmable logic devices.

c. Hardware-software co-design techniques.
The usage of one general-purpose MPU and one FPGA as a companion chip offers a much
greater degree of flexibility and allows the development of any application by means of

www.intechopen.com

Recent Application in Biometrics

252

hardware-software co-design techniques. The exposed system architecture approach gives
flexibility at two levels: at software level, with the MPU-based application management; and
at hardware level, with the design of modular cores synthesized in the FPGA.

SYSTEM CPU

SYSTEM BUS

MEMORYHW COPROCESSOR 2

SYSTEM BUS INTERFACE

DATA BANDWIDTH ADAPTATION

CORE

⁄ W-bits

⁄ W-bits

⁄ N2-bits
M2-bits ⁄

W-bits ⁄

HW COPROCESSOR 1

SYSTEM BUS INTERFACE

DATA BANDWIDTH ADAPTATION

CORE

⁄ W-bits

⁄ W-bits

⁄ N1-bits
M1-bits ⁄

W-bits ⁄

HW COPROCESSOR 3

SYSTEM BUS INTERFACE

DATA BANDWIDTH ADAPTATION

CORE

⁄ W-bits

⁄ W-bits

⁄ N3-bits
M3-bits ⁄

W-bits ⁄

⁄ W-bits

⁄ W-bits

SYSTEM CPU

SYSTEM BUS

MEMORYMEMORYHW COPROCESSOR 2

SYSTEM BUS INTERFACE

DATA BANDWIDTH ADAPTATION

CORE

⁄ W-bits

⁄ W-bits

⁄ N2-bits
M2-bits ⁄

W-bits ⁄

HW COPROCESSOR 2

SYSTEM BUS INTERFACE

DATA BANDWIDTH ADAPTATION

CORE

⁄ W-bits

⁄ W-bits

⁄ N2-bits
M2-bits ⁄

W-bits ⁄

HW COPROCESSOR 1

SYSTEM BUS INTERFACE

DATA BANDWIDTH ADAPTATION

CORE

⁄ W-bits

⁄ W-bits

⁄ N1-bits
M1-bits ⁄

W-bits ⁄

HW COPROCESSOR 1

SYSTEM BUS INTERFACE

DATA BANDWIDTH ADAPTATION

CORE

⁄ W-bits

⁄ W-bits

⁄ N1-bits
M1-bits ⁄

W-bits ⁄

HW COPROCESSOR 3

SYSTEM BUS INTERFACE

DATA BANDWIDTH ADAPTATION

CORE

⁄ W-bits

⁄ W-bits

⁄ N3-bits
M3-bits ⁄

W-bits ⁄

HW COPROCESSOR 3

SYSTEM BUS INTERFACE

DATA BANDWIDTH ADAPTATION

CORE

⁄ W-bits

⁄ W-bits

⁄ N3-bits
M3-bits ⁄

W-bits ⁄

⁄ W-bits

⁄ W-bits

Fig. 8. Physical implementation of one computational platform based on a general-purpose
MPU (system CPU), several hardware cores (HW coprocessors) and one memory block.
Process execution flow example of one image processing task carried out by one of the
application-specific hardware coprocessors instantiated in the system

The FPGA is introduced in the system as a general-purpose device where to instantiate

those application-specific hardware coprocessors required to speed up those critical tasks of

the application. It permits to design an adaptive and highly-integrated multiprocessor

system oriented to the development of real-time applications. Apart from the inherent

flexibility featured by the microprocessor, the programmable logic device provides

additional flexibility and a high degree of parallelism in the implementation of functional

circuits. In the FPGA it is possible to instantiate either additional microprocessors (e.g.

VHDL instances of soft-core processors) or made-to-measure VLSI hardware accelerators

in charge of specific tasks aiming at offloading those MPU algorithm-intensive operations,

as shown in Fig. 8. With an improved bandwidth among the MPU –system CPU-, the

FPGA, the memory resources and the rest of peripherals available in the embedded

system, soft and hard real-time applications can be successfully developed through this

approach.

d. Run-time reconfigurable FPGAs.
The FPGA device embedded in the system allows exploiting the parallelism and

acceleration features inherent to the programmable logic design, so it is possible to meet

real-time performance by spreading the functionality across the different core resources

(MPU and FPGA) available in the system. However, the resources available in the FPGA are

not unlimited, and the cost of those resources increases exponentially when the size of the

FGPA increases. Therefore, it is convenient to reduce the size of the FPGA in the design to

reach affordable costs for the complete system. In this direction, and owing to the fact that

the proposed biometrics-based personal recognition applications feature a sequential

www.intechopen.com

Exploiting Run-Time Reconfigurable Hardware
in the Development of Fingerprint-Based Personal Recognition Applications

253

nature (the personal recognition algorithm consists of a set of mutually exclusive image

processing tasks executed one after the other), it is possible to exploit the reconfigurability

performance featured by some FPGA devices in order to minimize the system hardware

needs.

Dynamic partial reconfigurability performance of some existing FPGAs refers to the ability

of modifying the functional content of one portion of the FPGA –reconfigurable region– on-

the-fly while keeping the rest of the FPGA –static region– fully operative without

interruption. The main benefit of doing so is the optimization in the functional density of the

device: the same hardware resources available in the reconfigurable region of the FPGA can

be time-multiplexed in order to allocate different functionalities (FPGA contexts) along the

application execution time. Therefore the amount of needed resources in any application can

be minimized, and the total size of the FPGA can be reduced in comparison to the static

implementation of all the functionalities instantiated permanently in a bigger FPGA. The

main constraint in the usage of run-time reconfigurable FPGAs is the reconfiguration

overhead: the time needed in order to modify the functional content of the reconfigurable

region in the different contexts. Therefore the minimization of the reconfiguration latencies

plays an important role in those systems. Fig. 9 shows the comparison between static and

dynamic FPGA-based design concepts.

Fig. 9. Comparison between static FPGA-based design concept (left side) and run-time
reconfigurable-FPGA-based design concept (right side). The coloured boxes represent each
of the different functional blocks in which the application is partitioned

Any application that can be structured as a sequence of mutually exclusive tasks can be

proposed to be implemented by means of run-time reconfigurable FPGAs. Fig. 10 shows the

scheduling of one application into a sequence of mutually exclusive stages, and the

partitioning of each of the processing stages present in the chain into either series or parallel

tasks. Each of the tasks can be executed by hardware or by software. Those critical tasks are

implemented by hardware to take advantage of higher processing bandwidths and

acceleration data path architectures. In this direction, it is possible to make the process truly

parallel and at the same time to free some master CPU resources. The rest of less expensive

tasks remain as software tasks to be handled by the master CPU of the system. The final

partitioning of the application into software tasks, static hardware tasks and dynamically

reconfigurable hardware tasks mainly depends on the cost (resources availability, power

consumption, etc.) and timing (real-time performance) constraints demanded to the

system.

www.intechopen.com

Recent Application in Biometrics

254

STAGE 1

APPLICATION

STAGE 2

STAGE i

STAGE n-1

STAGE n

.

.

.

.

.

.

i2 = o1

I = i1

i3 = o2

ii = oi-1

ii+1 = oi

in-1 = on-2

in = on-1

O = on

TASK i 1,0

TASK i 2,0 TASK i 2,1 TASK i 2,2

TASK i 3,0

TASK i 4,0

Parallel tasks

Sequential tasks

Ii

Oi

Set of mutually
exclusive stages

STAGE i

Fig. 10. Deployment of one application as a set of mutually exclusive stages that can be
implemented through dynamic reconfigurable embedded systems. Partitioning of each of
the stages into hardware and software tasks executed either sequentially or in parallel
taking advantage of programmable logic

e. System-on-programmable chip platform.
The usage of a general-purpose MPU together with programmable and reconfigurable logic

gives a high level of flexibility to the system and provides the mechanisms to achieve real-

time performance. However, higher integration means lower costs. Therefore, the

integration of those main resources and other key peripherals such as memory, timers,

interrupt controllers, etc. on a single chip provides an efficient way of optimizing the whole

system cost. Embedded biometric recognition is therefore possible by making use of highly

integrated platforms. Additional benefits of the system integration are the improvements in

reliability and security. It is possible to embed most of the processing in a single SoPC

device well-protected against external attacks by means of security protocols and

cryptographic processors dealing with the exchange of information between the SoPC

device and the external world. For this reason, the usage of SoPC or system-on-chip devices

that embed one FPGA is especially encouraged in the experimental tests carried out in this

work.

The suggested system architecture is depicted in Fig. 11. At least one run-time

reconfigurable region is present in the programmable logic device to synthesize those

flexible application-specific hardware coprocessors that can be dynamically instantiated on

demand along the application execution time. One specific reconfiguration controller is in

charge of the reconfiguration task, supervised by the master processing unit. The AFAS

application is connected to the external world by means of a series or parallel

communication link with a Host. All or some of the functional blocks depicted in Fig. 11 are

embedded in the same chip.

www.intechopen.com

Exploiting Run-Time Reconfigurable Hardware
in the Development of Fingerprint-Based Personal Recognition Applications

255

STATIC

COPROCESSORS

STATIC

COPROCESSORS

RECONFIGURABLE REGION

DYNAMIC

COPROCESSORS

VOLATILE

MEMORY PROCESSING

UNIT

FINGERPRINT

SENSOR

SYSTEM BUS

DATA & INSTRUCTION

CACHES

TIMER

CONTROLLER

COMMUNICATIONS

CONTROLLER

APPLICATION

USER INTERFACE

INTERRUPT

CONTROLLER

VOLATILE

MEMORY

NON-VOLATILE

MEMORY

MEMORY

CONTROLLER

HOST, NETWORK OR

OTHER PERIPHERALS

RECONFIGURATION
CONTROLLER

STATIC
COPROCESSORS

DYNAMIC
COPROCESSORS

STATIC

COPROCESSORS

STATIC

COPROCESSORS

RECONFIGURABLE REGION

DYNAMIC

COPROCESSORS

VOLATILE

MEMORY PROCESSING

UNIT

FINGERPRINT

SENSOR

SYSTEM BUS

DATA & INSTRUCTION

CACHES

TIMER

CONTROLLER

COMMUNICATIONS

CONTROLLER

APPLICATION

USER INTERFACE

INTERRUPT

CONTROLLER

VOLATILE

MEMORY

NON-VOLATILE

MEMORY

MEMORY

CONTROLLER

HOST, NETWORK OR

OTHER PERIPHERALS

RECONFIGURATION
CONTROLLER

STATIC
COPROCESSORS

DYNAMIC
COPROCESSORS

Fig. 11. Run-time reconfigurable embedded system architecture

7. Proof of concept II: hardware-software implementation

A run-time reconfigurable embedded system is presented in this section as general-purpose
processing platform where to implement the AFAS application by means of hardware-
software co-design techniques. A commercial development board ML401 based on the
system-on-programmable-chip device Virtex-4 XC4VLX25 from Xilinx Inc. is used to verify
the validity of the proposed system architecture. Additionally to the highly-integrated
ML401 development platform, a fingerprint sensor has been connected to the I/O expansion
ports of the evaluation board in order to make possible the acquisition of fingerprints in the
application, and one RS-232 link has been established between the evaluation board and a
personal computer platform in order to simulate the interface between the recognition
module and the host or high-level application that makes use of the personal recognition
result, as shown in Fig. 12.
The selected SoPC/FPGA device is partitioned in two regions in the biometric application:
one static region and one partially reconfigurable region (PRR). In the static region, different
components that will be permanently present along the application execution time are
instantiated such as one 32-bit MicroBlaze soft-core processor (CPU), data and instruction
caches, local memory, one memory management unit (MMU) and other memory controllers
to access on-chip and off-chip memory blocks, one dedicated reconfiguration controller in
charge of the dynamic reconfiguration of the device, other standard peripherals such as
interrupt controller, timer, UART, general-purpose input/output ports, etc. and one specific
interface between the static region and the reconfigurable region based on FIFO memories
and dedicated 32-bit registers. In the reconfigurable region, application-specific hardware
coprocessors will be instantiated under demand along the application execution time in
order to perform those image and signal processing tasks required by the AFAS

www.intechopen.com

Recent Application in Biometrics

256

application. Table 4 shows the amount or resources available in the proposed system-on-
programmable-chip and the partitioning of the device into the static and the
reconfigurable regions.

FINGERPRINT SENSOR

RS-232

AFAS I/F

DDR
SDRAM

PLBV46

FPGA

MMU MST PARTIALLY RECONFIGURABLE REGION

VIRTEX4 XC4VLX25
SYSTEM ON CHIP

Reg

MMU SLV

PRR FIFO

PRR FIFO

Cfg FIFO

Reg

Reg

Reg BM

BM

BM

BM

Sts

Di

Ctrl

Do

Di

BM

BM

PRR
FIFO

SelectMAP

I/F
ICAP

I/F
FPGA CONFIGURATION MEMORY

PRR RECONFIGURATION CONTROLLER

APPLICATION SPECIFIC HARDWARE COPROCESSORS

MULTI-PORT

MEMORY CONTROLLER

NPI DXCL IXCL PLBV46

INTs

BRAM

LOCAL MEMORY

ILMB DLMBMICROBLAZE

UART CONTROLLER INT CONTROLLER TIMER EXT MEMORY CONTROLLER

PLATFORM
FLASH

LINEAR
FLASH

XILINX ML401 PLATFORM

Fig. 12. Run-time reconfigurable embedded system architecture proposed in the physical
implementation of an Automatic Fingerprint-based Authentication System

Resources Xilinx XC4VLX25
Spatial Partitioning

Static Region Reconfigurable Region

1-bit Flip Flop 21504 10240 11264

4-input LUT 21504 10240 11264

1-bit RAM 1327104 921600 405504

DSP Block 48 4 44

Table 4. Spatial partitioning of the programmable logic device into one static region and one
reconfigurable region

The proposed system-on-programmable-chip is a SRAM-based device. Only volatile
memory is embedded on the chip. Additionally to the on-chip volatile memory, the
suggested platform is provided with off-chip volatile and non-volatile memory ICs, as it is
shown in Fig. 12. Two different types of off-chip non-volatile memories are used:
- The Platform FLASH memory block (4 Mbytes) stores the initial bitstream that defines

the configuration of the FPGA upon power up. This initial configuration is composed
of the hardware content of the static region (master CPU, memory controllers and
other peripherals), and one bootloader application which is executed by the master
CPU and is in charge of initializing the system. The initial content of the
reconfigurable region of the FPGA remains blank after power up. The transfer of the
initial bitstream from the platform FLASH to the internal configuration memory of the

www.intechopen.com

Exploiting Run-Time Reconfigurable Hardware
in the Development of Fingerprint-Based Personal Recognition Applications

257

FPGA is automatically done during power up through a dedicated SelectMAP
interface present in the FPGA.

- The Linear FLASH memory block (8 Mbytes) contains the definition of those
reconfigurable hardware coprocessors to be instantiated in the reconfigurable region of
the FPGA along the application execution time, as well as the AFAS program code to be
executed by the master CPU. Moreover, the linear FLASH is used in the AFAS
application as storage memory where to save the templates of those genuine users
registered into the system in the enrolment stage. The reconfiguration process of the
PRR is done by means of the dedicated hardware reconfiguration controller instantiated
in the static region and the ICAP controller inherent to the device.

Apart from the off-chip FLASH memories, one off-chip SDRAM memory block is also

present in the system. During the power up sequence, the bootloader is in charge of

initializing the different controllers instantiated in the static region of the FPGA and

transferring to the SDRAM memory block (64 Mbytes) the content of the linear FLASH, that

is, the AFAS program code and the partial bitstreams that define each of the contexts in

which the reconfigurable region is time-multiplexed along the AFAS application. In this

way, the off-chip SDRAM memory acts as program and data memory in the application and

can be accessed by either the CPU through the PLB bus or the MMU master controller

through a dedicated NPI bus. Once all the information is properly transferred to the

SDRAM memory, the bootloader gives the control to the AFAS application, and the AFAS

application starts.

A multi-bus system architecture permits the interconnection between the different

processing blocks. Two specific made-to-measure memory management units –MMU

master and slave in Fig. 12– are instantiated in the static region, which aim at interfacing

the master CPU and the rest of controllers provided in the static region with those

reconfigurable coprocessors instantiated in the reconfigurable region. The interface

between the static and reconfigurable regions is built through specific Bus Macros (BM)

and some bidirectional FIFO memories intended for a fast exchange of big amounts of

data. Moreover, some 32-bit registers are instantiated in the static region in order the

master CPU to configure the static and reconfigurable hardware coprocessors, and to

control and monitor the application processing flow. The interface between the MMU

master and the PRR reconfiguration controller present in the static region is also

implemented through a dedicated FIFO memory, as depicted in Fig. 12. The reconfiguration

controller is in charge of reading the partial bitstreams previously saved in the SDRAM

memory block during power up, and transferring them to the ICAP, which configures the

reconfigurable region of the FPGA with the new functional content defined by each

bistream. Another FIFO memory block is instantiated in the static region, which acts as a

temporary buffer of that information that needs to be shared between different contexts of

the PRR region. Before reconfiguring a new context in the PRR region, those parameters

that have to be used in the next contexts are saved in that FIFO. After the reconfiguration

process, the content of that dedicated FIFO is transferred again to the reconfigurable

region in order the new reconfigurable coprocessors instantiated in the PRR to make use

of such information.

The interface between the master CPU and those application-specific hardware coprocessors

instantiated in the FPGA, either in the static or reconfigurable regions, is provided with

some interrupt lines in order any of those hardware coprocessors to be able to notify to the

www.intechopen.com

Recent Application in Biometrics

258

master CPU about the end of the processing task that is being executed by hardware.

Furthermore, in order to reduce the reconfiguration time of the PRR, the size of the

reconfigurable region has been minimized as much as possible. A specific reconfiguration

controller is instantiated in the static region of the FPGA in order to allow fast

reconfiguration without impacting on CPU load. The CPU is only responsible for

indicating to the reconfiguration controller the specific partial bitstream that has to be

downloaded in the PRR at any time, and once this is defined, the reconfiguration

controller is in charge of the reconfiguration process without the need of any further

action by the master CPU. Once the reconfiguration is done, the reconfiguration controller

notifies the end of the task to the CPU, and the master CPU continues driving the AFAS

application program flow. The soft-core processor (master CPU) has been configured to

operate at a maximum frequency of 100MHz, and the hardware coprocessors instantiated

in the FPGA are designed to operate at either 100MHz or 50MHz depending on the

specific task.

The required skills to develop any design based on FPGAs or SoPCs are more demanding
than those needed to develop purely software applications. Some background on electronic
circuits and programmable logic design, as well as the knowledge of one hardware
description language like Verilog or VHDL is required to develop applications based on
such kind of architectures. Similarly to what happens with software programming
languages and their libraries of functions, some libraries of Intellectual Property
descriptions (IPs) of certain functionalities are available to speed up the development of
designs based on programmable logic. Moreover, specific EDA tools dependent on the
device vendor are normally available to reduce the development cycles when designing
with FPGA devices, and the designer needs to get familiar with the processing flow of each
automated tool.
Although commercial non-volatile FPGAs have enjoyed great success as development,

rapid-prototyping and testing platforms, their use in certain embedded applications has

been limited due to their relative high cost in comparison with other solutions. At this level

(using the FPGA to implement a static design which keeps invariant during all its

execution), the design flow and development tools have been successfully deployed by

many vendors (Altera, Actel, Atmel, Lattice, Xilinx, etc.) since decades. However, if the

FPGA resources become static after configuration, the device turns into an expensive,

power-hungry, low-performance on-field programmable ASIC solution. For FPGAs to

become more practical as end-use devices it has been promoted their dynamic

reconfiguration capability, i.e., once powered up, the FPGA can be partially reconfigured at

run-time, while other part of the FPGA continues operating uninterrupted and

automatically maintaining state information between two consecutive reconfigured

contexts. In this way, the functions processed in the FPGA can be sequentially swapped in a

similar way to the program flow of a CPU-based software application. For this more flexible

FPGA conception, however, the designer needs to possess some specific background in

those techniques linked to the exploitation of dynamic partial reconfiguration. Moreover,

the development tools that automate the new design flow for those applications based on

run-time reconfigurable hardware have been an open issue since a long time ago. Recently,

however, this landscape experienced a great and definitive change. Xilinx Inc. pushed a

definitive impulse to that long-time open issue related to the software tools needed in the

PR design flow. Just in 2006, Xilinx presented the new PR design flow fully supported in

www.intechopen.com

Exploiting Run-Time Reconfigurable Hardware
in the Development of Fingerprint-Based Personal Recognition Applications

259

Virtex-4 devices. The new top-down design flow eliminated the weakest points highlighted

in the previous flows. While still unreleased to the general public, these tools are nowadays

presented in the way of an early access version restricted to a limited number of qualified

partners who deploy them and contribute feedback to their improvement. This research

work is focused on Virtex-4, the first device equipped with a level of PR performance (both

technological aspects and supported development tools) acceptable for commercial

perspectives. Once finished all the development of our proof-of-concept application, authors

think that the current PR flow is today an accepted practice for expert developers with a

deep knowledge of the FPGA low-level configuration architecture and, then, it is ready for

industrial use. The current Xilinx toolset available in the Xilinx Early Access Partial

Reconfiguration (EAPR) lounge and used in this work made possible to automate all the PR

design methodology and finish all the phases of the design flow at a reasonable time with

no concerns. The toolset used in this work is composed of EDK 9.2.02i to build the PLBv46

bus processor system, PlanAhead 9.2.7 to constrain the floorplan in a friendly graphical

way, ISE 9.2.04i_PR12 to generate the bitstreams, as well as ChipScope Pro 9.2i to facilitate

the system debugging. In Fig. 13 it is shown all the process to generate both partial and full

bitstreams to be downloaded at run-time into the FPGA.

The application is split into a set of sequential stages, and each stage is partitioned into

hardware and software tasks. Only those tasks demanding a high computational power or

those time-critical tasks that would take too much time if executed by the system CPU are

ported to hardware. Specific hardware coprocessors are instantiated in the reconfigurable

region of the device to execute such tasks meanwhile the remaining and computationally

less expensive tasks are assigned to the system CPU, which furthermore acts as the master

processor in charge of driving the application, scheduling the tasks, monitoring the

execution flow, and handling the reconfiguration of the PRR when needed along the

authentication process. Those partially or fully pipelined hardware coprocessors

instantiated in the dynamically reconfigurable region of the FPGA play the role of slave

processors in charge of executing those tasks commanded by the master CPU. The dynamic

hardware coprocessors are present only when they are needed, thus the same hardware

resources available in the reconfigurable region are reused to instantiate different circuits in

the application. In Fig. 14 it is shown how the different coprocessors are downloaded into

the FPGA to reach a time-multiplexing of the resources placed in the defined PR region of

the FPGA. This work results one of the first contributions in the scientific literature that

exploits the Xilinx Early Access Partial Reconfiguration electronic design automation tools.

In Section 5 the algorithm has been ported to the presented embedded system (referenced as
Embedded System Platform 3 in Tables 1, 2 and 3) and executed purely by software by its
MicroBlaze core processor alone. No dedicated hardware was implemented in that scenario,
and the application was not able to meet the demanded real-time performance. However,
as a result of that implementation under a purely software-based embedded platform, it
has been possible to identify those time-expensive computational tasks that constrain the
real-time performance of the application in the embedded system. Those time-critical
tasks identified in Section 5 are now transferred to hardware to speed up the processing.
Owing to the limited resources available in the programmable logic device, up to 9
different reconfigurable contexts have been needed in order to instantiate all the
hardware coprocessors along the execution time. Outstanding real-time performances are
achieved.

www.intechopen.com

(bus macros)

.xmp
BSB-wizard

(EDK)
.ucf.mss .mhs

EDK
library .mss .mhs

libgen
(XPS) .a.h

.s .a
as-assembler

(GNU)

.h .c .a .h .a .o
gcc-compiler

(GNU)
ld-linker
(GNU)

objcopy
(GNU).elf .hex

.mhs
platgen
(XST) .bmm.vhd

.vhd.nmc .bmm.vhd
synthesis
(XST) .bmm.ngc

.xco
coregenerator

(ISE) .ngc

.ucf
hdbuild
(PlanAhead) .ucf

.bmm.ngc
ngdbuild
(XST) .ngd.bmm.ngc .ucf

MAP
(XST)

PAR
(XST).ncd .ncd

.nmc .vhd .ngc
synthesis
(XST)

.xco
coregenerator

(ISE) .ngc

.ucf
hdbuild
(PlanAhead) .ucf

.ngc.ngc
ngdbuild
(XST) .ngd

MAP
(XST)

PAR
(XST).ncd .ncd

bitgen
(XST) .bit

.bmm.elf

EDK 9.2.02i

EDK 9.2.02i

EDK 9.2.02i

EDK 9.2.02i

ISE 9.2.04i

ISE 9.2.04i

ISE 9.2.04i_PR12

PlanAhead 9.2.7

PlanAhead 9.2.7 – ISE 9.2.04i

ISE 9.2.04i

ISE 9.2.04i

PlanAhead 9.2.7

PlanAhead 9.2.7 – ISE 9.2.04i

.ucf

.ucf

(static.used)

(arcs.exclude)

(top.ucf)

.ucf
floorplanner
(PlanAhead) .ucf PlanAhead 9.2.7

.ucf

floorplanner
(PlanAhead) PlanAhead 9.2.7.ucf .ucf

ISE 9.2.04i

(HW partial bitstream STATIC)

.ncd
merg
(P

.ncdISE 9.2.04i_PR12

USER FILES

PR
library

(bus macros)

.xmp.xmp
BSB-wizard

(EDK)
BSB-wizard

(EDK)
.ucf.ucf.mss.mss .mhs.mhs

EDK
library

EDK
library .mss.mss .mhs.mhs

libgen
(XPS)
libgen
(XPS) .a.a.h.h

.s.s .a.a
as-assembler

(GNU)
as-assembler

(GNU)

.h.h .c.c .a.a .h.h .a.a .o.o
gcc-compiler

(GNU)
gcc-compiler

(GNU)
ld-linker
(GNU)

ld-linker
(GNU)

objcopy
(GNU)
objcopy
(GNU).elf.elf .hex.hex

.mhs.mhs
platgen
(XST)
platgen
(XST) .bmm.bmm.vhd.vhd

.vhd.vhd.nmc.nmc .bmm.bmm.vhd.vhd
synthesis
(XST)

synthesis
(XST) .bmm.bmm.ngc.ngc

.xco.xco
coregenerator

(ISE)
coregenerator

(ISE) .ngc.ngc

.ucf.ucf
hdbuild
(PlanAhead)
hdbuild
(PlanAhead) .ucf.ucf

.bmm.bmm.ngc.ngc
ngdbuild
(XST)

ngdbuild
(XST) .ngd.ngd.bmm.bmm.ngc.ngc .ucf.ucf

MAP
(XST)
MAP
(XST)

PAR
(XST)
PAR
(XST).ncd.ncd .ncd.ncd

.nmc.nmc .vhd.vhd .ngc.ngc
synthesis
(XST)

synthesis
(XST)

.xco.xco
coregenerator

(ISE)
coregenerator

(ISE) .ngc.ngc

.ucf.ucf
hdbuild
(PlanAhead)
hdbuild
(PlanAhead) .ucf.ucf

.ngc.ngc.ngc.ngc
ngdbuild
(XST)

ngdbuild
(XST) .ngd.ngd

MAP
(XST)
MAP
(XST)

PAR
(XST)
PAR
(XST).ncd.ncd .ncd.ncd

bitgen
(XST)
bitgen
(XST) .bit.bit

.bmm.bmm.elf.elf

EDK 9.2.02i

EDK 9.2.02i

EDK 9.2.02i

EDK 9.2.02i

ISE 9.2.04i

ISE 9.2.04i

ISE 9.2.04i_PR12

PlanAhead 9.2.7

PlanAhead 9.2.7 – ISE 9.2.04i

ISE 9.2.04i

ISE 9.2.04i

PlanAhead 9.2.7

PlanAhead 9.2.7 – ISE 9.2.04i

.ucf.ucf

.ucf.ucf

(static.used)

(arcs.exclude)

(top.ucf)

.ucf.ucf
floorplanner
(PlanAhead)
floorplanner
(PlanAhead) .ucf.ucf PlanAhead 9.2.7

.ucf.ucf

floorplanner
(PlanAhead)
floorplanner
(PlanAhead) PlanAhead 9.2.7.ucf.ucf .ucf.ucf

ISE 9.2.04i

(HW partial bitstream STATIC)

.ncd.ncd
merg
(P

merg
(P

.ncd.ncdISE 9.2.04i_PR12

USER FILES

PR
library

PR
library

F
ig

. 13. P
R

 d
esig

n
 flo

w
 (E

D
A

 to
o

ls, so
u

rce co
d

e files an
d

 resu
ltan

t b
itstream

s)

w
w

w
.in

te
c
h
o
p
e
n
.c

o
m

Exploiting Run-Time Reconfigurable Hardware
in the Development of Fingerprint-Based Personal Recognition Applications

261

Tables 5 and 6 provide the execution time performance of the application in both enrolment

and authentication stages in two different scenarios: (i) when the application is executed

purely by software under the system CPU alone, and (ii) when the application is

implemented by means of hardware-software co-design techniques making use of the

dynamic reconfigurability performance of the suggested FPGA. The final partitioning of the

application into hardware and software tasks is also detailed. In the second scenario all

tasks are ported to hardware except the fingerprint acquisition process, which is kept as

software task under the action of the system CPU. The FPGA resource usage in both the

static and reconfigurable regions is shown in Table 7.

Task
ID

Processing Stage
Software-only

Implementation (1)

Hardware-Software
Implementation

Sw-only Task Hw-Sw Task

Task 0 Fingerprint acquisition 500.000 ms 500.000 ms

Task 1 Image segmentation 232.046 ms 0.672 ms

Task 2
Reconfiguration 1 → 2 0.841 ms

Image normalization 33.087 ms 0.850 ms

Task 3
Reconfiguration 2 → 3 1.045 ms

Image isotropic filtering 512.171 ms 2.563 ms

Task 4
Reconfiguration 3 → 4 1.025 ms

Field orientation 285.485 ms 0.669 ms

Task 5
Reconfiguration 4 → 5 1.046 ms

Filtered field orientation 19.143 ms 0.419 ms

Task 6

Reconfiguration 5 → 6 1.107 ms

Image directional filtering
and binarization

656.043 ms 2.465 ms

Task 7
Reconfiguration 6 → 7 1.045 ms

Image smoothing 253.553 ms 0.447 ms

Task 8
Reconfiguration 7 → 8 0.974 ms

Image thinning 416.316 ms 0.902 ms

Task 9

Reconfiguration 8 → 9 0.943 ms

Minutiae extraction and
minutiae filtering

25.699 ms 4.919 ms

Total Execution Time (2): 2433.543 ms 21.932 ms
(1) : The software-only execution times are slightly higher than in the Embedded System 3 scenario of
Table 2 because of the reduction of the cache memory size in this new scenario in order to allocate
additional memories in the hardware coprocessors (only 8KB of Instruction and Data caches are
instantiated in MicroBlaze interface instead of the initial 32KB Instruction cache and 64KB Data cache).
(2) : Task 0 is not included in the computation of the total execution time.

Table 5. Execution time performance reached in the enrolment stage: SW-only versus HW-
SW implementations

www.intechopen.com

Recent Application in Biometrics

262

Task
ID

Processing Stage
Software-only

Implementation (1)

Hardware-Software
Implementation

Sw-only Task Hw-Sw Task

Task 0 Fingerprint acquisition 500.000 ms 500.000 ms

Task 1 Image segmentation 232.046 ms 0.672 ms

Task 2
Reconfiguration 1 → 2 0.841 ms

Image normalization 33.087 ms 0.850 ms

Task 3
Reconfiguration 2 → 3 1.045 ms

Image isotropic filtering 512.171 ms 2.563 ms

Task 4
Reconfiguration 3 → 4 1.025 ms

Field orientation 337.419 ms 0.669 ms

Task 5
Reconfiguration 4 → 5 1.046 ms

Filtered field orientation 22.178 ms 0.419 ms

Task 6

Reconfiguration 5 → 6 1.107 ms

Image directional filtering
and binarization

774.750 ms 2.465 ms

Task 7
Reconfiguration 6 → 7 1.045 ms

Image smoothing 287.507 ms 0.447 ms

Task 8
Reconfiguration 7 → 8 0.974 ms

Image thinning 417.350 ms 0.820 ms

Task 9

Reconfiguration 8 → 9 0.943 ms

Minutiae extraction and
minutiae filtering

32.497 ms 7.606 ms

Task A

Reconfiguration 9 → A 1.045 ms

Field orientation maps
alignment

139935.838 ms 157.671 ms

Task B

Reconfiguration A → B 1.035 ms

Minutiae alignment, feature
sets matching and
authentication decision

108.608 ms 20.737 ms

Total Execution Time (2): 142693.451 ms 205.025 ms

(1) : The software-only execution times are slightly higher than in the Embedded System 3 scenario of
Table 3 because of the reduction of the cache memory size in this new scenario in order to allocate
additional memories in the hardware coprocessors (only 8KB of Instruction and Data caches are
instantiated in MicroBlaze interface instead of the initial 32KB Instruction cache and 64KB Data cache).
(2) : Task 0 is not included in the computation of the total execution time.

Table 6. Execution time performance reached in the authentication stage: SW-only versus
HW-SW implementations

www.intechopen.com

Exploiting Run-Time Reconfigurable Hardware
in the Development of Fingerprint-Based Personal Recognition Applications

263

Task
ID

Processing Stage
Hardware Resources

1-bit Flip
Flop

4-input
LUT

1-bit
RAM

DSP
Block

–
Application flow
(static design)

7005 8888 755712 4

Task 0 Fingerprint acquisition – – – –

Task 1 Image segmentation 4978 4612 147456 20

Task 2 Image normalization 371 334 0 8

Task 3 Image isotropic filtering 5275 5831 92160 28

Task 4 Field orientation 3339 3166 92160 8

Task 5 Filtered field orientation 2857 2983 129024 0

Task 6
Image directional filtering
and binarization

5462 4166 313344 29

Task 7 Image smoothing 4892 3265 147456 0

Task 8 Image thinning 1013 2821 239616 0

Task 9
Minutiae extraction and
minutiae filtering

487 3379 55296 0

Task A
Field orientation maps
alignment

2632 8943 387072 0

Task B
Minutiae alignment, feature
sets matching and
authentication decision

642 4379 258048 5

Total Design Resources: 38953 52767 2617344 102

Total Device Resources: 21504 21504 1327104 48

Table 7. FPGA resources usage in each of the application contexts

=+ →

HARDWARE COPROCESSORS
PARTIAL BITSTREAMS

SYSTEM CPU

STATIC BITSTREAM

HW/SW PROCESSING STAGES

FULL BITSTREAMS

FPGA FLOORPLAN

VIRTEX-4 XC4VLX25

=+ →

HARDWARE COPROCESSORS
PARTIAL BITSTREAMS

SYSTEM CPU

STATIC BITSTREAM

HW/SW PROCESSING STAGES

FULL BITSTREAMS

FPGA FLOORPLAN

VIRTEX-4 XC4VLX25

Fig. 14. Temporal partitioning of the application in sequential tasks running in the PRR of a
FPGA. The bitstream gets composed of a static region and a reconfigurable region (left).
Spatial partitioning of the application floorplanned in both static and reconfigurable regions
on the Xilinx Virtex-4 XC4VLX25 device (right)

www.intechopen.com

Recent Application in Biometrics

264

The physical resources needed to implement each of the hardware coprocessors are detailed.
From the resources usage shown in Table 7 it can be deduced that the reconfigurability
performance of the FPGA permits a notorious reduction of the amount of resources needed
in the programmable logic device in comparison with the amount of resources that would
be needed in case of using a non-reconfigurable FPGA, where all coprocessors would be
instantiated permanently in a static way. Thanks to the reconfigurability performance
exhibited by the suggested device and the hardware-software partitioning of the application
it has been possible to develop one application that demands 38953 1-bit flip-flops, 52767 4-
bit LUTs, 2617344 1-bit RAM cells and 102 DSP blocks with one device that features 21504 1-
bit flip-flops, 21504 4-bit LUTs, 1327104 1-bit RAM cells and 48 DSP blocks. The reuse of the
hardware resources allows reducing the amount of resources at the expense of the
reconfiguration overhead, which is also minimized by the design of an efficient
reconfiguration controller. The amount of needed resources and the reached performances
exhibited by the suggested run-time reconfigurable embedded system clearly outperform
those featured by one PC platform. The total authentication execution time results in 205.025

ms, which leads to a speed up of ×686.58 (or ×695.980 depending on the used cache) when
compared against the purely software implementation of the recognition algorithm under

the same embedded system platform, and a speed up of ×15.97 with regard to the
application execution time featured by the PC platform presented in Section 5.

8. Conclusion

The successful spread of products and services that exploit the advantages provided by
fingerprint biometrics in both public and private sectors depend on several factors today.
Although the universality, distinctiveness and permanence characteristics of human
fingerprints are proven facts that make them reliable signs of identity, the acceptance of
automated fingerprint-based personal recognition systems, focused on either identification
or authentication purposes, is constrained by social and technical factors. Among the social
factors, the most important ones refer to the security and privacy concerns related to the
protection of the user’s information integrity; and among the technical factors, the most
limiting ones refer to the accuracy of the recognition system, the authentication response
time and the cost of the whole application. All they are barriers to the broad adoption of that
kind of systems worldwide. If fingerprint recognition technology continues to mature and
efficient and reliable systems able to overcome all those barriers are designed, automated
fingerprint-based recognition can have a profound influence on the way we conduct our
daily business in the near future.
As far as authors know at the moment of publication of the present work, there does not
exist in the market any AFAS application based on dynamically reconfigurable hardware.
Flexible and dynamically reconfigurable hardware allows a more efficient usage of the
system resources by having hardware present in the FPGA device only when it is in use.
Thus given a fixed size for the FPGA, it is possible to instantiate specific coprocessors at a
given time, and to eliminate them after they have been used in order to allow further
coprocessors to be instantiated making use of the same FPGA resources in the following
stages of the application. This technique allows reducing the overall hardware system size at
nearly null cost –FPGA reconfiguration overhead–.
The results presented in this work prove that the suggested system architecture can be an
efficient alternative to those existing AFAS based on either expensive personal computer

www.intechopen.com

Exploiting Run-Time Reconfigurable Hardware
in the Development of Fingerprint-Based Personal Recognition Applications

265

platforms or embedded systems that make use of MPUs, GPUs, DSPs, ASSPs or ASICs. This
novel approach, focused on the exploitation of run-time reconfigurable FPGA devices and
hardware-software co-design techniques, pursues two main objectives: (i) to meet the
required expectations for the application, which means to fulfil the functionality demands
(accurate FAR/FRR personal recognition rates) with the proper response time (real-time)
and reliability levels (protection against fraudulent attacks); and (ii) to meet those
requirements with the minimum possible cost for the system, and with the proper flexibility
to allow future changes/improvements in the personal recognition algorithm (added-value).
There are endless uses for embedded systems based on SoPC or FPGA devices in the
consumer, military, aerospace, automotive, communications, and industrial markets
worldwide. In this direction, the proposed embedded system architecture, based on run-
time reconfigurable hardware, is proven to be a valid and cost-effective solution that
encourages the reduction of system resources in the physical implementation of those
complex computational applications demanding high processing power and real-time
performances such as the ones resulting from the biometrics field. As computer technology
continues to advance and economies of scale reduce costs, fingerprint biometric systems
based on the suggested topology can become a more efficient and cost-effective means for
personal verification in both public and private sectors. The proposed system architecture
can thus help in paving the way for the exploitation of biometric systems all over the world.

9. References

Becker, J.; Hübner, M.; Hettich, G.; Constapel, R.; Eisenmann, J. & Luka, J. (2007). Dynamic
and Partial FPGA Exploitation. Proceedings of the IEEE, Vol. 95, No. 2, (February
2007), pp. 438-452, ISSN 0018-9219

Fons, M.; Fons, F. & Cantó, E. (2010). Fingerprint Image Processing Acceleration through
Run-Time Reconfigurable Hardware. IEEE Transactions on Circuits and Systems II:
Express Briefs, Vol. 57, No. 12, (December 2010), pp. 991-995, ISSN 1549-7747

FPC2020 ASIC Fingerprint Processor and FPC-AM3 Biometric Module, (n.d.), 2011,
Available from http://www.fingerprints.com

FxIntegrator Fingerprint Recognition Module, (n.d.), 2011, Available from
http://www.biometrika.it

Liu-Jimenez, J.; Sanchez-Reillo, R. ; Lindoso, A. & Miguel-Hurtado, O. (2006). FPGA
Implementation for an Iris Biometric Processor, Proceedings of IEEE International
Conference on Field Programmable Technology, pp. 265-268, ISBN 0-7803-9729-0,
Bangkok, Thailand, December 13-15, 2006

Lopez-Ongil, C.; Sanchez-Reillo, R. ; Liu-Jimenez, J.; Casado, F.; Sánchez, L. & Entrena, L.
(2004). FPGA Implementation of Biometric Authentication System Based on Hand
Geometry, Proceedings of International Conference on Field Programmable Logic and
Appplication, pp. 43-53, LNCS 3203, Antwerp, Belgium, August 30 – September 1,
2004

Maio D. ; Maltoni, D. ; Cappelli, R. ; Wayman, J.L. & Jain, A.K. (2004). FVC2004 : Third
Fingerprint Verification Competition, Proceedings of International Conference on
Biometric Authentication, pp. 1-7, LNCS 3072, Hong Kong, China, July 15-17, 2004

Maltoni, D.; Maio, D.; Jain, A.K. & Prabhakar, S. (2009). Handbook of Fingerprint Recognition,
Second Edition, Springer-Verlag, ISBN 978-1-84882-253-5, London, England

www.intechopen.com

Recent Application in Biometrics

266

ML67Q5250 Fingerprint Authentication MCU, (n.d.), 2011, Available from
http://www.okisemi.com

MV1210 and MV1250 Bioscrypt Fingerprint Modules, (n.d.), 2011, Available from
http://www.l1id.com

Nanni, L. & Lumini, A. (2009). Descriptors for Image-based Fingerprint Matchers. Experts
Systems with Applications, Vol. 36, No. 10, (December 2009), pp. 12414-12422, ISSN
0957-4174

One Touch SDK. (n.d.), 2011, Available from http://www.digitalpersona.com
Pavan Kumar, A.; Kamakoti, V. & Das, S. (2007). System-on-Programmable-Chip

Implementation for On-Line Face Recognition. Pattern Recognition Letters, Vol. 28,
No. 3, (February 2007), pp. 342-349, ISSN 0167-8655

plusID Universal Biometric Devices (n.d.), 2011, Available from http://www.privaris.com
SDA Stand-Alone Fingerprint Recognition Modules (n.d.), 2011, Available from

http://www.secugen.com
SecurASIC Chip, (n.d.), 2011, Available from http://www.cogentsystems.com
SFM Series Fingerprint Modules, (n.d.), 2011, Available from http://www.supremainc.com
TCD50D Digital ID Hardware Engine, (n.d.), 2011, Available from http://www.upek.com
TMS320 Texas Instruments DSP Platforms, (n.d.), 2011, Available from http://www.ti.com
Verifinger SDK. (n.d.), 2011, Available from http://www.neurotechnology.com
Yang, S.; Sakiyama, K. & Verbauwhede, I. (2006). Efficient and Secure Fingerprint

Verification for Embedded Devices. EURASIP Journal on Applied Signal Processing,
Vol. 2006, No. 3, (January 2006), pp. 1-11

Yang, J.C. & Park, D.S. (2008). A Fingerprint Verification Algorithm Using Tessellated
Invariant Moment Features. Neurocomputing, Vol. 71, No. 10-12, (June 2008), pp.
1939-1946, ISSN 0925-2312

www.intechopen.com

Recent Application in Biometrics

Edited by Dr. Jucheng Yang

ISBN 978-953-307-488-7

Hard cover, 302 pages

Publisher InTech

Published online 27, July, 2011

Published in print edition July, 2011

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

In the recent years, a number of recognition and authentication systems based on biometric measurements

have been proposed. Algorithms and sensors have been developed to acquire and process many different

biometric traits. Moreover, the biometric technology is being used in novel ways, with potential commercial and

practical implications to our daily activities. The key objective of the book is to provide a collection of

comprehensive references on some recent theoretical development as well as novel applications in biometrics.

The topics covered in this book reflect well both aspects of development. They include biometric sample

quality, privacy preserving and cancellable biometrics, contactless biometrics, novel and unconventional

biometrics, and the technical challenges in implementing the technology in portable devices. The book consists

of 15 chapters. It is divided into four sections, namely, biometric applications on mobile platforms, cancelable

biometrics, biometric encryption, and other applications. The book was reviewed by editors Dr. Jucheng Yang

and Dr. Norman Poh. We deeply appreciate the efforts of our guest editors: Dr. Girija Chetty, Dr. Loris Nanni,

Dr. Jianjiang Feng, Dr. Dongsun Park and Dr. Sook Yoon, as well as a number of anonymous reviewers.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Francisco Fons and Mariano Fons (2011). Exploiting run-time reconfigurable hardware in the development of

automatic fingerprint-based personal recognition applications, Recent Application in Biometrics, Dr. Jucheng

Yang (Ed.), ISBN: 978-953-307-488-7, InTech, Available from: http://www.intechopen.com/books/recent-

application-in-biometrics/exploiting-run-time-reconfigurable-hardware-in-the-development-of-automatic-

fingerprint-based-person

© 2011 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.

