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1. Introduction  

In the last decade, affordable computing power has become available on platforms intended 

for low-power, mobile applications. For example, Gumstix Overo products integrate 

WiFi/Bluetooth connectivity, microSD storage, and 600 MHz Texas Instruments OMAP 

(Open Multimedia Application Platform) 35xx processors with up to 256 MB of flash 

memory/SDRAM, offering laptop-like resources and performance in a form factor of a stick 

of gum (Chaoui, et al., 2001). This speaks to the potential for wearable, wireless medical 

devices based on such products to process signals on-board; functionality that previously 

required expensive, bulky, benchtop/bedside equipment. These computational capabilities 

also show promise for smart devices that implement context-based intelligence and on-

device expert systems for clinical decision making. This move toward highly-capable and 

intelligent mobile medical devices drives the need for verification tools, data integrity 

checkers, and role-based security mechanisms that can also be implemented at the 

embedded level, since the potential usage scenarios and associated protection needs are 

numerous in comparison with legacy medical device applications in controlled hospital and 

home care settings. For example, many implementations of personal and body area 

networks have been developed to facilitate ambulatory monitoring of health status, where 

physiological parameters such as heart rate, heart activity, blood oxygen saturation, and 

respiration rate can be gathered through the use of mobile, wearable electrocardiographs 

and pulse oximeters (Jovanov, et al., 2009; Galeottei, et al., 2008; Chuo, et al., 2010). These 

data need to be authenticated and checked for integrity before they are stored in electronic 

patient records, which implies the need for “owner-aware” devices that verify user identity 

as part of the data acquisition process (Warren, et al., 2005; Warren & Jovanov, 2006). Many 

biometric authentication protocols are computationally intensive and can well-utilize the 

emerging computational capabilities of low-power mobile devices. 

A broad range of biomedical data, from physiological signals/images to behavioral traits, 

has been explored for its biometric authentication and identification potential (Biel, et al., 

2001; Chan, et al., 2008; Doi & Yamanaka, 2004; Duc, et al., 1997; Elsherief, et al., 2006; 

Faundez-Zanuy, 2005; Irvine, et al., 2001; Israel, et al., 2005; Shen, et al., 2002; Sullivan, et al., 

2007; Yao & Wan, 2010; G. H. Zhang, et al., 2009). Image-based mechanisms that assess 
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fingerprints (Doi & Yamanaka, 2004; Matsumoto, et al., 2002), retinal patterns (Elsherief, et 

al., 2006), facial features (Daugman, 1998; Koh, et al., 1999; Philips, et al., 2003), and 

vein/palm structures (Doi & Yamanaka, 2004) are the leading biometric modalities used 

today for identity verification. Recently, one-dimensional physiological signals such as 

electrocardiograms (ECGs) (Agrafioti & Hatzinakos, 2008a, 2008b; Biel, et al., 2001; Israel, et 

al., 2005; Kyoso & Uchiyama, 2001; Micheli-Tzanakou, et al., 2009; Nasri, et al., 2009; 

Plataniotis, et al., 2006; Saechia, et al., 2005; Shen, et al., 2002; Singh & Gupta, 2008; Yao & 

Wan, 2008, 2010), photoplethysmograms (PPGs) (Ludeman & Chacon, 1995; Ludeman & 

Chacon, 1996; Love, et al., 1997; Ma et al., 2006; Bao et al., 2005; Gu, et al., 2003; Gu & Zhang, 

2003; Wan, et al., 2007; Yao, et al., 2007) and electroencephalograms (EEGs) (Marcel & 

Millan, 2007) have garnered attention as promising biometric candidates based on the 

following thoughts:  

• In many cases, these signals are already acquired and stored as part of the healthcare 
delivery process. It is therefore sensible to utilize them as identification attributes 
because no additional user action or data gathering is required, as is the case with most 
other biometric modalities. In other words, authentication, identification, or verification 
can occur behind the scenes even without subject awareness (Warren & Jovanov, 2006; 
Warren, et al., 2005). Further, no additional hardware would be required to implement 
this feature, which implies that biometric features can be added to the system without 
incurring significant additional device cost. The efficiency of this approach in terms of 
care delivery workflow, coupled with the ease of use and economic sensibility of such 
tools, should lead to increased technology acceptance by patients and providers.  

• Since they represent an individual’s underlying physiological status, these signals may 
be less sensitive to environmental factors that affect other biometric parameters, thereby 
avoiding substantial deteriorations in biometric performance when fully controlled 
environments are unobtainable. For example, environmental noise unavoidably 
interferes with voice-based biometric systems (Ming, et al., 2007). In such cases, costly 
environmental improvements are often required to ensure that identification systems 
work properly.    

• The use of physiological signals for identification or verification can help to prevent 
failure to enroll (FTE) issues that may occur when a subject does not possess a 
particular biometric. Most current biometric approaches are affected by this. In 
fingerprint identification, for example, it has been estimated that fingerprints from up 
to 4% of the population cannot be used for identification purposes due to the poor 
quality of the fingerprint ridges (Jain, et al., 2004).  

• Some current biometric approaches are subject to forgery. Artificial fingerprints, for 
example, can be constructed to circumvent a fingerprint verification system. Unlike 
most current biometric data, which are extracted from “surficial” parts of the human 
body, physiological signals represent core internal behavior and are hard to emulate 
with tissue phantoms (Jain, et al., 2004). This “innerness” makes the identification 
process less prone to forgery, preventing imposters from disguising their true identity 
by changing these metric patterns.   

A number of research efforts have attempted to address these thoughts within the context of 

one-dimensional biomedical signals. This chapter provides an up-to-date review of this 

research, summarized from the following four perspectives: (1) the signals used for 

identification, with an emphasis on ECGs, (2) signal processing methods, (3) classification 
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methods, and (4) identification algorithm performance. As noted in (Matyas & Riha, 2003), 

“the main issue in biometric authentication systems is performance.”  High identification 

accuracy is critical for practical biometric technologies.  

This chapter also presents some of the authors’ research findings geared toward 

quantitatively evaluating the identification accuracy of ECG data as population size 

increases. It presents the design of a wearable electrocardiograph and the associated signal 

processing algorithms, followed by an assessment of identification-algorithm performance 

for this application. In the analysis, three distance measures were defined in the wavelet 

domain:  the Distance of Discrete Wavelet Coefficients (DDWC), the Distance of Continuous 

Wavelet Coefficients (DCWC), and the Ratio of the volume of Intersection to the volume of 

Union (RItU). Evaluation results for all three distance measures demonstrated consistent 

declination as the population grew to a size of 50. Possible causes for this performance drop 

are discussed. These experiments also recognized that distinguishable information from 

these signals may not be as prevalent as the unique data acquired using more popular 

modalities. In other words, the number of possible combinations for the patterns of the 

statistical attributes that can be extracted from these signals is limited. Based on these 

findings, the chapter suggests scenarios that ECGs can be utilized as the sole modality for 

biometric purposes or those they can serve as a supplemental tool to other modalities.  

2. ECG as a biometric modality: a systematic review 

Researchers have recognized for some time that ECGs contain innate human attributes (i.e., 

they reflect the electro-myocytic properties of the heart), so it seems sensible that each 

individual’s ECG may demonstrate his or her uniqueness and therefore be useful for 

identity verification. This section provides a detailed review of research geared toward the 

usefulness of ECGs as biometric indicators.  

Since the first such effort was reported in 1999 (Biel, et al., 1999), approximately 20 different 

groups have researched this interesting area (Israel, et al., 2005; Chan, et al., 2008; Biel, et al., 

2001; Yao & Wan, 2008; Zhang & Wei, 2006; Biel, et al., 1999; Boumbarov, et al., 2009; Chan, 

et al., 2006; Chiu, et al., 2008; Fatemian & Hatzinakos, 2009; Gahi, et al., 2008; Israel, et al., 

2003; Kim, et al., 2005; Kyoso, 2003; Kyoso & Uchiyama, 2001; Micheli-Tzanakou, et al., 2009; 

Nasri, et al., 2009; Plataniotis, et al., 2006; Shen, et al., 2002; Sufi & Khalil, 2008; Wang, et al., 

2006; Yao & Wan, 2010) – see Table 1. Most of these published works use a similar approach 

to present research findings. They first start with a brief description of the physiological 

origin of the ECG and its characteristics (e.g., P wave, QRS complex, and T wave) (Webster, 

1998). They then present the three primary steps in a typical classification process—feature 

selection, pre-processing, and classification (which usually includes enrollment/training 

and identification/testing). Finally, they draw optimistic conclusions from the classification 

results. Despite this consistency in presentation format, the projects themselves differ with 

regard to (a) ECG data sources, (b) data collection processes, (c) classification feature 

selection, and (d) classification methods adopted to realize the final identification results. 

Each is detailed below: 

• ECG Data Sources:  Multiple groups experimentally acquired ECG data from 
volunteers (Biel, et al., 1999 2001; Chan, et al., 2006; Chan, et al., 2008; Gahi, et al., 2008; 
Israel, et al., 2005; Israel, et al., 2003; Kim, et al., 2005; Kyoso, 2003; Kyoso & Uchiyama, 
2001; Sufi & Khalil, 2008; Wan & Yao, 2008; Wang, et al., 2006; Yao & Wan, 2008, 2010). 
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In these cases, experimental conditions were often well controlled: subjects were 
requested to rest for a period of time prior to data collection (Biel, et al., 2001; Chan, et 
al., 2008; Yao & Wan, 2008, 2010), with the exception of studies that examined the 
performance of the identification methods under conditions where heart rate was 
increased (Kim, et al., 2005). Some of these groups developed their own devices (Kyoso, 
2003; Kyoso & Uchiyama, 2001; Wan, et al., 2007; Yao & Wan, 2008), while others 
collected data with off-the-shelf ECG products (Sufi & Khalil, 2008; Chan, et al., 2008). 
Other non-experimental data sources were employed, as in (Agrafioti & Hatzinakos, 
2008a; Plataniotis, et al., 2006; Singh & Gupta, 2008; Agrafioti & Hatzinakos, 2008b), 
where ECG data were extracted from existing databases (e.g., PTB ("The PTB Diagnostic 
ECG Database") and MIT-BIH ("MIT-BIH Database Distribution"); both of these 
databases are available through the Internet for public research use. 

• Data Collection:  Some publications provide subject demographic data, including 

gender (Biel, et al., 2001; Kim, et al., 2005; Yao & Wan, 2008), age range (Biel, et al., 2001; 

Yao & Wan, 2008; Chan, et al., 2008; Kim, et al., 2005; Yao & Wan, 2010), and heart 

condition (Agrafioti & Hatzinakos, 2008a; Chiu, et al., 2008; Kim, et al., 2005; Plataniotis, 

et al., 2006; Singh & Gupta, 2008; Sufi & Khalil, 2008). However, few report complete 

demographic or health-condition information for participants. Furthermore, the time 

interval between subject enrollment and data collection, a critical element when 

determining the effectiveness of a biometric modality, is frequently overlooked (Chiu, 

et al., 2008; Gahi, et al., 2008; Israel, et al., 2005; Kim, et al., 2005; Kyoso, 2003; 

Plataniotis, et al., 2006; Saechia, et al., 2005; Sufi & Khalil, 2008).  Even studies that 

record this information often mention it vaguely (Chan, et al., 2008; Fatemian & 

Hatzinakos, 2009; Singh & Gupta, 2008) (see Table 1).  

• Selection of Classification Features:  Most investigators assess time domain features 

(e.g., time intervals between P, Q, R, S, and T waves, along with their amplitudes) (Biel, 

et al., 2001; Boumbarov, et al., 2009; Gahi, et al., 2008; Israel, et al., 2005; Kyoso, 2003; Z. 

Zhang & Wei, 2006) and angle information (Singh & Gupta, 2008). Others believe that 

post-transform features are more distinctive and will therefore improve identification 

performance. For example, wavelet transformation was used in (Chan, et al., 2006; 

Chan, et al., 2008; Chiu, et al., 2008; Yao & Wan, 2008, 2010) to find the wavelet 

coefficients and distances in the wavelet domain that optimally quantify the similarity 

between two ECGs. Autocorrelation coefficients are a third type of statistical feature 

under investigation (Agrafioti & Hatzinakos, 2008a; Plataniotis, et al., 2006). In addition 

to these three types of analytical information, the appearance of the ECG waveforms 

was added as a classification feature in (Wang, et al., 2006). Finally, after recognizing 

the difficulties encountered when delineating ECG cycles, some investigators extracted 

classification features without the need to detect fiducial points (Plataniotis, et al., 2006; 

Agrafioti & Hatzinakos, 2008a), where the DCT (Discrete Cosine Transform) approach 

did not rely on the accurate location of each ECG cycle. 

• Classification Algorithms:  As in other pattern recognition domains, numerous 
classification algorithms have been created for human identification based on ECGs, 
where algorithm performance varies widely. While most of these approaches used 
variations of a “distance” concept (e.g., Euclidean distance (Israel, et al., 2003; 
Plataniotis, et al., 2006) or Mahalanobis’ distance (Kyoso, 2003; Kim, et al., 2005) to 
quantify the similarities between the unknown data and the waveforms enrolled in the 
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database, the classification algorithms they adopted were different, including (a) classic 
linear discriminate analysis (LDA) (Agrafioti & Hatzinakos, 2008a; Chan, et al., 2008; 
Kim, et al., 2005; Kyoso, 2003; Wang, et al., 2006), (b) neural networks (Saechia, et al., 
2005; Shen, et al., 2002; Wan & Yao, 2008; Boumbarov, et al., 2009), and/or (c) voting 
after initial results were available from the first classification level (Israel, et al., 2005; 
Agrafioti & Hatzinakos, 2008b). Rather than use the intuitive distance concept, other 
investigators employed a sequential approach that employs a hidden Markov model 
(Boumbarov, et al., 2009) and a probabilistic, Bayesian-theorem-based approach (Z. 
Zhang & Wei, 2006). Both approaches obtained results comparable to distance-based 
methods.  

 
 

Group Year Subjects Time Span Success Rate 

Biel 2001 20 6 weeks 90-100% 

Kyoso 2003 9 N/A Wide range 

Shen 2002 20 N/A 80-95% 

Israel 2005 29 N/A 100% 

Kim 2005 10 N/A N/A 

Saechia 2005 N/A N/A 97% 

Zhang 2006 502 records Same datasets 82-97% 

Wang 2006 13 A few years 84.6% 

Plataniotis 2006 14 N/A 92.8-100% 

Chan 2008 50 > 1 day 95% 

Yao 2008 20 Hours to weeks 91.5% 

Agrafioti 2008 27 Mixed length 96%-100% 

Agrafioti 2008 14 A few years 85.6%-100% 

Sufi 2008 15 N/A 93-95% 

Gahi 2008 16 N/A 100% 

Singh 2008 25 Same time or unclear 98.5-99% 

Chiu 2008 45 N/A 100%  and 81% 

Table 1. Summary of research on ECG analysis as a biometric modality 

• Other Endeavors:  Unlike most of the aforementioned research, which sought better 
identification rates, other investigators wished to improve computational efficiency. 
They tried to reduce the number of necessary features by (1) selecting the most 
meaningful features after observing how each feature changed the classification results 
(Biel, et al., 2001; Agrafioti & Hatzinakos, 2008b) or (2) using methods such as principle 
component analysis (PCA) (Yao & Wan, 2008; Sufi & Khalil, 2008; Z. Zhang & Wei, 
2006; Yao & Wan, 2010).  
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3. ECG as a bioidentification modality: performance evaluation  

This section presents the authors‘ recent research on the performance and limitations of 
ECGs as biometric indicators, as well as other potential application fields.  

3.1 Data acquisition  
ECG data for this study were collected with an “in-house” device (see Fig. 1), and MATLAB 
scripts processed these data using wavelet-based approaches. Data collection and pre-
processing details were described in (Wan & Yao, 2008; Yao & Wan, 2010). Thirty 
participants (26 males and 4 females) with ages ranging from 18 to 51 years were recruited 
for data collection. A total of 121 datasets were collected from these subjects, where each 

subject participated in multiple ( 2 5iN≤ ≤ ) data collection sessions; consecutive sessions 

were a few weeks apart.  
 

 

Fig. 1. An “in-house“ ECG module for bioidentification data acquisition 

3.2 Signal preparation and feature extraction 
As specified in (Wan & Yao, 2008; Yao & Wan, 2010), the raw ECG signals were pre-
processed to remove signal noise, detect R waves, and normalize each signal to a pre-
defined length and amplitude range. Specifically, two major noise sources (low frequency 
signal drifts at around 0.06 Hz and higher frequency signal spikes at 60 Hz) were first 
filtered with “hard thresholding” after a scale 12 Daubechies’s db6 wavelet transform was 
applied to all of the heart beat cycles. Detailed wavelet parts at scales 2, 3, and 4 were 
reconstructed so that the R peaks could be located as the fiducial points to identify ECG 
cycles. Identified ECG cycles were interpolated to a pre-defined length for the convenience 
of future steps. Sixty consistent heartbeat cycles from each of the datasets were selected and 
their amplitudes were normalized to the range of [-1, 1]. In this step, data consistency was 
examined by calculating the Euclidean distance between the mean of each cycle and the 
mean of all cycles. 
A wavelet transform (Yao & Wan, 2008), similar to (Chan, et al., 2008; Chiu, et al., 2008), was 
applied to each processed time-domain signal, and then wavelet coefficients were calculated 
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for each cardiac cycle within that signal. Depending on the continuous or discrete wavelet 
transform applied, the number of coefficients varied, as discussed earlier when the specific 
measures were introduced. Six sets of wavelet coefficients (corresponding to sixty heart 
beats) were saved for each of the 121 ECG datasets. From this point on, the wavelet 
coefficients served as the “statistical features” and were manipulated for subsequent 
classification decisions. 
Out of the Ni coefficient sets obtained from each subject, one coefficient set (corresponding 

to one heart interval) was enrolled in the database, creating a database of 30 coefficient sets. 

The other Ni-1 coefficient sets (corresponding to Ni-1 heart intervals of the same subject) 

were used for classification tests:  121-30 = 91 coefficient sets.  

3.3 Measures of signal similarity/difference 
The goal of this exercise was to explore identification-algorithm performance as a function 
of test population size. Three distance measures were utilized to represent the level of 
similarity between the unknown wavelet coefficient set and the enrolled coefficient sets:  (1) 
Distance of Discrete Wavelet Coefficients (DDWC), (2) Distance of Continuous Wavelet 
Coefficients (DCWC), and (3) Ratio of Intersection to Union of continuous wavelet 
coefficients (RItU). The following paragraphs describe the three distance measures in detail. 

3.3.1 Distance of Discrete Wavelet Coefficients (DDWC) 
The wavelet distance proposed in (Chan, et al., 2008) was examined first (it was referred as 

WDIST in (Chan, et al., 2008)). This distance is notated here as DDWC to distinguish it from 

the distance obtained from a continuous wavelet transform. In this case, coefficients from a 

discrete wavelet transform were utilized for distance measure calculations. The DDWC is 

defined by 

 
0

1 1 0

p ,q p ,qQP
n

n p ,q
p q

c c
DDWC

max( c , T.H.)= =

−
=∑∑  (1) 

where 0
p ,qc  is the qth wavelet coefficient at the pth scale of the unknown coefficient set; p ,q

nc  is 

the qth wavelet coefficient at the pth scale of the enrolled coefficient set; P is the number of 

scales of the wavelet transform; and Q is the number of coefficients at a specific scale. T.H. is 

a pre-selected normalization constant. To obtain the DDWC measure, a scale 6, Bior1.1 

wavelet transform (Mallat, 1999) was applied to the pre-processed ECGs, yielding coefficient 

structures of 256 elements. The ‘Bior1.1’ basis function belongs to the Biorthogonal Wavelet 

Pairs wavelet family. The orthogonal discrete wavelet transform functions have excellent 

localization properties in both the time and frequency domains (Kharate, et al., 2007), and 

the coefficients obtained contain distinctive information. Note that the basis function chosen 

here is different from that in (Chan, et al., 2008), which used a db3 function.  

3.3.2 Distances of Continuous Wavelet Coefficients (DCWC) 
The discrete wavelet transform is usually implemented as a dyadic-orthogonal transform 
where a signal can be presented as a combination of elements in the orthogonal basis set 
without information redundancy. The continuous wavelet transform decomposes time-
domain signals into temporal-spectral components with continuous scale factors and 
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translation parameters. The coefficients obtained from a continuous wavelet transform 
depict the detailed, smooth transitions of the signal energy distribution along the time and 
frequency dimensions (see Fig. 2).   
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Fig. 2. A 3-D coefficient surface obtained from a continuous wavelet transform 

Assuming that the inclusion of the smooth transition of coefficients at different scales will 
yield better identification results, a distance of continuous wavelet coefficients (DCWC) is 
defined by 

 
( )( )
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0

P Q p ,q p ,q
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n

c c
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= =
−

=
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where 0
p ,qc is the qth wavelet coefficient at the pth scale of the unknown coefficient set; p ,q

nc is 

the qth wavelet coefficient at the pth scale of the enrolled coefficient set; P = 64 is the number 

of scales of the wavelet transform; and Q = 256 is the number of coefficients at a given scale. 

In this experiment, the continuous wavelet transform used the same basis function, Bior1.1, 

as was used in the discrete wavelet transform. Note that the denominator in Eq. (2) contains 

the maximum of the absolute value of the coefficients of the unknown subject. Experiments 

showed that this normalization could obtain better classification results than using the 

denominator in Eq. (1) and avoided the process of finding the threshold.  

3.3.3 Ratio of Volume of Intersection to Volume of Union (RItU) 
The waveform coefficients, when plotted as a mesh, form a 3-dimensional spatial surface as 
shown in Fig. 2. A more intuitive way to quantify the similarity of two signals is the ratio of 
the volume under the intersection of the two signals to the volume under the union of the 
two signals (see Fig. 3 for a graphical depiction of the intersection and union of two 2-D 
curves). The more two compared signals differ, the smaller the ratio. When the two signals 
are identical, the ratio is 1, and when the two signals do not overlap, the ratio is 0, implying 
that they are separate from each other and that the similarity between them is minimal. In 
addition to taking into account the distance between two coefficient sets, as in the other two 
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measures, the RItU measure also considers the coefficient locations over the temporal and 
frequency dimensions. This volume ratio is mathematically defined as 

 ( )T E T ERItU C , C / (C , C )= ∩ ∪  (3) 

where TC is the coefficient set to be tested, and EC  is one of the coefficient sets enrolled in 

the database. The intersection and union of the two coefficient sets are further defined by 

( )
1 1
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T E

i
p q

C , C c ,
= =
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and 

 ( ) 0
1 1

max
QP

p ,q p ,qT E
u u n

p q

C , C c ,  where c ( ABS(c ),ABS(c ))
= =

= =∑∑∪   (5) 

where the notation follows from Eq. (2) because the spatial surfaces used to calculate RItU 
were also determined from continuous wavelet transforms.  
 

 

Fig. 3. The intersection (gridded area) and union (all shaded areas) of two curves 

3.4 Evaluation of identification performance changes as population size increases 

The classification method used in this experiment finds the distances (D) (as defined in the 

previous section) from the to-be-tested coefficient set T
jC  ( )1 91j≤ ≤  to the coefficient sets 

E
kC ( )1 30k≤ ≤  enrolled in the database and uses these distances as the quantitative measure 

of signal difference/similarity. After all of the distances are compared, T
jC is classified to the 

closest enrolled subject iS . i.e., the unknown coefficient set: 

 T
j iC S→ , where   iji arg i minD=  (6) 

To evaluate the deterioration in accuracy as the test population size increases, a varied 
number (5, 10, 15, 20, 25, and 30) of subject waveforms were tested with the wavelet distance 
approach using the three difference/similarity measures introduced above. Coefficient sets 

Curve A
Curve B
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stored for testing purposes were randomly selected to perform identification tests. When a 
certain number (again, 5, 10, 15, 20, 25, or 30) of subject waveforms were tested, the total 
number of coefficient sets selected for testing could vary since the number of coefficient sets 
Ni for subject t could be different. The identification accuracy rate (AR) is defined as 

 S TAR D / D=  (7) 

where DS is the number of coefficient sets that have been successfully identified and DT is 
the total number of coefficient sets selected for testing.  
Repeated random sub-sampling was implemented to eliminate possible classification biases. 
A total of 20 trials with randomly selected unknown datasets were conducted for each case 
with a specific subject number (5, 10, 15, 20, and 25); only one test was conducted for the 30-
subject case since all of the subjects were examined. In each trial, wavelet coefficient sets 
were selected randomly from those set aside for testing and classified according to the three 
measures. The average accuracy and standard deviation for all trials, using the three 
difference/similarity measures, was examined to analyze the biometric performance trend. 

4. Experimental results  

Fig. 4 illustrates identification performances when the three distance definitions, DDWC, 
DCWC, and RItU are utilized to measure subject similarity/difference. Comparing the three 
approaches, it is obvious that DDWC outperforms the other two distance measures. The 
latter two methods (DCWC and RItU) generate similar results, where the accuracy rate from 
the DCWC method is slightly higher than the RItU method. More importantly, these plots 
demonstrate that the classification accuracies for all three measures decline consistently by 
12% as the number of test subjects increases from 5 to 30. Note also that, as the number of 
subjects grows, the standard deviation of the accuracy rate decreases (e.g., the DDWC 
method yields standard deviations of 6.6 and 2.3 for 5 and 25 subjects, respectively). This is 
true because more repeated datasets (and therefore a larger percentage of subjects) existed 
when larger numbers of subjects were incorporated.  
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Fig. 4. Identification accuracy rate with the three difference/similarity measures versus the 
number of test subjects 
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5. Discussion 

Possible causes for this performance drop can be identified. First, since signals such as ECGs 
are collected to provide patient health status and diagnose suspected illness, the signals are 
expected to show variations over time. Even for individuals whose health status does not 
change significantly over a period of time, normal circadian rhythms (on both a cycle-to-
cycle basis and over a longer time interval) coupled with changes in stress level, emotions, 
and activity will in aggregate create variations that a robust identification algorithm must be 
able to tolerate. For some physiological signals, the detection environment may be another 
critical factor. PPGs, for example, which are based on light intensity either transmitted 
through or reflected by tissue, are extremely sensitive to motion artifacts, in spite of multiple 
existing approaches to help remediate these artifacts. ECGs are also sensitive to motion 
artifact and can be easily corrupted by electromagnetic interference that exists in most 
mobile patient environments. Without compensation, such variations and artifacts 
ultimately make one-dimensional signals less than ideal for identification or verification. 
More consistent attributes uniquely associated with patients are then desired.  
These experiments also recognized that distinguishable information from these signals may 
not be as rich as the unique data acquired using popularly adopted modalities. In other 
words, the number of possible combinations for the patterns of the statistical attributes that 
can be extracted from these signals is limited. As the number of subjects increases beyond a 
certain number (20 to 30 in this case), the likelihood of having subjects whose signals are 
very similar increases significantly.  
Therefore, despite the advantages that one-dimensional physiological signals may hold with 
respect to biometric identity assessment, performance assessments from previous research 
remind one that caution is required when such data are utilized for identification, especially 
when the subject population is large. The authors believe that these signals hold clear 
potential for this purpose, with the following qualifiers:  

• The class of one-dimensional signals discussed here should be used with caution as a 
sole source of blind identification, primarily due to the less than desired uniqueness of 
the signal shapes and their time-dependent variations. However, when these signals are 
used as supplemental traits combined with other biometrics (e.g., in a data fusion 
approach), they are desirable due to the natural physical coupling between these 
various signal modalities, which is expected to improve the overall performance of the 
affiliated identification algorithms.  

• While these nontraditional biometric modalities may not offer sufficient identification 
accuracy as required for legitimate authentication (i.e., where the goal is to identify an 
unknown subject given a large number of existing datasets), they may be better suited 
for individual verification, where the newly gathered signal is only compared to a 
recent set of data, with the assumption that the subject’s identity is already inferred. 
Current verification processes (e.g., the two-stage process that requires something you 
have and something you know) usually seek information such as a 
password/passphrase, date of birth, home address, mother’s maiden name, etc. A 
verification approach with one-dimensional signals, such as the ones proposed here, 
circumvents this process by employing non-transferrable datasets already native to the 
user.  

• As the demand for long term state-of-health monitoring increases, medical sensors 
implemented on personal, wearable, or implanted platforms demand strict rules of 
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engagement to improve system interconnectivity and reliability so that they can be 
seamlessly woven into the user environment without requiring additional user 
intervention. Owner-aware sensors, or devices that recognize their owners based on an 
assessment of the data sets acquired from those individuals, are an appealing idea 
because they bolster security in the environment, minimizing their impact on normal 
human behavior, and increase the viability of the monitoring, diagnosis, and treatment 
process.   

• Although the performance of these identification algorithms requires improvements for 
large populations, some of these one-dimensional signals do offer fairly accurate 
classifications when the subject population is relatively small. This points to their 
feasibility for environments such as homecare settings or community health centers, 
both of which are vital to an aging population. In these applications, health data could 
be constantly or periodically collected, so identification performance deteriorations 
caused by long-term signal alterations are expected to be minimized. Indeed, these 
signal alterations may themselves provide trend data as an additional means to 
distinguish individuals.  

6. Conclusion  

This chapter recognizes several important questions that arise upon completion of a 
comprehensive review of existing research work that explores the possibility of using ECGs 
as waveforms for human identification. It answers one of these questions by investigating 
how identification performance changes as a function of subject population size. Using three 
wavelet coefficient-based distances to measure the similarity/difference between unknown 
datasets and those in a database, consistent performance trends were obtained from the 
three discrimination cases, confirming that accuracy declines as the population grows. This 
finding is a reminder that, although ECG-based authentication holds potential for 
applications where ECG data have already been acquired or stored, caution is needed when 
the population size is large.  
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