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1. Introduction 

Security in biometry is a prime concern of modern society. Identity theft is a growing 
problem in today’s interconnected world. To ensure a safe and secure environment 
biometrics is used today in many commercial, government and forensic applications. To 
ensure a high level of security of a biometric system we use Cryptographic algorithms. 
Though a number of bio-crypto algorithms have been proposed, they have limited practical 
applicability due to the trade-off between recognition performance and security of the 
template. Overall, these are very secure, however, they do have a weak point in terms of the 
procedure and storage of the crypto keys.  
Biometric authentication systems should have many exploitable crypto secure points that can 
be used to compromise the identification system within the optimization process. Biometric 
encryption with Jacobean Genus 2 Hyperelliptic curves is a security scheme that combines 
strong cryptographic algorithms with biometric authentication to provide enhanced security. 
This paper discusses the simple implementation Co-Z divisor addition formulae in a weighted 
representation of encryption systems for biometric software application. 
In this article the authors show a newly developed Co-Z approach to divisor scalar 
multiplication in Jacobean of Genus 2 Hyperelliptic curves over fields with odd 
characteristics in weighted coordinates for application in biometric-based authentication 
systems. We assess the performance of these biometric generation algorithms using Co-Z 
divisor. This approach is based upon improved additional  formulae of  weight  2  divisors  
in  weighted  divisor representation which, in  the most  frequent  cases are well  suited  to 
exponentiation algorithms based on Euclidean addition chains. 

2. Cryptographic applications 

The progress of civilization and the constantly increasing role of various technologies in 
human day-to-day activities has lead to the permanent development of access control 
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security systems for information and physical objects. A number of researchers have studied 
the interaction between biometrics and cryptogra-phy, two potentially complementary 
security technologies (Hao et al., 2005). For such systems, the importance of authentication 
and identification subsystems is undeniable. One of the approaches to the implementation 
of authentication and identification subsystems is biometric systems. 
The process of creating biometric systems of authentication and identification has solved a 
large variety of problems among which the assurance of confidentiality and integrity of 
biometric information, which is by no means unimportant. As a rule, cryptographic 
transformations are used – encryption and electronic digital signature (EDS).  The analysis, 
carried out by the authors, has shown the prospectivity of algebraic curves theory for the 
implementation of cryptographic transformations. 

2.1 Elliptic curves 

The usage of elliptic curves (EC) for cryptographic purposes was first suggested by (Koblitz, 
1987) and (Miller, 1985).  
Basiri et al. (2004) present two algorithms for the arithmetic of cubic curves with a totally 
ramified prime at infinity. The first algorithm, inspired by Cantor's reduction for 
hyperelliptic curves, is easily implemented with a few lines of code, making use of a 
polynomial arithmetic package. 
In his research, Koblitz (1989) has proved the possibility of usage of hyperelliptic curves 
(HEC) in cryptographic applications. Their difference from EC is that for HEC the group 
(Jacobian) of more complex structures should be considered – divisors instead of curve 
points. It is known that HEC have a variety of advantages over EC: being a richer source of 
the Abelian groups (Koblitz, 1989; Menezes and Wu, 1998) they also use a base field of a 
smaller size (from the Abelian group, the size of which is defined by product of the base 
field size by a curve genus).  

2.2 Hyperelliptic curves 

Hyperelliptic curve cryptosystems (HCC for short) is a generalization of ECC. It has been 

drawing the attention of more and more researchers in recent years. The problem of how to 

decrease the amount of addition and scalar multiplication on the Jacobians of hyperelliptic 

curves so that the implementation speed can be improved is very important for the practical 

use of HCC (Zhang et al., 2001). 

During the time in which HEC cryptosystems were restricted to academic interest only, they 

had no practical application due to the high complexity of software and hardware 

implementation, low performance, absence of in-depth studies in the field of cryptoanalysis 

of such cryptosystems and the absence of comprehensible algorithms of cryptosystem 

parameters generation.  Active review research of papers (Koblitz, 1989; Menezes et al., 

1998; Lange 2002c; Matsuo et al., 2001; Miyamoto et al., 2002; Takahashi et al., 2002; Sugizaki 

et al. 2002, etc) has allowed us to overcome the majority of the described difficulties. The 

authors of publications, offer a variety of approaches which increase the performance of 

HEC cryptosystems essentially, and bring them close to the EC cryptosystems. 

2.3 Genus 2 HEC cryptosystems over prime fields 

The given research is devoted to the development of the approach (Cohen et al., 1998) and to 
the improved efficiency of genus 2 HEC cryptosystems over prime fields. 

www.intechopen.com



Biometric Encryption Using Co-Z Divisor Addition Formulae in  
Weighted Representation of Jacobean Genus 2 Hyperelliptic Curves over Prime Fields 

 

169 

Scalar multiplication operation is used in encryption, decryption and electronic digital 
signature based on HEC. These computations are relatively expensive when implemented 
on low-power devices. A widely used standard method is the left-to-right binary method. In 
accordance with (Koblitz, 1989; Menezes et al., 1998; Lange 2002c; Matsuo et al., 2001; 
Miyamoto et al., 2002; Takahashi et al., 2002; Sugizaki et al. 2002; Lange, 2002; Kovtun and 
Zbitnev, 2004) the power consumption traces of divisor addition and doubling are not the 
same, they can easily be distinguished between these operations and derive the bit of scalar. 
The first method proposed, with resistance to the side channel attacks (SCA), is Coron’s 
dummy addition (CDA) (Coron, 1999). 
Several SCA-resistant scalar multiplication algorithms have been proposed that are faster 
than the CDA method. There are three basic approaches with SCA resistance: 

• The first is to use indistinguishable additions and doubling algorithms in scalar 
multiplication (Clavier and Joye, 2001). For example, Jacobi form and Hesse form of EC. 
However, this requires specially chosen EC and HEC curves and does not work for the 
standardized curves. 

• The second is the double-and-always-add approach. The CDA method is the simplest 
algorithm of this type. In paper (Okeya and Sakuri, 2000), the authors proposed to use 
the Montgomery form of EC and extended it to general curves (Brier and Joye, 2002). 

• The third approach is to use a special addition chain with a sequence of additions and 
doublings that does not depend on the bit information of the scalar (Izu and Takagi, 2002). 

In this paper, we are interested in scalar multiplication algorithms that do not require specially 
chosen curves and based on approach (Meloni, 2007) for genus 2 HEC over prime fields. 

3. Biometric cryptosystems 

In a generic cryptographic system the user authentication is possession based. That is, 
possession of the decrypting key is a sufficient evidence to establish user authenticity. 
Because cryptographic keys are long and random, (e.g., 128 bits for the advanced encryption 
standard (AES) (NIST, 2008; Stallings, 2003), they are difficult to memorize. As a result, the 
cryptographic keys are stored somewhere (for example, on a computer or a smart card) and 
released based on some alternative authentication (e.g., password) mechanism, that is, upon 
assuring that they are being released to the authorized users only. Most passwords are so 
simple that they can be easily guessed (especially based on social engineering methods) or 
broken by simple dictionary attacks (Klein, 1990). 
It is not surprising that the most commonly used password is the word “password”! Thus, the 
multimedia protected by the cryptographic algorithm is only as secure as the passwords 
(weakest link) used for user authentication that release the correct decrypting key(s). Simple 
passwords are easy to crack and, thus, compromise security; complex passwords are difficult 
to remember and, thus, are expensive to maintain. Users also have the tendency to write down 
complex passwords in easily accessible locations. Further, most people use the same password 
across different applications and, thus, if a single password is compromised, it may open 
many doors. Finally, passwords are unable to provide nonrepudiation; that is, when a 
password is shared with a friend, there is no way to know who the actual user is. This may 
eliminate the feasibility of countermeasures such as holding conniving legitimate users 
accountable in a court of law. Many of these limitations of the traditional passwords can be 
ameliorated by incorporation of better methods of user authentication. Biometric 
authentication (Jain et al., 1999; Maltoni et al., 2003) refers to verifying individuals based on 
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their physiological and behavioural characteristics such as face, fingerprint, hand geometry, 
iris, keystroke, signature, voice, etc. It is inherently more reliable than password-based 
authentication, as biometric characteristics cannot be lost or forgotten (cf. passwords being lost 
or forgotten); they are extremely difficult to copy, share, and distribute (cf. passwords being 
announced in hacker websites) and require the person being authenticated to be present.  
A brief comparison of some of the biometric identifiers based on seven factors is provided 

(Wayman, 2001):  

• universality (do all people have it?),  

• distinctiveness (can people be distinguished based on an identifier?),  

• permanence (how permanent is the identifier?), and  

• collectability (how well can the identifier be captured and quantified?) are properties of 

biometric identifiers.  

• performance (speed and accuracy), acceptability (willingness of people to use), and 

circumvention (foolproof) are attributes of biometric systems. 

4. Background 

Let's observe basic concepts of cryptosystems on HEC. More detailed information can be 
obtained from (Koblitz, 1989; Menezes and Wu, 1998). 

Let K  be a field and K  be the algebraic closure of K . Hyperelliptic curve C  of genus 1g ≥  

over K  is a set of points ( ),u v that satisfy the equation: 

 ( ) ( )2:C v h u v f u+ = ,  ,k u v⎡ ⎤⎣ ⎦  (1) 

and there are no solutions ( ),u v K K∈ ×  which simultaneously satisfy the equation (1) and 

the partial derivative equations with corresponding variables. 

 ( )2 0u h u+ = , ( ) ( ) 0h u v f u′ ′− =  (2) 

In case of genus 2 HEC, polynomials ( )f u and ( )h u  will be represented as:  

 ( ) 5 4 3 2
4 3 2 1 0f u u f u f u f u f u f= + + + + +  (3) 

and 

 ( ) 2
2 1 0h u h u h u h= + + , ,i jh f K∈ . (4) 

Divisor D  is a formal sum of points in C : 

..  p pPeC
D m P m Z= ∈∑ (5) 

where only a finite number of the Pm  are non-zero. 

Divisor 0D∈D  is a principal divisor, if div( )D R=  for some rational function *( )R K C∈ . 

The set of all principal divisors, denotes ( ) {div(F) : ( )}CP K F K C= ∈ , in curve C  over K , 

moreover ( )CP K  is a subgroup of 0
D . Generally ( ) ( )CP C P K=  is called a group of principal 

divisors of curve C . The quotient group 0( ) div ( ) ( )C C CJ K K P K=  is called the Jacobian of the 
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curve C  over K . The quotient group ( ) ( ) ( )0divJ C C P C=  is called Jacobian of the 

curve C . 
Furthermore, we will operate with divisors in the Mumford representation (Menezes, 1998): 

( )2
1 0 1 0,D x u x u v x v= + + + , deg deg 2v u< ≤ , ( ) ( ) 2|u f u h u v v− −   

 where ( )iD J C∀ ∈ , ( ) 2iweight D = , 1, 2i =  (6) 

The result 3 1 2D D D= +  will have a 3( ) 2weight D = , which helps to avoid consideration of 

alternative addition methods for divisors of different weight and with intersecting support 
(containing intersecting sets of points) (Lange, 2003;  Wollinger, 2004). 
HECC uses a divisor scalar multiplication operation: 

 
k

D D D k D+ + + = ⋅A'**(**)  (7) 

At the intermediate computation phase of scalar divisor multiplication (scalar multiplier in 

binary notation) the binary algorithm performs the divisor addition and doubling operation. 

The addition and doubling algorithms use field ( )pGF  multiplicative inversion, which is 

the most computationally intensive and space critical operation. Projective divisor 

representation (Miyamoto et al., 2002; Takahashi, 2002; Lange, 2002c) is one of the most 

popular approaches which allows saving of a field inversion. 
In her work Lange (2002c), suggested a weighted divisor representation, being the 
development of a projective approach. 
In weighted representation, the divisor D we can present as Lange (2002c):  

 ( )2
1 0 1 0,D x u x u v x v= + + +  (8) 

which is of the form of: 

 2 2
1 0 1 0 1 1 2 2, , , , , , ,D U U V V Z Z Z Z⎡ ⎤= ⎣ ⎦  (9) 

while 

 ( )2 3 32 2
1 1 0 1 2 0 21 1 1,D x U Z x U Z V Z Z x V Z Z= + + +  (10) 

Note, that arithmetic in Jacobian genus 2 HEC in weighted representation (Lange, 2002c) is 
the most efficient (Kovtun and Zbitnev, 2004). 

5. Co-Z approach 

The Co-Z approach was first suggested by Meloni (2007), in order to increase the efficiency 

of scalar multiplication in EC over ( )pGF  with double-free addition chain for the resistance 

side channel attacks (SCA) (Goundar, 2008). It results in a fixed sequence of operations; 

hence attackers could not detect any information through SCA. Its principles lie in 

transformation of EC points in SCA resistant scalar point multiplication in projective and 
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modified Jacobi representation with the same denominator and further operation with 

points of identical Z -coordinates. Note that the Co-Z approach is applicable for algorithms, 

based on the Euclidian addition chains approach by Meloni (2007) and scalar in the 

Zeckendorf representation, in order to replace doublings by Fibonacci numbers 

computations refer to Algorithm A.1. Indeed the Fibonacci sequence is an optimal chain 

(Meloni, 2007). 
The Zeckendorf number representation needs 44% more digits in comparison with the 

binary representation. For example a 80-bit integer will require around 115 Fibonacci digits. 

However, the density of 1’s in this representation in lower (near 0.2764). This means that 

representing a 80-bits integer requires, an average 40 powers of 2 but only 32 Fibonacci 

numbers (near 115x0,2764). 

More generally, for a n -bit integer, the classical double-and-add algorithm requires on 

average 1.5 n×  operations (
2
n n+A D , where A -addition operation and D -doubling 

operation) and the Fibonacci-and-add requires 1.83 n×  operations ( 1.44 0.398n n× + ×F A , 

where A -addition step and F -Fibonacci step). In other words, the Fibonacci-and-add 

algorithms A.1 require about 23% more operations (Table 1.). Note, that in paper (Lange, 

2002c) the simplified version of HEC is used, such that ( ) 0h x = , 4 0f =  (since 

replacement 2y y h−U  is admissible for the odd field characteristic and the replacement 

4 5x x f−U  is admissible if 5p ≠ ), which allowed T. Lange to save 1 multiplication at the 

step A.2.7. However in this paper we will consider a more general case of curve with 

( )deg 2h = , 2ih ∈F , 0, 2i = ( )deg 5f = , 5 1f = , ( )if p∈GF , 0, 4i = . 

 

Input: CD J∈ , ( )2, ,l Z
k d d= …  

Output: [ ] Ck D J∈  

begin 

     ( ) ( ), ,U V D D←  

     for 1i l= −  downto 2  

          if 1id =  then U U D← +  (add step) 

          ( ) ( ), ,U V U V U← +  (Fibonacci step) 

     end 

     return U  

end 
 

 

Table 1. Algorithm A.1 Fibonacci-and-add ( ),k P  

We can see, in Algorithm A.1 using the Addition and Fibonacci step for the adding divisors. 
In common case, addition of two reduced divisors in weighted coordinates can be 
represented by the Algorithm A.2 (Lange, 2002c) (Table 2). 

Assuming that 11 21 1Z Z Z= =  and 12 22 2Z Z Z= =  for 1D  and 2D , which allows the 

transformation of algorithm А.2 into algorithm А.3. Apply the approach described by 

Meloni (2007) to the divisor addition algorithm suggested by Lange (2002c) and weighted 

divisor representation. Further circumscribe the derivation of expressions in different steps 

of A.3 (Table 3). 
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Input: 2 2

11 10 11 10 1 1 2 2, , , , , , ,U U V V Z Z Z Z   , 

2 2

21 20 21 20 1 1 2 2, , , , , , ,U U V V Z Z Z Z    

Output: 2 2

1 0 1 2 1 1 2 2, , , , , , ,U U V V Z Z Z Z′ ′ ′ ′ ′ ′ ′ ′  = 
2 2

11 10 11 10 1 1 2 2, , , , , , ,U U V V Z Z Z Z  + 
2 2

21 20 21 20 1 1 2 2, , , , , , ,U U V V Z Z Z Z +   , 

( ) ( )1 2 2weight D weight D= =  

# Expression Cost 

1 

Precomputations: 13 11 12z Z Z= ⋅ , 23 21 22z Z Z= ⋅ , 

12 11 13z z z= ⋅ , 22 21 23z z z= ⋅ , 21 11 21U z U= ⋅ɶ , 20 11 20U z U= ⋅ɶ , 

21 12 21V z V= ⋅ɶ , 20 12 20V z V= ⋅ɶ  

8M 

2 

Compute resultant r  for 1u  and 2u : 1 11 21 21y U z U= ⋅ − ɶ , 

2 20 10 21y U U z= − ⋅ɶ , 3 11 1 2 11y U y y z= ⋅ + ⋅ , 

2

2 3 1 10r y y y U= ⋅ + ⋅ , 2 11 21Z Z Z′ = ⋅ , 2 12 22Z Z Z= ⋅ɶ , 2

1 2Z Z ′= , 

2 2 1Z Z Z= ⋅ɶ ɶ , 2 2Z Z r= ⋅ɶ ɶ , 2 2 2Z Z Z′ ′= ⋅ ɶ , 2

2 2Z Z=ɶ ɶ , 2

2 2z Z′ ′=  

4S, 

11M 

3 
Compute almost inverse 2 1modinv r u u= , 

1 0inv inv x inv= + : 1 1inv y= , 0 3inv y=  
 

4 

Compute ( )1 2 1mods v v inv u= − , 1 0s s x s= + : 

0 10 22 20w V z V= ⋅ − ɶ , 1 11 22 21w V z V= ⋅ − ɶ , 2 0 0w inv w= ⋅ , 

3 1 1w inv w= ⋅ , 0 2 10 3s w U w= − ⋅ , 

( ) ( ) ( )1 0 11 1 0 1 2 3 11 11s inv z inv w w w w z U= + ⋅ ⋅ + − − ⋅ +  

If 1 0s =  then consider special case 

8M 

5 

Precomputations: 2

1 1S s= , 0 0 1S s Z= ⋅ , 1 1 1Z s Z′ = ⋅ , 

1 1 0S Z S′= ⋅ , 2

0 0S S= , 1R r Z ′= ⋅ , 0 0 1s s Z ′= ⋅ , 1 1 1s s Z ′= ⋅ , 

2

1 1z Z′ ′=  

3S, 6M 

6 
Compute 2l su= , 3 2

2 1 0l x l x l x l= + + + : 0 0 20l s U= ⋅ ɶ , 

2 1 21l s U= ⋅ ɶ , ( ) ( )1 1 0 21 20 0 2l s s U U l l= + ⋅ + − −ɶ ɶ , 2 2l l S= +  
3M 

7 

Compute ( )( ) 1

1 12u s l h v k u−′ = + + − , ( )2

1 1 1k f v h v u= − − , 

2

1 0u x u x u′ ′ ′= + + : 1 21V R V′= ⋅ ɶ , 1 1 1 22U S s y z′ ′= − ⋅ − , 

( )( )0 0 1 1 1 21 0 2 1 12 2U S y S y U s y s V′ ′= + ⋅ ⋅ + − + ⋅ + +ɶ ɶ  

( )2 1 212Z y U+ ⋅ +ɶ ɶ  

6M 

8 Precomputations: 2 2 1l l U ′= − , 0 2 0w l U ′= ⋅ , 1 2 1w l U ′= ⋅  2M 

9 
Compute ( )1 2 modv h s l v u′ ′≡ − + + , 1 0v v x v′ ′ ′= + : 

( )1 1 1 1 1 0V w z l V U′ ′ ′ ′= − ⋅ + − , 
3M 

 
 

Table 2. Algorithm А.2 Addition reduced divisors 
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1. Compute resultant r  of 1u , 2u : 

11 21
1 2 2

1 1

U U
y

Z Z
= − , 20 10

2 2 2

1 1

U U
y

Z Z
= − , 

2

11 1 2 11 1 2 1
1 2 2 2 4

1 1 1 1

U y y U y y Z
y

Z Z Z Z

+
= ⋅ + = , 

22

3 10 2 3 1 102 1

2 4 4 2 6

1 1 1 1 1

y U y y y Uy y
r
Z Z Z Z Z

+
= ⋅ + ⋅ = . 

2. Compute almost inverse 2 1modinv r u u= , 1 0inv inv x inv= + : 

1
1 2

1

y
inv

Z
= , 3

0 4

1

y
inv

Z
= . 

3. Compute ( )1 2 1mods r s v v inv u′ = ⋅ = − , 1 0s s x s′ ′ ′= + : 

10 20
0 3

1 2

V V
w

Z Z

−
= , 11 21

1 3

1 2

V V
w

Z Z

−
= , 0 0 0 0

2 4 3 7

1 1 2 1 2

inv w inv w
w

Z Z Z Z Z
= ⋅ = , 1 1 1 1

2 2 3 5

1 1 2 1 2

inv w inv w
w

Z Z Z Z Z
= ⋅ = , 

( )( )2

0 1 1 0 1 32 11
1 2 7 5 2

1 2 1 2 1 2 1

1
inv inv Z w w ww U

s
Z Z Z Z Z Z Z

+ +  
′ = − − + 

 
, 10 3 2 10 32

0 7 2 5 7

1 2 1 1 2 1 2

U w w U ww
s

Z Z Z Z Z Z Z

−
′ = − ⋅ = . 

4. Compute 0 1s x s s′′ ′ ′= + : 

6 7

1 1 2
1

1 1

1 Z Z Z
w

r s r s

⋅ ⋅
= =

⋅ ⋅
, 

6 7 7

1 1 2 1 2
2 1 6

1 1 1

Z Z Z Z Zr
w r w

Z s r s
= ⋅ = ⋅ =

′⋅
 where 1 1s s r′ = ⋅ , 

( )
2

13
2 1 1 2 1

3 1 1 7

1 2 1 1 2

s Z Z s
w s w

Z Z r s r Z Z

 ′ ′
′= ⋅ = ⋅ = 

⋅ ⋅ ⋅ 
, 

7

1 2 1 2
4 2 6

1 1 1

Z Z r Z Zr
w r w

Z s s

⋅ ⋅
= ⋅ = ⋅ = , 

7

0 0 01 2
0 0 2 7

1 2 1 1 1

s s sZ Z
s s w

Z Z s s s

′ ′
′′ ′= ⋅ = = =

′ ′
, 2

5 4w w= . 

5. Compute 2l su= , 3 2

2 1 0l x l x l x l= + + + : 

2

0 21 1 0 121
2 2 2

1 1 1 1

s U s s ZU
l

Z s Z s

′ ′ ′+
= + =

′
, 0 20 21 0 20 121

1 2 2 2

1 1 1 1 1

s U U s U sU
l

Z s Z Z s

′ ′ ′+
= ⋅ + =

′ ′
, 20 0 20 0

0 2 2

1 1 1 1

U s U s
l

Z s Z s

′ ′
= ⋅ =

′ ′
. 

6. Compute ( )( ) 1

1 12u s l h v k u−′ = + + − , ( )2

1 1 1k f v h v u= − − , 2

1 0u x u x u′ ′ ′= + + : 

( )( ) ( )0 0 11 0 1 2 4 10 1 1 21 42u s U s y h w U l h V w′ ′′ ′′= − − + − + + + +  

( )21 1 4 52U y f w+ + − = 0 0 1011 1 1 2 1
22 2 2 2

1 1 1 1 1 1 1 1

s s UU y r Z Z l
h

s Z s Z s Z Z s

′ ′  ⋅
− − + − + +  ′ ′  

( )21 221 1 2 21 1
1 43 2 2 2

1 2 1 1 1 1

2
r Z ZV r Z Z U y

h s f
Z Z s Z Z s

⋅ ⋅   ⋅ ⋅
+ + ⋅ + + − ⋅ =   
   

2 2 3

2 0 1 1 2 3 1 1 1 2, , ,s s Z R rZ Z s s Z R rZ Z= = = =

( )( )2 11 1 2 1 1 2 10 1 3 1 3

2 2

3 3

s U s s y s h R U s s l s

s s

− − + −
= − +

( ) ( )3 2

1 1 2 21 3 21 1 4 1

2 2

3 3

2 2h Z Z V rs U y f Z RR

s s

+ + −
+

( )( )2 11 1 2 1 1 2 10 1 3 21 0 3 20 1 3

2 2

3 3

s U s s y s h R U s s U s s U s s

s s

− − + − −
= − +

( ) ( )3 2

1 1 2 21 3 21 1 4 1

2 2

3 3

2 2h Z Z V rs U y f Z RR

s s

+ + −
+ . 

 
2

0 1 1 2 1 2
1 0 1 2 4 5 22

1 1 1 1

2 2
s y rZ Z rZ Z

u s y h w w h
s Z s s

 
′ ′′= − + − = − + − = 

 

2 2 2

0 1 1 1 1
22 2 2

1 1 1 1 1

2s Z y s RZ R
h

s Z s Z s

−
+ − =

( ) 22
2 1 1 2 32 1 1 2

2 2

3 3 3

22 s y s h R s Rs y s h R R

s s s

− + −− +
− = . 

7. Compute ( )1 2 modv h s l v u′ ′≡ − + + , 1 0v v x v′ ′ ′= + : 1 2 1w l U ′= − , 2 1 2 0 1w u w u l′ ′= + − , 

( )1 2 3 21 1 2 1 1 1 0 1 3 21 1 2 1v w w v h h u u w u l w v h h u′ ′ ′ ′ ′= − − + = + − − − + = 01 2 1 1 1 21 1
1 22 2 2 3 2

3 3 3 3 3 1 2 3

UU l U l s V U
h h

s s s s s R Z Z s

   ′′ ′ ′
− − − − − + =     

( ) 2 3 3
1 2 3 1 0 3 1 3 21 3 2 1

13 2 3 2 2

3 1 3 1 3

U l s U U s l s V s r h U
h

s Z R s Z R s

′ ′ ′− − − ′
− − + =

3R s R= =
( ) ( )2

1 2 3 1 2 3 0 1 3 21 3 1

3

3

U l s U h R s U l s V s r h R

s R

′ ′ ′− + + − − −
, 

0 2 3 20 0 2 0v w w v h h u′ ′= − − − = ( ) ( )
2

0 3
2 3 1 2 3 20 3 0 0 33 3

3 3

U s
l s U h s R V s r h R l s

s R s R

′
′− + − + + . 

8. Compute 1Z ′  and 2Z ′ : 1 3Z s′ = , 2Z R′ = . 

 
 

Table 3. Derivation of expressions in different steps of A.3 
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Specify the modifications carried out in A.2, which allowed reducing quantity of field 
operations. 
Step A.2.1. This step is to be omitted due to existence of the same denominator of all 
coordinates, which allows saving 8 multiplications in ( )pGF . 
Step А.2.2. While computation of 1y  and 2y , reduction to common denominator of 
coordinates 1 jU  and 2 jU  is not required, saves 2 multiplications in ( )pGF . 
Moreover, the calculation of resulting 1Z′  and 2Z′  coordinates is also significantly 
simplified, that helps to save 5 multiplications and 3 squaring operations in ( )pGF . 
Step A.2.4. While computation of 1w  and 2w , reduction to common denominator of 
coordinates 1 jV  and 2 jV  is also not required, saves 2 multiplications in ( )pGF . 
Steps А.2.5 and А.2.6 The total number of multiplications remains unchanged, however the 
number of squaring operations in ( )pGF  decreases by 3, due to the interchange of 
calculations of coefficients 0l , 1l  and 2l  of polynomial l  on the step А.2.6 (Table 4). 
 

Input: 2 2

11 10 11 10 1 1 2 2, , , , , , ,U U V V Z Z Z Z   , 

2 2

21 20 21 20 1 1 2 2, , , , , , ,U U V V Z Z Z Z    

Output: 2 2

1 0 1 2 1 1 2 2, , , , , , ,U U V V Z Z Z Z′ ′ ′ ′ ′ ′ ′ ′  = 
2 2

11 10 11 10 1 1 2 2, , , , , , ,U U V V Z Z Z Z  + 
2 2

21 20 21 20 1 1 2 2, , , , , , ,U U V V Z Z Z Z +   , 

( ) ( )1 2 2weight D weight D= =  

# Expression Cost 

1 
Compute resultant r  of 1u , 2u : 1 11 21y U U= − , 

2 20 10y U U= − , 2

3 11 1 2 1y U y y Z= ⋅ + ⋅ , 2

2 3 1 10r y y y U= ⋅ + ⋅  
1S, 4M 

2 
Compute almost inverse 2 1modinv r u u= , 

1 0inv inv x inv= + : 1 1inv y= , 0 3inv y=  
 

3 

Compute ( )1 2 1mods v v inv u= − , 1 0s s x s= + : 

0 10 20w V V= − , 1 11 21w V V= − , 2 0 0w inv w= ⋅ , 3 1 1w inv w= ⋅ , 

0 2 10 3s w U w= − ⋅  

( ) ( ) ( )2 2

1 0 1 1 1 0 2 3 1 11s inv inv Z w w w w Z U= + ⋅ ⋅ + − − ⋅ + , 

If 1 0s =  then consider special case 

6M 

4 
Precomputations: 1 2R r Z Z= ⋅ ⋅ , 2

2 0 1s s Z= ⋅ , 2

3 1 1s s Z= ⋅ , 

2

1R R Z= ⋅ɶ , 3 1 1w s y= ⋅ , ( )5 3 1 21 1 11w w s U s U= + ⋅ = ⋅  
7M 

5 
Compute 2l su= , 3 2

2 1 0l x l x l x l= + + + : 0 0 20l s U= ⋅ , 

2 1 21l sU= , ( ) ( )1 1 0 21 20 0 2l s s U U l l= + ⋅ + − − , 2 2 2l l s= +  
2M 

6 

Compute ( )( ) 1

1 12u s l h v k u−′ = + + − , ( )2

1 1 1k f v h v u= − − , 

2

1 0u x u x u′ ′ ′= + + : ( ) 2

1 3 2 3 22U s s w h R R′ = ⋅ − + − ɶ  

( ) ( )2

0 2 3 5 2 3 2 1 21 12 2U s w w s s y s r V h R′ = + ⋅ − + ⋅ ⋅ + ⋅ + +ɶ  

( ) ( )2

2 2 5 11 21 4 1R h s w R U U f Z + ⋅ − + ⋅ + − ⋅ 
ɶ  

2S, 8M 

7 Compute weights: 1 3Z s′ = , 2Z R′ = ɶ , 2 2

1 3Z s′ = , 2 2

2Z R′ = ɶ  1S 

8 

Compute ( )1 2 modv h s l v u′ ′≡ − + + , 1 0v v x v′ ′ ′= + : 

( )( ) ( )( )2

1 1 2 2 3 1 3 0 3 1 21 1V U l h R s U s U s h R rV l′ ′ ′ ′= ⋅ + ⋅ − + ⋅ − ⋅ + + , 

( )( ) ( )2

0 0 2 2 3 1 3 3 0 0 20V U l h R s U s s l h R r V′ ′ ′= ⋅ + − − ⋅ ⋅ + + ⋅  

8M 

4S, 35M 

9 
Adjust: 2 2

1 1 1cZ s Z= ⋅ , 3

2 3cZ s r= ⋅ , 20 20 1cU U Z= ⋅ , 

21 21 1cU U Z= ⋅ , 20 20 2cV V Z= ⋅ , 21 21 2cV V Z= ⋅  
1S, 6M 

5S, 41M  

Table 4. Algorithm А.3. Co-Z reduced divisors addition 
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Step A.2.6. unlike algorithm A.2, the A.3 offers considering multiplier 3s , present in each 

coefficient 0l , 1l  and 2l  of polynomial l , when using coefficients il , 0,2i =  on the steps 

A.2.7 and A.2.9. This allows us factor out 3s , thus saving 3 multiplications in ( )pGF (steps 

A.4.6-A.4.8). 

Consider next the application of proposed algorithm for the mixed divisor addition 
2 2

1 11 10 11 10 1 1 2 2, , , , , , ,D U U V V Z Z Z Z⎡ ⎤= ⎣ ⎦  and 2 21 20 21 20, , , , 1, 1, 1, 1D U U V V= ⎡ ⎤⎣ ⎦  (mixed 

representation). Therefore it is necessary to reduce devisor 2D  to common Z -coordinate, 

i.e. 2 2 3 3 2 2
21 1 20 1 21 1 2 20 1 2 1 1 2 2, , , , , , ,U Z U Z V Z Z V Z Z Z Z Z Z⎡ ⎤⋅ ⋅ ⋅ ⋅ ⋅ ⋅⎣ ⎦ , that requires 5 multiplications 

in ( )pGF . Hereinafter the provided algorithm A.4 should be used for addition of (prior 

formed) divisors with the same Z -coordinate. 

6. Results 

It is to be considered that after computing 3 1 2D D D= +  one of the items, for example 2D , 

should be transformed so that it has the same Z -coordinate as divisor 3D . For this purpose, 

at the step A.3.9, values 1cZ  and 2cZ , where 2 2 2
1 3 1 1cZ s Z Z′ = = ⋅  and 

3 3 3
1 2 3 1 2 2cZ Z s R Z Z Z′ ′ = ⋅ = ⋅# , i.e. 2 2

1 1 1cZ s Z= ⋅  and 3
2 3cZ s r= ⋅ , this requires 2 additional 

multiplications and 1 squaring in ( )pGF . In other words, reduction of a divisor to unified 

Z -coordinates takes 6 additional multiplications and 1 squaring. Ultimately, for the divisor 

addition step in A.1 46M+5S (M - multiplication, S - squaring) field operations are required. 

For the Fibonacci step 41M+5S field operations are required. If we reduce the obtained 

complexity estimations to the parameters of the curve (Lange, 2002c), we obtain that for the 

divisor addition step 40M+5S are required and for the Fibonacci step 45M+5S operations are 

required. In accordance to the computational complexity estimation, the approach described 

in this paper, is not effective, due to the complexity of mixed addition is 36M+5S (Lange, 

2002c). However, the alternative approach to the divisor addition for the scalar 

multiplication implementation is proposed. Let us draw a computational complexity 

comparison between scalar multiplication algorithms described in (Kovtun and Zbitnev, 

2004) and those suggested in this paper, based on idea (Meloni, 2007). 

6.1 Comparison with other method 

The results of known and proposed algorithms comparison are set out in Table 5.  
The algorithm complexity represented in field operations (Table 6). 

Assume that S=0,8M and scalar multiplier is an 80-bit integer and refer to the estimations 

(Kovtun and Zbitnev, 2004; Meloni, 2007) for the estimation of complexity of scalar 

multiplication algorithms. The results of comparison are set out in Table 7. 

Computational complexity of Fibonacci-and-add scalar multiplication algorithm is by 23% 

greater than Binary left-to-right algorithm and by 12,5% greater than Window Fibonacci-

and-add. 

In other case computational complexity of Fibonacci-and-add scalar multiplication 

algorithm in weighted coordinates is by 23% greater than Binary left-to-right algorithm in 

mixed weighted coordinates and by 14,2% greater than Window Fibonacci-and-add. 

Weighted coordinates with Co-Z approach are more effective than ordinary projective 

coordinates with Co-Z approach. 
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Alg. # Curve description 

1 ( ) 0h x = (Harley, 2000)

2 2 1h =  (Lange, 2002a) 

3 ( ) 0h x =  (Matsuo et al., 2001) 

4 ( ) 0h x = , 4 0f =  (Miyamoto et al., 2002) 

5 ( ) 0h x =  (Takahashi, 2002) 

6 4 0f = , 2 0h ≠  (Lange, 2002a) 

7 ( )deg 2h = , 2ih ∈F  (Lange, 2002b) 

8 ( )deg 2h = , 2ih ∈F  (Kovtun and Zbitnev, 2004)

9 ( ) 0h x = , 4 0f =  (Kovtun, 2006) 

10 ( ) 0h x = , 4 0f =  (Lange, 2002c) 

11 ( )deg 2h = , 2ih ∈F  (Kovtun, 2010) 

12 ( ) 0h x = , 4 0f ≠  [proposed] 

13 ( ) 0h x = , 4 0f =  [proposed] 

Table 5. Algorithms and curve parameters 

 

# 

Addition Doubling 

General Mixed General Mixed 

()-1 ^2 * ^2 * ()-1 ^2 * ^2 * 

Affine coordinates 

1 2  27   2  30   

2 2 3 24   2 6 26   

3 2  25   2  27   

4 1  26   1  27   

5 1  25   1  29   

6 1 3 22   1 5 22   

Projective coordinates 1 0 1 0, , , ,U U V V Z⎡ ⎤⎣ ⎦  

7  4 47 3 40  6 40 5 25 

8  4 46 4 39  6 39 5 25 

9  4 46 4 39  6 35 5 24 

Weighted coordinates 2 2
1 0 1 0 1 2 1 2, , , , , , ,U U V V Z Z Z Z⎡ ⎤

⎣ ⎦  

10  7 47 5 36  7 34 5 21 

Co-Z projective coordinates 1 0 1 0, , , ,U U V V Z⎡ ⎤⎣ ⎦  

11  4 46    4 42   

Co-Z weighted coordinates 2 2
1 0 1 0 1 2 1 2, , , , , , ,U U V V Z Z Z Z⎡ ⎤

⎣ ⎦
12  5 46    5 41   

13  5 45    5 40   

Table 6. Computational complexity of group law in Jacobean of genus 2 HEC over ( )pGF  
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# Scalar multiplication algorithm Cost, M 

Addition in mixed projective coordinates (Kovtun and Zbitnev, 2004) 

1 Binary (left-to-right) 5192 

2 NAF 4629 

3 w -NAF, 4w =  4349 

Addition with Co-Z method in projective coordinates (Kovtun, 2010) 

7 Fibonacci-and-add 6773 

8 Window Fibonacci-and-add 5970 

Addition in mixed weighted coordinates (Lange, 2002c) 

4 Binary (left-to-right) 5104 

5 NAF 4570 

6 w -NAF, 4w =  4307 

Addition with suggested method, alg. #13 from table 1 

7 Fibonacci-and-add 6629 

8 Window Fibonacci-and-add 5829 

Table 7. Computational Complexity Of Scalar Multiplication Algorithms 

6.2 Another aspect of using the proposed approach 

Yet another aspect of using a biometric authentication on based Co-Z approach to divisor 

scalar multiplication in Jacobian of genus 2 hyperelliptic curves over fields with odd 

characteristic in weighted coordinates is using it in the fight against Cyber terrorism. Using 

this approach and biometric authentication will significantly reduce financial losses of 

enterprises. 

Primary solutions of the given problem are confirmed also with the data presented on figure 

1 on which (Kavun, 2007) finance indexations of the put damage for some countries are 

shown. Apparently from the presented statistics, the state infrastructure is more developed; 

the larger it receives damage from cyber criminality. 

 

 

Fig. 1. Damage from cyber criminalities 

During an epoch of the world economic crisis and modern transformations of economy of  

different countries the aspect of economic security becomes even more urgent . For example, 

the tendency of increase in crime in sphere of cyber terrorism, having an economic (money) 

basis is shown in figure 2. 
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Fig. 2. Statistics of cyber criminality rate 

From the presented data which has been average for some years (Kavun, 2007), it can be 
seen, that on the average the amount of incidents in the sphere of cyber criminality over a 
year increased by 50 %. It testifies to negative tendencies of cyber criminality development 
in the world. 
Outcomes of the conducted analysis are presented in figure 3 from which it appears, that 
main sources of illegal operations are the USA and China which cover 50 % of all threats 
(Kavun, 2009). 

7. Conclusion 

In the paper, a new algorithm of weight 2 divisor addition with identical (shared) Z -

coordinates (by the Co-Z approach) has been proposed, which requires more ( )pGF  

operations then algorithm (Kovtun and Zbitnev, 2004), however it allows a decrease in 

computational complexity of Fibonacci-and-add scalar multiplication algorithm while 

approaching to the Binary left-to-right algorithm. 
Biometrics are not secrets and are not revocable (Schneier,1999) while revocability and 
secrecy have been critical requirements of conventional cryptosystem design, one then 
wonders whether it is possible to design a secure authentication system from the system 

components which in themselves are neither secrets nor revocable—for example, whether 
the methods of ensuring liveness of biometric identifiers and challenge–response schemes 
(Maltoni et al., 2003) obviate fraudulent insertion of “stolen” biometric identifiers. Is it 

possible to nontrivially combine knowledge and biometric identifiers to arrive at key 
generation/release mechanisms where biometric identifiers are necessary but not sufficient 
for cryptographic key generation/release? Is it possible to require multiple biometrics to 
make it increasingly difficult for the attacker to fraudulently insert multiple biometrics into 

the system? Is it possible to make it unnecessary to revoke/update the cryptographic key in 
the event of a “stolen biometric”? Exploring challenges in designing such systems is a 
promising (yet neglected) avenue of research. When cryptobiometric systems eventually 

come into practical existence, there is a danger that biometric components may be used as 
an irrefutable proof of existence of a particular subject at a particular time and place. Mere 
incorporation of biometrics into a system does not in itself constitute a proof of identity. We 
need to understand how these foolproof guarantees can be theoretically proved in a 

deployed cryptosystem and how to institute due processes that will provide both 

www.intechopen.com



 
Recent Application in Biometrics 

 

180 

technological and sociological freedom to challenge the premises on which nonrepudiability 
is ascertained. 
Genus 3 curves might save about a third in key lengths and so 180-bit ECC (which is beyond 
the usual range, as given in standards) is equivalent to 60-bit HCC, which can be 
implemented on a fast 64-bit computer. In practice, 160-bit ECC is typically used and so 
there is even room for added security in case of computational speed-ups in attacks. Stein, in 
particular, has pointed out how the use of “real“ forms of hyperelliptic curves (i.e., with 
infrastructure) allows considerable speed-ups in implementation in some cases. 
On the other hand, Gaudry (2000), showed that hyperelliptic curves of genus bigger than or 
equal to 5 and possibly 4 are less secure than hyperelliptic curves of genus g<4 (or 5) (ICCIT 
Biometrics Research Group, 2005). That means that the key-per-bit-strength of hyperelliptic 
curves of genus 2 and 3 is the same as for elliptic curves, and thus far better than 
conventional systems based on discrete logs or integer factoring. In fact, genus 2 is 
particularly interesting because the arithmetic appears to be only minimally slower than 
elliptic curve arithmetic and the bit size of the underlying finite field is half as big as for 
elliptic curves having the same security level. To our knowledge nobody has performed a 
down-to-earth implementation of genus 2 hyperelliptic curves. 
We are considering hardware implementations of hyperelliptic curves of genus 2 and 3 . 
Among the currently available hyperelliptic curves there are, for instance, Koblitz curves 
and curves constructed by a complex multiplication method (CM-method). Both are natural 
extension of ideas from elliptic curves. 
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