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1. Introduction 

Microwave heating is a dielectric heating process, in which heat is generated via the 

interaction of dielectric materials with electromagnetic radiation. The dielectric constant is a 

measure of the material’s capacity to retard microwave energy as it passes through, while 

the loss factor is a measure of the material’s capacity to dissipate the energy. The materials 

with high loss factor are easily heated through microwave irradiation. Energy dissipation 

mechanism in the materials is via ionic conduction and dipolar rotation. Generally, the 

dielectric properties of a material are related to temperature, moisture content, density and 

material geometry. Microwave heating has the advantages of higher heating rates, no direct 

contact between the heating source and heating material, selective heating, reduced 

equipment size and better process control than those of conventional heating. Moreover, 

both DNA and bacterial cellular membranes can be damaged by microwave irradiation. 

Such an effect on the treatment process, besides heating, is referred to as the athermal effect 

(Hong et al. 2006).  

Microwave heating has been applied in various processes and manufacturing industries, 

such as food process, wood drying and waste treatment process (Jones, et al., 2002). For the 

sewage wastewater treatment industry, there are many applications of microwave heating 

on sludge treatment for reducing volume, improving dewaterability, enhancing 

digestibility, enhancing nutrient release, pathogen destruction, and stabilizing heavy metal 

(Menendez, et al., 2002; Liao, et al., 2005; Wojciechowaska 2005; Hong et al., 2006; Eskicioglu 

et al., 2007; Hsieh et al., 2007; Yu, et al., 2010).  It has also been reported that the overall 

treatment efficiency could be increased with a combination of microwave heating with 

chemicals (thermo-chemical) for the treatment of sludge (Chan, et al., 2007; Qiao, et al., 

2008). The common chemicals used on thermo-chemical process are acid, base and oxidants. 

The microwave enhanced advanced oxidation process (MW/H2O2-AOP) uses microwave 

irradiation in combination with hydrogen peroxide to generate hydroxyl radicals to react with 

organic compounds. As a result, the structure of the solid materials is altered, and nutrients 

can be released into solution in the process. During this treatment, the suspended solids (SS) 

content of the slurries is also reduced. Its mechanism is assumed to be similar to the wet-air 

oxidation process wherein the first process involves the breakdown of large particulate organic 

matters, such as carbohydrate and proteins into smaller and more soluble organic components, 

and the second process involves the further oxidation or gasification of some of the resulting 
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organic products (Shanableh & Shimizu, 2000; Liao, et al., 2007). The factors affecting the 

performance of the MW/H2O2-AOP have been identified; they are microwave temperature, 

hydrogen peroxide dosage, microwave intensity, reaction time, and acid addition. The effects 

varied with the application, depending on the soluble materials of interest, and various waste 

organic slurries used in the process (Wong et al., 2007). Dairy manure contains fats, proteins, 

lignin, carbohydrates and inorganic residue, and is rich in a variety of nutrients including 

nitrogen, phosphorus, and minerals (Rico, et al., 2007) and it should be deemed as a valuable 

biological resource, rather than a waste product. Lignocellulosic components from dairy 

manure can be transformed into fermentable saccharides via enzyme, or acid hydrolysis, 

which can further be converted into ethanol and other valuable products (Wen, et al., 2004). 

Nutrients, such as phosphorus and ammonia-nitrogen can be recovered via a struvite 

crystallization process. Carbonaceous matters can also be subjected to anaerobic digestion for 

methane production, which is a valuable bioenegy source. However, most of the phosphorus 

in dairy manure (about 65%) is in a form that is not easily soluble, especially those in the form 

of structural makeup (Barnet, 1994). Besides, high suspended solids are typical of dairy 

manure; hence, a pre-treatment step is required to solublize the nutrients and to disintegrate 

solids first in order to achieve resource recovery. 
The MW/H2O2-AOP, which can disintegrate solids and release nutrients into solution, can 
be a potential effective pre-treatment method for nutrient and energy recovery from dairy 
manure. The effectiveness of the MW/H2O2-AOP under both batch operation and a 
continuous mode of operation for solubilisation of nutrients and organic matters from dairy 
manure are therefore reported in this chapter.  

2. Materials and methods 

2.1 Apparatus 
A lab-scale Milestone Ethos TC microwave oven digestion system (Milestone Inc., USA) was 
used for a batch mode operation. The system operates at a frequency of 2,450 MHz with a 
maximum power output of 1,000 W. The system has the capacity of handling up to 12 
vessels in a single run: one reference and 11 sample vessels, each with a volume of 100 mL. 
A thermocouple is inserted into the reference vessel, providing real time temperature 
monitoring during the runs. The maximum operating temperature and pressure are 220 °C 
and 435 psig, respectively. 
A household microwave oven (Panasonic Genius Prestige Countertop) was modified for use 
in a continuous mode operation. The system operates at a frequency of 2,450 MHz with a 
maximum power output of 1,000 W. A silicon tube with 6.35 mm diameter was wound into 
a continuous horizontal coil and held by a custom made perforated polypropylene shelf.  
The total length of the silicon tube inside the MW is 40 m and the volume is approximately 
1.3 L. The dairy manure was pumped into the MW oven through the silicon tube and was 
collected from the outlet. An appropriate amount of concentrated sulfuric acid was added to 
the liquid manure to the desired acid concentration before the mixture was pumped into the 
MW oven. The desired H2O2 dosage in the process was controlled by the flow rate and the 
concentration of the prepared H2O2. Different exit temperatures after the MW treatment can 
be achieved by controlling the flow rate of both the liquid manure and H2O2; a higher flow 
rate yields a lower exit temperature. The overall heating rate of 5 °C/min was used in this 
study. The unit was not pressurized; the exit temperatures were therefore lower than the 
boiling point of water.  

www.intechopen.com



 
Microwave Enhanced Advanced Oxidation in the Treatment of Dairy Manure 

 

93 

2.2 Substrate 
Dairy manure was obtained from the UBC Dairy Education & Research Centre in Agassiz, 

British Columbia, Canada. The dairy manure used for the batch operation was the solid 

portion obtained after the solid-liquid separation. Once collected from the farm the dairy 

manure was stored in a closed container at 4°C. The dairy manure sample had total solids 

(TS) of 33%, which contained large amounts of sand, the bedding material, as well as 

undigested lignocellulosic materials. Distilled water was added to the dairy manure 

samples and subsequently decanted to remove the sand. The resulting dairy manure had a 

TS of 5.6% for the first part of the batch operation (Part 1), while 3.7 % TS for the second part 

of the study at pH 4 (Part 2).  

For a continuous operation, the liquid manure after the solid-liquid separation was again 

passed through a U.S. Standard No. 18 sieve (1 mm openings) to remove large fibres and 

particles to avoid solids deposition in the silicon tube in the MW unit. It was then diluted 

four times with distilled water to have TS of 0.83%.  

2.3 Experimental design 
2.3.1 Batch operation 

For Part 1, few variables were held constant, including the dosage of hydrogen peroxide (1.5 
mL of 30% concentration, or expressed as 0.28 g H2O2/g TS), treatment time (20 minutes), 
and treatment temperature (120 °C). In an effort to isolate the effects of pH and hydrogen 
peroxide on the microwave process, experiments under acidic, neutral, and basic conditions, 
as well as in the absence and presence of hydrogen peroxide were tested.  The experimental 
conditions included microwave treatment only (MW), microwave treatment with hydrogen 
peroxide (MW/H2O2), microwave treatment in acidic condition (MW/H+), microwave 
treatment with hydrogen peroxide in acidic condition (MW/H2O2/H+), microwave 
treatment in basic condition (MW/OH-), and microwave treatment with hydrogen peroxide 
in basic condition (MW/H2O2/OH-). Four replicates were conducted for each experimental 
condition. In adjusting to acidic conditions, dilute H2SO4 was dripped into the dairy manure 
solution to reach a pH of 4; whereas for basic conditions, dilute NaOH solution was added 
to reach a pH of 10.  
For Part 2, the acidified dairy manure was chosen. Variables including treatment 

temperature, treatment time, and hydrogen peroxide dosage at pH 4 were tested for their 

effects on solids disintegration and nutrient solubization.  Based on a computer statistical 

program, the Box-Benken design for response surface plots was chosen, and a series of 15 

trials was required (Sall, et al., 2005). The temperature range was between 80 and 160 °C, 

treatment time ranged from 10 to 20 min, while hydrogen peroxide dosage was from 0 to 

0.14 g H2O2/g TS. The rate of temperature increase for all the experiments were set at 20 °C 

per minute up to the designated treatment temperature and subsequently held for the 

specified time period. The experimental design is listed in Table 1. 

2.3.2 Continuous operation 

The MW/H2O2–AOP experiments were operated at temperatures of 60, 70, 80 and  
90 °C. The H2O2 dosage was fixed at 0.1% (v/v) and the acid dosages were 0.2, 0.5 and  
1% (v/v) for each temperature. A set of experiments without H2O2 was performed to 
serve as control. Overall, sixteen individual experiments each with three replicates were 
conducted. 

www.intechopen.com



 
Microwave Heating 

 

94

     

Set # Temp °C Heat time (min) 
Dosage 

(mL) 
g H2O2/g TS 

1 120 15 0.25 0.068 

2 160 20 0.25 0.068 

3 120 15 0.25 0.068 

4 80 10 0.25 0.068 

5 80 15 0 0.000 

6 160 15 0.5 0.135 

7 160 15 0 0.000 

8 80 20 0.25 0.068 

9 160 10 0.25 0.068 

10 120 10 0 0.000 

11 120 15 0.25 0.068 

12 80 15 0.5 0.135 

13 120 20 0 0.000 

14 120 20 0.5 0.135 

15 120 10 0.5 0.135 

Table 1. JMP design for Part 2 of batch operation 

2.4 Chemical analysis 
The samples were centrifuged at 3500 rpm for 10 minutes first, and then their supernatants 
were extracted for analysis for soluble chemical oxygen demand (SCOD), orthophosphate, 
soluble ammonia, volatile fatty acids (VFA) and reducing sugar. For dairy manure, the 
orthophosphate analysis could be affected by dilution due to interference, resulting in 
erroneous values; in order to obtain correct results, the initial dairy manure sample was first 
diluted to 0.5% TS before proceeding with the analysis (Wolf et al., 2005). It was also proven 
in a previous study that after microwave treatment the results obtained are reliable (Kenge, 
et al., 2009). The initial dairy manure samples were also analyzed for TS, total chemical 
oxygen demand (TCOD), total phosphate (TP) and total Kjeldahl nitrogen (TKN). All of the 
chemical analyses, except that of reducing sugar, followed the procedures outlined in 
Standard Methods (APHA, 1998). The colorimetric method was employed to determine the 
total reducing sugar content using anthrone reagent (Raunkjer, et al., 1994). 
All chemical analyses were determined by a flow injection system, except determinations of 
TS and COD (Lachat Quik-Chem 8000 Automatic Ion Analyzer, Lachat Instruments, USA). 
A Hewlett Packard 5890 Series II gas chromatograph, equipped with a flame ionization 
detector (FID), was used to measure VFA. Volatile separation was accomplished with an HP 

FFAP (free fatty acid phase) column (0.25 m × 0.31 mm with 0.52 µ film thickness). The 
injection temperature was set at 175 ºC and the flame ionization detector was at 250 ºC. 
Helium gas was used as the carrier at a head pressure of 69 kPa. 
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3. Results and discussion 

3.1 Batch operation  
3.1.1 Part 1 
The effects of pH and H2O2 on the nutrient release were evaluated in Part 1. The 
concentration of ortho-P and VFA increased with an addition of acid without the MW 
treatment, while concentration of both SCOD and reducing sugar decreased. It was 
suggested that the agglomeration of fine suspended particles of dairy manure occurred 
under the acidic condition, resulting in a decrease of the SCOD concentration. The 
reduction of reducing sugar concentration might be due to chemical reactions. There was 
no significant change of any initial concentration with the addition of NaOH (Table 3). 
Upon the addition of acid, the SCOD concentration decreased by about half. This may be 
attributed to chemical reactions between various soluble constituents in the samples. As a 
result, increased particle size caused the precipitation, and it was subsequently filtered 
out prior to this test. It appeared that acid addition aided the solubization of ortho-P, and 
the VFA production. However, it was not clear the role acid played in the reaction 
mechanism.  
Reducing sugar was produced from all treatments. Microwave heating enhanced its yield, 

regardless of acidic or basic conditions. A significant amount of reducing sugar was 

produced in either the MW or MW/OH- treatment. The best yield was obtained with the 

MW/H+/H2O2-AOP. The addition of hydrogen peroxide did not significantly help in 

producing more reducing sugar (Table 2). For the microwave pretreatment of dairy manure 

for anaerobic digestion, sugar (glucan/xylan) production was also reported (Jin et al., 2009). 

In their study, sugar yield was not affected by the different types of acid applied, sulfuric 

acid or hydrochloric acid, but was rather affected by the concentration of acid. The best yield 

in their study was produced either in 0.5% (v/v) of sulfuric acid or in 0.185% (v/v) of 

hydrochloric acid, but the yield did not increase further with a higher acid concentration. 

Sugar production was the worst in the given conditions with 2% H2SO4 addition. The 

comparison between the study by Jin et al. (2009) and this study should be made with the 

note that higher concentrations of acid, or base, and a lower hydrogen peroxide dosage were 

used in their study.  
The low yield of reducing sugar was due to a diluted acid used in this study. Concentrated 
acid used for sugar production was more effective than diluted acid hydrolysis (Sun and 
Cheng, 2002). As high as 75% concentrated acid was used for treating dairy manure to 
produce more than 84% of glucose (g/100g cellulose) at 120 °C and 30 min of reaction time. 
The yield of glucose decreased with an increase of reaction time (Liao et al., 2006). Their 
results pointed out that the reaction period was also critical for the sugar yield. 
When treated with MW alone, SCOD values increased due to the disintegration of organic 
particles. However, for the MW/H+ and MW/H+/H2O2 treatment, the SCOD value fell to 
below that of the MW treatment alone. On the other hand, it appeared that the 
disintegration of organic maters was enhanced in basic conditions. The high concentrations 
of SCOD were obtained for both MW/OH-/H2O2 and MW/OH-. These results were not 
quite similar to those of Jin et al. (2009). In their study, the high acid concentration (2% of 
acid) yielded the highest SCOD, about 35% of TCOD whereas the low acid concentration 
(0.5%) produced less SCOD than that of either NaOH or calcium oxide addition. In this 
study, high SCOD was obtained with the basic treatment. Despite the high SCOD yield with 
NaOH treatment, ortho-P, ammonia, and VFA release appeared to be lacking.   
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VFA was produced in a few of the trials. One common variable in the VFA production trials 
was the H2SO4 addition. It was clear that when acid was added, VFA was produced with or 
without MW. As hydrogen peroxide was added, VFA was reduced slightly. At the same 
time, TCOD was reduced for the acid trials with hydrogen peroxide, which indicated that 
instead of retaining carbon to form products such as VFA, carbon left the system as CO2 as 
an end oxidation product. The presence of acid was also stabilizing the hydroxyl radicals to 
be more potent in oxidizing organics.  
Phosphates have been known to be soluble in solution after treatment with the MW/H2O2-

AOP. Orthophosphate was released in large amounts upon the addition of acid, at almost 

half the total phosphorus in solution. With the MW/H2O2-AOP treatment on top of acid 

addition, the release was even greater, at 62% of total phosphorus from the initial substrate. 

Soluble phosphate release was not significant for the basic treatment, with or without 

hydrogen peroxide addition. Dairy manure contained various ions, such as carbonate, 

ammonia, magnesium, calcium, sodium and sulfate, as well as phosphate. At a high pH 

(basic) condition, various phosphate precipitates can be formed in the sample, such as 

struvite, and many forms of calcium phosphate (Wang and Nancollas, 2008; Jin, et al., 2009); 

therefore, orthophosphate release after the MW treatment would be easily precipitated out 

of solution again. Basic condition would not be suitable for dairy manure treatment in terms 

of orthophosphate release. As mentioned earlier, basic conditions would be suitable for the 

purpose of solid disintegration, as a very high SCOD concentration was obtained in base 

treatment. The results indicated that in order to release considerable amounts of 

orthophosphate into solution, acid addition is required for the MW treatment. Hydrogen 

peroxide would also help an increase of phosphate release, but is not necessarily required in 

the process. 

Ammonia was not produced in large quantities after the MW/H2O2-AOP treatment  
(Table 2). The initial ammonia concentration in solution barely increased after treatment 
with any chemical addition.  
The results indicated that reducing sugar can be obtained from dairy manure with the MW 
treatment, regardless of treatment conditions. In order to solubilize phosphorus, dairy 
manure should be treated in acidic condition with an addition of hydrogen peroxide to 
maximize its yield. If the main goal is to disintegrate manure solids, the basic condition shall 
be chosen, which would yield the highest SCOD concentration. 
 

 
o-PO4 

(mg P/L) 
NH4+ 

(mg N/L) 
SCOD 
(g/L) 

 
Reducing sugar 

(mg/L) 

initial concentration 6.3 + 0.2 600 + 25 15 + 0.6  672 + 16 

initial acid addition 130 + 1.4 600 + 28 6.0 + 0.1  216 + 31 

initial base addition 4.6 + 0.1 480 + 0 17 + 1.5  869 + 69 

MW 8.0 + 0.8 830 + 88 22 + 1.9  1190 + 95 

MW/H2O2 7.0 + 0.3 830 + 33 19 + 2.0  1130 + 91 

MW/H+ 240 + 16 740 + 220 14 + 2.3  788 + 133 

MW/H+/H2O2 240 + 4.5 790 + 180 14 + 2.3  1460 + 62 

MW/OH- 30 + 1.9 670 + 200 27 + 1.5  1360 + 126 

MW/OH-/H2O2 13 + 3.5 610 + 110 25 + 3.8  1180 + 217 

Table 2. Results from Part 1 of batch operation 
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3.1.2 Part 2 
Based on the results from Part 1, an acidic condition was chosen for Part 2 of the study. The 
design was modeled after a study by Kenge et al. (2010), where a control without the 
addition of hydrogen peroxide was included. In that study,hydrogen peroxide (0.30-0.59 g 
H2O2/g TS) was in excess; its incremental effects on the solubilization of nutrients could not 
be fully evaluated. Large amounts of hydrogen peroxide were also not helpful in producing 
reducing sugar from dairy manure (Jin et al., 2009; Kenge et al., 2010). Therefore, lower 
dosages of hydrogen peroxide, ranging from 0 to 0.14 g H2O2/g TS were used in Part 2, 
instead of 0.28 g H2O2/g TS of hydrogen peroxide used in Part 1.  

3.1.2.1 Reducing sugar 

The surface plot depicting the trend of reducing sugar production is showed in Figure 1. 
With the addition of hydrogen peroxide, reducing sugar release increased. It can be 
expected that with the addition of hydrogen peroxide, reducing sugar release increases due 
to its aid in the breakdown of lignocellulosic materials in dairy manure.  
 

 

Fig. 1. Surface plot for Part 2 – reducing sugars  

Reducing sugar concentration also increased with an increase of temperature. In the study by 
Kenge et al., (2010), temperature was the most significant factor affecting reducing sugar 
production; an increase of microwave temperature increased reducing sugar production. An 
increase in hydrogen peroxide dosage also increased reducing sugar yield at lower 
temperatures; however, its yield remained relatively constant at higher microwave 
temperatures. A much higher dosage of hydrogen peroxide was applied in the earlier study, 
causing solubilized reducing sugars to be further oxidized to form other oxidation products. 
Due to a balance between reducing sugars being solubilized and oxidized at the same time, 
reducing sugar concentration in solution remained relatively constant. The rates of reducing 
sugar production and sugar oxidation to form other compounds have not been measured, but 
it appeared that equilibrium between the two rates was reached in this case. However, results 
of this study showed that reducing sugar increased slightly with an increase of hydrogen 
peroxide at high operating temperatures. This might be due to the fact that there was no excess 
hydrogen peroxide in solution to engage and aid in further oxidation reactions.  
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The results obtained from this study and previously indicated that temperature and 

hydrogen peroxide dosage are factors affecting reducing sugar production (Kenge et al., 

2010). The process could be operated with or without H2O2 for reducing sugar production; 

the substantial amounts of reducing sugar could also be obtained at a higher temperature 

and a longer heating period without H2O2. 

3.1.2.2 Solids disintegration and nutrient release  

SCOD release in Part 2 can be seen in Table 3. In general, higher SCOD concentrations were 

obtained at higher operating temperatures. Temperature was the most important factor for 

solids disintegration. At the same operating temperature, it could be operated either at a 

longer heating period without the addition of H2O2, or at a shorter heating period with an 

addition of H2O2 to yield the similar SCOD concentration. Hydrogen peroxide had some 

impact on the disintegration of solids, but it was not very significant in such low dosages. 

Microwave temperature was also a key factor for release of phosphates. Orthophosphate 

increased with an increase of microwave temperature (Figure 2).  

 

        

Set # 
Reducin
g sugar 
(mg/L) 

o-PO4 

(mg P/L) 
NH4+ 

(mg N/L) 
SCOD 
(g/L) 

TCOD 
(g/L) 

VFA 
(mg/L) 

1 106 ± 19 109 ± 4.8 43 ± 0.5 2.9 ± 0.2 20 ± 3.7 127 ± 6 

2 344 ± 58 367 ± 4.0 71 ± 2.6 4.6 ± 0.2 35 ± 3.6 252 ± 7 

3 126 ± 169 167 ± 3.9 57 ± 1.0 3.0 ± 0.4 33 ± 2.1 203 ± 5 

4 65 ± 95 113 ± 4.0 40 ± 3.4 4.1 ± 0.3 19 ± 4.9 133 ± 14 

5 60 ± 69 333 ± 5.0 50 ± 1.7 3.9 ± 0.1 37 ± 5.3 236 ± 26 

6 517 ± 53 356 ± 4.3 73 ± 1.4 5.0 ± 0.1 36 ± 0.2 238 ± 9 

7 230 ± 79 121 ± 0.5 51 ± 0.6 3.7 ± 0.4 19 ± 2.3 153 ± 20 

8 104 ± 50 162 ± 8.4 51 ± 3.3 2.8 ± 0.6 38 ± 6.6 188 ± 14 

9 296 ± 47 172 ± 3.4 66 ± 0.6 4.0 ± 0.2 37 ± 3.3 248 ± 12 

10 110 ± 40 16 ± 6.7 54 ± 1.3 3.4 ± 0 31 ± 0.9 213 ± 19 

11 172 ± 29 331 ± 6.0 56 ± 1.8 3.2 ± 0.1 34 ± 3.0 254 ± 10 

12 387 ± 47 106 ± 3.8 42 ± 1.0 3.6 ± 0 20 ± 1.3 140 ± 5 

13 111 ± 35 334 ± 10.8 55 ± 1.6 3.7 ± 0.5 37 ± 1.4 220 ± 22 

14 183 ± 32 159 ± 6.5 56 ± 0.7 3.2 ± 0 32 ± 2.6 188 ± 16 

15 149 ± 94 163 ± 3.6 55 ± 3.0 3.3 ± 0.3 28 ± 2.5 194 ± 17 

Initial 322 ± 48 60 ± 3.2 16 ± 0.4 5.9 ± 0.1 36 ± 4.1 188 ± 19 

Table 3. Results for Part 2 of batch operation 

The polyphosphates contained in dairy manure could be broken down to form ortho-P at 
elevated temperature; the rate and extent of polyphosphates were dependent on the heating 
temperature (Kuroda, et al., 2002). Acid also help solublize organic phosphorus and 
polyphosphate (Chan, et al., 2007). A trend can be seen from Figure 2, where Treatment time 
highly favours the release of ortho-P, with a slight increase of hydrogen peroxide. 
Irrespective of hydrogen peroxide dosage and treatment temperature, ortho-P increased 
with treatment time (Figure 2). It can be seen from both parts of this study that acid addition 
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is crucial to the release of ortho-P from dairy manure into solution. The orth-P results 
obtained in this study were consistent with results from previous studies (Kenge, et al., 
2010; Yu, et al., 2010). It was reported by Jin, et al. (2010) that the optimal condition for 
orthophosphate release was at 135 °C and 26 min in microwave treatment of dairy manure. 
It seemed that the MW/H2O2-AOP was operated near the optimal condition for the release 
of orthophosphate and other soluble components in this study. In view of the results, the 
process should be operated at a high temperature region (120-160 °C), a long reaction time 
(15-20 min) and dosage of 0.07-0.14 g H2O2/g TS for maximizing soluble components from 
dairy manure. 
Ammonia is one of the soluble products from the MW/H2O2-AOP, and it is a constituent of 

a potent fertilizer, struvite. No dramatic increases in ammonia production were found.  

 

 

Fig. 2. Surface plot for Part 2 – orthophosphate 

3.2 Continuous operation 
The disadvantages of a batch operation are: (1) the materials must be transported twice from 

the reaction vessel, and (2) the amount of sample that can be treated at one time is limited by 

the batch reaction time and the sample vessel volume. Besides these shortcomings, 

hydrogen peroxide was also introduced prior to microwave irradiation, limiting the 

synergistic effects between H2O2 and microwave irradiation. The alternative to batch 

operation is a continuous process, which is more suitable for an industrial application.  

The results are presented in Figures 3 to 7. The most pronounced effect on the solubilization 

of solids was due to microwave heating temperature (Fig. 3).  

The SCOD solubilization remained relatively steady at a range of 60 to 70 °C, regardless of 

the acid concentration. Acid concentration aids the process to maintain or even increase the 

hydroxyl radical concentration by stabilizing them and thereby inhibiting their degradation. 

The narrow range of treatment temperature involved may mask the synergetic effects of 

adding acid to the process as the continuous mode of operation is not pressurized to exceed 

boiling point.  The SCOD increased with an increase of microwave temperature to a higher 

range of 80 to 90 °C. This was due to the fact that heating would also increase the 

decomposition of H2O2 into hydroxyl radicals and therefore enhance the oxidation process 

when H2O2 was applied simultaneously with microwave heating (Eskicioglu, et al., 2008). 
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Heating alone can also add to the degradation of the substrate’s structural integrity. The 

results showed that SCOD solublization from dairy manure was most affected by MW 

temperature. To a lesser extent, it was also affected by acid concentration, especially at the 

higher temperature levels of 80 to 90 °C.   

 

 

Fig. 3. Soluble COD as a per cent of TCOD   (  influent;  MW only;  MW/H2O2-AOP 

with 0.2% acid;  MW/H2O2-AOP with 0.5% acid;  MW/H2O2-AOP with 1.0% acid) 

It was evident that an acidic condition was critical for phosphorus solubilization from dairy 
manure (Fig. 4).  Without the acid addition, as microwave temperature increased from 60 to 
90 °C, the ortho-P decreased from 34% to 11% of TP, which was lower than in the untreated 
substrate. Phosphorus solubilization was greatly improved with an addition of acid. 
However, acid dosages did not display significant effects on the solubilization of 
phosphorus; an acid addition of 0.5% appeared to be sufficient. 
There was no significant release of ammonia over the range of 60 to 80 °C, regardless of the 
acid dosages (Fig. 5). However, up to 70% of TKN was solubilised at 90 °C.  The effect of 
acid dosage on NH4-N solubilization was similar to that of phosphorus solubilization; the 
MW/H2O2-AOP needed to be operated in an acidic condition; 0.5% of acid concentration 
was sufficient.   
The VFA comprised of various organic acids, such as acetic, propionic, i-butyric, i-valeric, 
valeric, hexanoic, and heptanoic acids. However, acetic acid is the major component of the 
VFA, ranged from 46 to 53%. A considerable amount of VFA was released from the dairy 
manure after the MW/H2O2-AOP treatment. The component of acetic acid increased in the 
treated solutions, ranging from 53 to 84% of total VFA. Overall, the best VFA production of 
approximately 330 to 420 mg/L was solubilized with an acid dosage of 0.5%. Acid in 
combination with the MW/H2O2-AOP produced more VFA with increasing temperature, 
except for the highest acid dosage of 1%, where a slight decrease was found at the higher 
temperatures. This trend may not be conclusive to say higher acid dosage is detrimental to 
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VFA production, but it indicates that higher acid concentrations may have an effect in 
reducing VFA in dairy manure (Fig. 6).  
 

 

Fig. 4. Orthophosphate release as a per cent of TP (  influent;  MW only;  MW/H2O2-

AOP with 0.2% acid;  MW/H2O2-AOP with 0.5% acid;  MW/H2O2-AOP with 1.0% 
acid) 

 

 

Fig. 5. Ammonia release as a per cent of TKN (  influent;  MW only;  MW/H2O2-AOP 

with 0.2% acid;  MW/H2O2-AOP with 0.5% acid;  MW/H2O2-AOP with 1.0% acid) 
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Fig. 6. Productions of volatile fatty acids  (  influent;  MW only;  MW/H2O2-AOP with 

0.2% acid;  MW/H2O2-AOP with 0.5% acid;  MW/H2O2-AOP with 1.0% 

For the MW only treatment, the reducing sugar concentrations remained similar to those in 
the influents; however, reducing sugar concentrations decreased after treatment with the 
MW/H2O2-AOP. For the MW/H2O2-AOP, the reducing sugar concentrations increased 
gradually with an increase of microwave temperature. With an increase in acid 
concentrations for every treatment temperature, reducing sugar concentrations were further 
decreased (Figure 7). The reducing sugars produced from dairy manure are from the 
hydrolysis of hemicellulose and cellulose, the resulting solution most likely contains a 
mixture of pentose and hexose. Indeed, reducing sugars of arabinose, xylose, galactose and 
glucose have been identified from the hydrolysis of dairy manure using an ion 
chromatograph (Wen, et al., 2004). 
The decrease in reducing sugars could be explained as the further oxidation of soluble 
reducing sugars into VFA and CO2 during the MW/H2O2-AOP.  The oxidation process is 
more favourable at a lower pH, in other words, a higher acid dosage. Very low 
concentrations (less than 90 mg/L of reducing sugars) were obtained from different 
treatments at low microwave temperatures.  
This was due to the manure being sieved and diluted; therefore, the lignocellulosic 
materials, a precursor to sugar production, were low in the manure used in this study. The 
other reason was that temperatures and acid concentration applied were much lower than 
that of optimal conditions. As indicated in conventional acid hydrolysis of lignocellulosic 
materials in dairy manure for the production of simple sugars, samples required pre-
treatment with 75% acid concentration and 30 min of reaction time for the de-crystallization 
of fibre, and then were further hydrolyzed in 12.5% of acid at 135 °C for 10 minutes (Liao, et 
al., 2006). For the MW/H2O2-AOP treatment of dairy manure, a higher reducing sugar 
production was obtained at above 120 °C (Kenge, et al., 2010). The results show that the 
important factors affecting reducing sugar yield were temperature and acid concentration. 
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The presence of small amounts of hydrogen peroxide during the treatment process would 
decrease the degrees of polymerization and cellulose crystallinity, at the same time, igt 
would increase the accessible surface area and pore size of lignocellulosics. However, too 
much of hydrogen peroxide would decrease reducing sugar yield. It would favor the further 
oxidative reaction to form VFA or CO2 (Kenge, et al., 2010).   
 

 

Fig. 7. Production of reducing sugars (  influent;  MW only;  MW/H2O2-AOP with 

0.2% acid;  MW/H2O2-AOP with 0.5% acid;  MW/H2O2-AOP with 1.0% acid) 

3.2.1 Comparison of batch and continuous operations 
Four experimental sets using a batch microwave unit were also conducted for the purpose 
of comparison to the continuous process. Three replicates were used at two testing 
temperatures of 60 and 90 °C. The rate of temperature increase was set at 5 °C/minute to 
attain the target temperature, at which time, the reaction was terminated. Two sets of 
experiments at each temperature were operated: one with both acid (0.2% v/v) and H2O2 
(0.1% v/v), the other without. 
The results of SCOD and ortho-P for both batch and continuous systems are presented in Table 
4. Without the additions of H2O2 and acid, a simple decomposition process occurred under 
thermal treatment. As a result, there was little solids disintegration and little release for both 
nutrients. For the MW/H2O2-AOP, it was the thermal oxidation process that involved not only 
the breakdown of large particulate organic matters, but also, the further oxidation or 
gasification of some of the resulting organic products. Both SCOD and ortho-P concentrations 
for the MW/H2O2-AOP were higher than those of the MW treatment only (Table 4). A higher 
microwave temperature also increased phosphorus solubilization and solids disintegration. 
Higher ortho-P and SCOD concentrations were obtained from the continuous mode operation 
than from a batch system. The superior performance of a continuous system could be 
attributed to the synergistic effects of MW irradiation and H2O2. Since H2O2 was injected into 
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the influent stream immediately prior to MW irradiation in a continuous mode unit, the 
synergistic effects between H2O2 and MW irradiation became manifested.  
 

Temperature H2O2 and Ortho-P Increase (%) SCOD Increase (%) 

(°C) H2SO4 Batch Continuous Batch Continuous 

60 
No -3.2 5.3 -0.6 1.8 

Yes 26 57 12 37 

90 
No -7.1 -14 0.1 -6.6 

Yes 28 71 12 34 

Table 4. Comparison of batch and continuous operation 

This study also demonstrates the feasibility to produce reducing sugar from dairy manure 
for the subsequent processes, such as ethanol production, and useful fermentation products. 
To obtain a large quantity of reducing sugars from dairy manure, the MW process should be 
operated at a small amount of H2O2 or without H2O2. Nutrient is also released in the 
MW/H2O2-AOP, which can also be used for energy production, or struvite as a fertilizer.  
However, the process has not been fully optimized yet, it was expected that under 
pressurized conditions, the continuous mode operation may be even more effective. More 
investigations should also be conducted to include a wider range of treatment temperatures.  
Based on the findings, a pilot-scale continuous mode MW/H2O2-AOP system is being 
conducted to further verify the feasibility of the technology for solids reduction and 
solubilisation of nutrients. The economic feasibility will also be conducted. 

3.3 Economic implication 
Applying the MW/H2O2-AOP to treat dairy manure, there will be significant increases of 
VFA and nutrients (N & P), and a decrease of solids content in the liquid filtrate. This will be 
very beneficial in that 1) with reduced solids content in the dairy manure, the more 
advanced anaerobic reactor, such as the fixe-film reactor, can be adopted for anaerobic 
digestion of the treated filtrate at much shorter HRTs, resulting in more methane 
production; and 2) with more VFA and other readily biodegradable substances in the 
treated dairy manure filtrate, the methane conversion efficiency will be much greater; the 
methane production rate from the manure filtrate can be as much as five to six times of that 
of the untreated manure filtrate (Lo, et al., 1985). The soluble phosphorus in the filtrate can 
be increased substantially by using the MW/H2O2-AOP. As a result, struvite production 
would also increase substantially. In addition, the MW/H2O2-AOP can destroy fecal 
coliforms in wastewater, making it possible for the final effluent available for barn cleaning 
and other purposes (Yu, et al., 2010).  This not only reduces the water usage on farm, but 
also helps by reducing the pollution of fresh water resources.  

4. Conclusion 

The MW/H2O2-AOP could be an effective pre-treatment method to release nutrient, and 
disintegrate solids from dairy manure. It is recommended that the process shall be operated 
at high microwave temperatures (120-160 °C), a low hydrogen peroxide dosage (0.07-0.14 g 
H2O2/g TS) and a long treatment period (15-20 min). 
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Microwave temperature and acid concentration are factors affecting reducing sugars 
production. Hydrogen peroxide also plays a role in a less extent. Higher microwave 
temperatures favor the production of reducing sugars. The process could be operated with 
or without H2O2 for reducing sugar production; the substantial amounts of reducing sugars 
could be obtained at a higher temperature and a longer heating period without H2O2. 
Temperature was the dominant factor for solids disintegration., At the same operating 
temperature, the process could be operated either at a longer heating period without 
addition of H2O2, or at a shorter heating period with an addition of H2O2 to yield the similar 
SCOD concentration. Heating time also affected orthophosphate release. Heating time and 
temperature were significant factors for ammonia release and VFA. 
The MW/H2O2-AOP can be operated in a continuous operation, with equal or better results 
than a batch process. When the MW/H2O2-AOP is operated in a continuous mode, it 
maximizes the synergistic effects between H2O2 and MW irradiation, thereby promoting 
more nutrient solubilization and solid disintegration. 
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