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1. Introduction 

Nowadays, the demand and the necessity for the use of materials with specific 
characteristics have increased in many engineering fields. Due to this necessity of making 
new materials, composite materials have been an alternative, or maybe the unique option, to 
attempt a large number of design requirements such as high strength-to-weight ratio, high 
resistance to mechanical shocks, chemical attacks, corrosion, and fatigue, that cannot be 
obtained only from the commonly used structural materials (metals, ceramics, polymers and 
wood). Because of this, their applications are present in the main industries such as 
aerospace, automotive, marine, and sportive 
Thanks to their flexibility characteristics there are many combinations and arrangements 
and, consequently, constitutive properties, that are possible to be achieved. This 
particularity represents one of the main advantages of these materials. Nevertheless, some 
factors related to arrangements as the number of layers and the orientation of the fibers can 
introduce a behavior called anisotropy that, in the most of the cases, is not required. The 
anisotropy makes the structural analysis more complex due to increasing the number of 
independent variables, as for example, the number of bending and extensional elastic 
stiffness constants.  
Recently, wide part of works presented by scientific literature whose goal is to identify 
constitutive parameters of materials (these being composites or not) is based in the called 
“inverse problems”. Experimental data such as geometry, resultant forces and strain (or 
stress) fields are used as input data, and the unknown variables are the required constitutive 
parameters. In general, the solution is basically associated to two methods: iterative (or also 
called indirect methods) and non-iterative (or also called of direct methods).  The first one is 
related to optimization problems where the design variables are constitutive parameters and 
the objective function represents, in general, a residue (or error) between experimental and 
numerical (generally obtained by finite elements) data. For the numerical simulations, it is 
considered structures that have the same geometrical characteristics and boundary 
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conditions of the real ones. For each step, required parameters are checked out, and, the 
optimum represents the iteration whose residue (objective function) has its lowest value. 
Unlike indirect methods, the direct methods are ones where the required parameters are 
computed from the solution of constitutive equation(s) that are functions of these 
parameters. 
In general, according to the type of experimental test, it is possible to separate the 
methods of elastic property identification in two categories: static (destructives and non-
destructives) and dynamic methods (non-destructive), as shown in Fig.1. A large number 
of identification techniques that use data from these categories of tests have been 
proposed, especially ones dedicated to composite materials. It is possible to say that these 
techniques identify effective properties of the entire material. The way as each 
formulation is built, and, the adopted procedures and devices are the main differences 
among the many proposed methodologies. 
Static tests with monotonic load are experimental tests that were more commonly used in 
the last years, and maybe the simplest ones, for this material property identification. 
Despite the simplicity of these tests, some aspects render them less attractive than 
dynamic tests, such as the fact of requiring a number of samples with fiber orientations 
according to standard norms, for example, American Society for Testing and Materials 
(ASTM), which, in the most of cases, are not in accordance to the real characteristics of the 
required material. Furthermore, some variables difficult of controlling during the tests can 
contribute to worsen the experimental results, e.g., the presence of non-uniform stress 
fields near the ends of the sample from the clamped boundary conditions. For these 
reasons, dynamic tests have been considered an interesting alternative. In general, they 
are tests that combine experimental data with numerical methods, and allow the 
identification of elastic constants from only one unique sample or even from composite 
material part. Sample is usually thin plate (that reflect Kirchhoff’s hypotheses), cylindrical 
shell, or beam. In many cases, input data of the numerical methods are natural frequencies 
and/or mode shapes. 
 

 

Fig. 1. Methodologies more used to identify elastic properties of materials. 
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Many authors have proposed to identify the elastic constants by iterative procedures 
adopting Rayleigh-Ritz and finite element as numerical methods. The difference among the 
identification techniques based on these iterative procedures is basically in the way as the 
optimization problem is formulated, for example, the type of adopted search method to find 
the minimal, the boundary conditions, the geometric characteristics of the samples, the type 
of anisotropy of the test material, the type of experimental devices, and the numerical 
method used to compute the mode shapes (or operational modes) with their respective 
frequencies (Deobald & Gibson, 1988; Pedersen & Frederiksen, 1992; Lai & Lau, 1993; 
Ayorinde & Gibson, 1995; Rikards & Chate, 1998; Ayorinde & Yu, 1999, 2005; Rikards et al., 
1999; Bledzki et al., 1999; Hwang & Chang, 2000; Araujo et al., 2000; Chakraborty & 
Mukhopadhyay, 2000; Rikards et al., 2001; Lauwagie et al., 2003; Lauwagie et al., 2004; Lee 
& Kam, 2006; Cugnoni et al., 2007; Bruno et al., 2008; Pagnotta & Stigliano, 2008; Diveyev & 
Butiter, 2008a, 2008b). 
In works that do not use iterative process, natural frequencies and mode shapes, or 
operational frequencies and modes, are input data of an algorithm based on the differential 
equation that governs the transversal vibration of sample in a specific direction and under 
specific boundary conditions (Gibson, 2000; Alfano & Pagnotta, 2007). In this methodology, 
it can be included the use of Virtual Fields Method, VFM (Grédia, 1996, 2004; Grédiac & 
Paris, 1996; Grédiac & Pierron, 1998, 2006; Pierron et al., 2000, 2007; Pierron & Grédiac, 2000; 
Grédiac et al., 1999a, 1999b, 2001, 2006; Giraudeau & Pierron, 2003, 2005; Chalal et al., 2006; 
Toussaint et al., 2006; Avril & Pierron, 2007; Pierron et al., 2007; Avril et al., 2008; Giraudeau 
et al., 2006). For VFM, weighting functions are the called virtual fields. Due to sensitivity to 
experimental errors and the presence of noise during the dynamic testing, it was proposed 
the use of specific virtual fields named “special virtual fields” (Grédiac et al., 2002a, 2002b, 
2003). In order to decrease the noise contribution, the use of more accurate experimental 
modal analysis techniques or the application of some signal smoothing (or filtering) 
technique is mandatory. 
The majority of works identifies only the bending stiffness matrix or directly the engineering 
elastic constants. However, the extensional elastic stiffness matrix is also needed to model 
composite materials under multi-axial loads. In general, these stiffness matrices are 
independent. The extensional stiffness matrix relates the in-plane resultant forces to the 
midplane strains, and, the bending stiffness matrix relates the resultant moments to the 
plate curvatures. In a laminate composite, if only the stacking sequence of layers is changed, 
the bending matrix is changed but the extensional matrix remains the same. In other words, 
different laminates can have different bending stiffness matrices and the same extensional 
stiffness matrix. It is not possible to obtain the extensional matrix from the bending matrix. 
It will be possible only if the stacking sequence of layers and their thickness are known and, 
also, if the material is the same for all lamina.  
Sometimes, it is more convenient to use effective laminate engineering constants rather than 
the laminate stiffness. These effective laminated engineering constants may be easily 
obtained from the extensional elastic constants. However, due to difficulties on 
experimental in-plane modal analysis, such as the necessity of using specific devices to 
measure in-plane displacements and to excite high frequencies, the identification of 
extensional elastic stiffness constants using modal testing is less attractive. The main 
challenge to perform in-plane vibration testing is the excitation and measurement of only in-
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plane and not out-of-plane vibration modes. Today there are some new techniques that are 
suitable for this kind of problems, for example, the excitation by piezoelectric (PZT) and 
measurements by digital image correlation. 
In this chapter, a review about the VFM applied to compute bending elastic stiffness 
constants proposed by Grédiac & Paris, 1996 is presented. Furthermore, a formulation based 
on the VFM is proposed in order to identify the extensional elastic stiffness matrix of 
Kirchhoff’s thin plates. The linear system of equations that provides the required elastic 
constants is obtained from differential equations that govern the forced vibration of 
anisotropic, symmetric and non-damped plates under in-plane loads. The common 
procedures to find the weak form (or integral form) of these equations are applied here. The 
correct choice of weighting functions (which are the virtual fields) and mode shapes 
represents a key characteristic to the accuracy of the results. Numerical simulations using 
anisotropic, orthotropic, quasi-isotropic plates are carried out to demonstrate the accuracy of 
the methodology. 

2. Identification of elastic constants using VFM 

2.1 Review of the Virtual Fields Method - VFM 
The VFM has been developed for extracting constitutive parameters from full-field 
measurements and it is associated to problems of identification of parameters from 
constitutive equations. Two cases are clearly distinguished: constitutive equations 
depending linearly on the constitutive parameters and non-linear constitutive equations. 
The type of constitutive equations is chosen a priori for its relevancy and objective of it is to 
determine the parameters which govern the constitutive equations. The main difficulty 
comes from the fact that the measured displacement or strain components are generally not 
directly related to the unknown parameters (Grédiac et al., 2006), and no closed-form 
solution for the displacement, strain and stress fields is available. 
Mathematically, the VFM is based on the principle of virtual work and can be written as: 

 * *- : .
fV S V V

dV dS dV dV       *T.u f u u  (1) 

where V is volume of the solid, σ is the actual stress tensor, ε* is the virtual strain tensor, T is 
the distribution vector of loading tractions acting on the boundary, Sf is the part of the solid 
boundary where the tractions are applied, u* is the virtual displacement vector, f is the 
distribution of volume forces acting on V, ρ is the density and γ the acceleration. Eq. (1) is 
verified for any kinematically admissible virtual field (u*, ε*). Kinematically admissible 
means that u* must be continuous across the whole volume and it must be equal to the 
prescribed displacement on the boundary Sf where displacements are prescribed. Let’s 
introduce the constitutive equations in the general case as: 

  g   (2) 

where g is a function of the actual strain. Thus, when constitutive equations are introduced 
and volume forces are disregarded, Eq. (1) can be rewritten as: 

   * * *: .
fV S V

g dV dS dV      T u u . (3) 
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It is possible to see in Eq. (3) that each virtual field originates a new equation involving the 
constitutive parameters. The VFM relies on this important property. It is a method based on 
setting virtual fields that provide a set of equations. This set of equations is used to extract 
the required unknown constitutive parameters. The correct choice of the virtual fields that 
combine to actual fields in Eq. (3) is the key issue of the method. Their number and their 
type depend on the nature of g in Eq. (3). 

2.2 Review of the identification method of bending elastic stiffness matrix 
The method proposed by Grédiac & Paris, 1996, consists of obtaining elastic constants based 
on the partial differential equation that governs the transversal vibration of an anisotropic 
thin plate (Kirchhoff’s plate). This equation is given by:  

  
4 4 4 4 4 2

11 16 12 66 26 224 3 2 2 3 4 24 2 2 4
w w w w w w

D D D D D D ρh
x x y x y x y y t

     
      

        
, (4) 

where Dij are thin plate bending stiffness constants;  is the mass density of the material; h is 
the plate thickness; x and y are coordinates of the plate; t is time; and w(x,y,t) is the 
deflection function that represents the transversal displacement of a point of the plate at an 
instant t. Eq. (4) doesn’t state the global equilibrium of the plate since the excitation force 
and damping are not considered. However, for many composite materials, as for example, 
aeronautic carbon epoxy tested in this work, the damping is low enough to disregard its 
contribution in the formulation. Besides, if the input data refer to resonant response of the 
plate, the work provided by the excitation is balanced by internal dissipation of the plate. A 
detailed discussion about when excitation and damping should be considered in Eq. (4) can 
be found in Giraudeau & Pierron, 2006. 
After some mathematical manipulations in Eq. (4), Grédiac & Paris, 1996 obtained a linear 
system in which the unknown variables are the elastic constants. Briefly, the sequence of 
operations is as follows: (a) multiply both sides of Eq. (4) by an arbitrary weighting function; 
(b) integrate twice by parts along the plate domain; (c) eliminate the boundary integrals by 
applying the free-edge boundary conditions; (d) decompose the displacement function w(x, 
y, t) as a product of the deflection amplitude Φ and sin(t), where  is the out-of-plane 
natural frequency of a particular mode shape of the plate; and (e) choose appropriate 
weighting functions and mode shapes to build the matrix of the linear system. At this point, 
as Grédiac & Paris, 1996 explain, the choice of mode shapes associated with the weighting 
function is extremely important for the accuracy of this method. Three particular modes are 
strongly dependent on the required coefficients Dij: a twisting mode that strongly depends 
on terms D66, D16, and D26; a bending mode along direction 1 that strongly depends on terms 
D11, D12, and D16, and a bending mode along direction 2 that strongly depends on D22, D12, 
and D26. These modes present smooth curvatures and are generally among the first modes, 
with lower frequencies. If these modes are not found, it is recommended to use modes that 
have similar shapes to them. Furthermore, they are modes that can be approximated by 
quadratic functions with constant curvatures: x2, y2, and xy. For this reason, these quadratic 
functions were the weighting functions chosen by Grédiac & Paris, 1996. Thus, using these 
previous quadratic-weighting functions, the following simplified system of equations can be 
obtained: 
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









, (5) 

where indices j and k represent a specific mode shape; and S is the plate domain. Elements 
of the matrix of Eq. (5) are given by: 

 
 2

2

,
xx

S

x y
K dS

x

 


 , 
 2

2

,
yy

S

x y
K dS

y

 


 , 
 2 ,

xy

S

x y
K dS

x y

 


  . (6) 

Eq. (5) can be represented in matrix form as: 

 KD C , (7) 

where, considering L as the number of modes used in the linear system of equations, K is a 
3L x 6 matrix, D is a 6 x 1 matrix, and C is a 3L x 1 matrix. As can be seen, Eq. (7) is an 
overdetermined system of equations. The solution can be found by least squares: 

    1T T
D K K K C . (8) 

2.3 Identification method of the extensional elastic stiffness matrix 
In the general case of composite laminates, each lamina is assumed to have orthotropic 
material properties. After the assembly, the behavior can be anisotropic due to the 
interaction of different laminas. Considering a plate under plane state of stress and using 
Hooke’s generalized law, stresses can be integrated over its thickness yielding the following 
force-deformation equations: 

 

     
        
         

N A B ε

M B D κ


    


, (9) 

where N and M are vectors that contain normal forces and resultant moments, respectively, 
A is the extensional elastic stiffness matrix, B is the coupling elastic stiffness matrix (B is a 
null matrix in the case of a symmetric laminate), D is the bending elastic stiffness matrix, ε 
and κ are vectors that contain middle plane linear strains and rotations, respectively. 
Considering a symmetrical (B = [0]) and fully anisotropic laminate under free-edge in-plane 
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vibration (the plate is not under bending) and using the equilibrium relations, the following 
equations can be written: 

 

       

       

2 2 2 2

11 16 66 162 2 2

2 2 2

12 66 26 2 2

, , , , , , , ,
2

, , , , , ,

u x y t u x y t u x y t v x y t
A A A A

x x y y x

v x y t v x y t u x y t
A A A h

x y y t

   
   

    

  
    

   

, (10) 

 

         

     

2 2 2 2

16 12 66 26 662 2 2

2 2 2

26 22 2 2

, , , , , , , ,

, , , , , ,
2

u x y t u x y t u x y t v x y t
A A A A A

x x y y x

v x y t v x y t v x y t
A A h

x y y t

   
    

    

  
   

   

 (11) 

where Aij are the elements of matrix A (i,j = 1,2,6); ρ is the mass density; h is the plate 
thickness; x and y are the coordinates in the plate plane; t is the time, and u(x,y,t) and v(x,y,t) 
are functions that represent the displacements along x and y direction, respectively, of a 
point with coordinates (x,y) of the plate at an instant t. Multiplying Eq. (10) by a weighting 
function W(x, y) and integrating along the domain of the plate, we can obtain: 

 

       

       

2 2 2 2

11 16 66 162 2 2

2 2 2

12 66 26 2 2

, , , , , , , ,
2

, , , , , ,

u x y t u x y t u x y t v x y t
A A A A

x x y y x

v x y t v x y t u x y t
A A A Wd h Wd

x y y t





    
        

  
         




  (12) 

where Ω is the plate domain. Using chain rule, i.e., 

  .
dg dfd

f g f g
dx dx dx

  , (13) 

where f and g are any two continuous functions, and Green’s theorem, i.e., 

 x

f
d fn dx

x 


 

  , (14) 

where Γ is the boundary domain, and nx is the component of the normal unity vector in 
directions x, the left hand side terms of Eq. (12) can be written as: 

 

11 16

66 16

12 66

2
x x

y x

x x

u u W u u W
A Wn d d A Wn d d

x x x y y x

u u W v v W
A Wn d d A Wn d d

y y y x x x

v v W v v W
A Wn d d A Wn d d

y y x y y x

   

   

   

                        
                         
      

        
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   

   

   
2

26 2y

v v W u
A Wn d d h Wd

y y y t  

 
 

 
    

       
    

  

 (15) 
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where ny is the component of the normal unity vector in direction y. From the constitutive 
equation, one has: 

 
11 12 16

12 22 26

16 26 66

x x

y y

xy xy

N A A A

N A A A

A A AN






               
           

, (16) 

where Nx and Ny are axial forces per unit length along directions x and y, respectively, Nxy is 
the shear force per unit length along plane xy, εx and εy are the middle surface axial strain 
along directions x and y, respectively, and γxy is the shear angular strain along plane xy. 
Rewriting Eq. (16), one obtains: 

 11 12 16 11 12 16x x y xy

u v u v
N A A A A A A

x y y x
  

    
       

    
, (17) 

 12 22 26 12 22 26y x y xy

u v u v
N A A A A A A

x y y x
  

    
       

    
, (18) 

 16 26 66 16 26 66xy x y xy

u v u v
N A A A A A A

x y y x
  

    
       

    
. (19) 

Multiplying Eq. (17) by a weighting function W and by nx, which is the x component of unit 
normal vector n, and integrating on the boundary Γ, one obtains: 

 11 12 16x x x x x x

u v u v
A Wn d A Wn d A Wn d Wn d N Wn d

x y y x    

    
         

    
     . (20) 

Multiplying Eq. (19) by a weighting function W and by ny, which is the y component of the 
unit normal vector n, and integrating on the boundary Γ, yields: 

 16 26 66y y y y xy y

u v u v
A Wn d A Wn d A Wn d Wn d N Wn d

x y y x    

    
         

    
     . (21) 

Substituting Eqs. (20) and (21) into Eq. (15), and reorganizing the terms, one can write: 

 11 16x x xy y

u W u W u W v W
N Wn d N Wn d A A

x x y x x y x x  

                              
     

 
2

12 66 26 2

v W u W v W v W u
A A A d h Wd

y x y y x y y y t

             
            

             
 . 

(22)

 

Now, if free-edge boundary conditions are considered, boundary integrals of Eq. (22) 
vanish. Considering that the plate is vibrating, functions u and v can be written as: 

www.intechopen.com



Techniques for Identification of Bendingand Extensional Elastic Stiffness Matriceson Thin  
Composite Material Plates Basedon Virtual Field Method (VFM):Theoretical and Numerical Aspects 47 

      , , , sinu x y t U x y t , (23) 

      , , , sinv x y t V x y t , (24) 

where   is the in-plane natural frequency associated to any in-plane mode, and U(x,y) and 
V(x,y)  are the displacement amplitudes along directions x and y, respectively, of a point 
with coordinate (x,y). In this sense, the amplitude is only a function of coordinates x and y. 
Eliminating the boundary integrals of Eq. (22), substituting Eqs. (23) and (24) into Eq. (22), 
and considering any mode j, one obtains: 

 

         

     
 

11 16 12

2
66 26

j j j j j

j j j
j

j

U W U W U W V W V W
A A A

x x y x x y x x y x

U W V W V W
A A d h U Wd

y y x y y y
 





                         
                    

                 
            





. (25) 

Now, if the same previous mathematical procedures used in Eq. (10) are used in Eq. (11), 
one obtains: 

 

         

     
 

16 12 66 26

2
26 22

j j j j j

j j j
j

j

U W U W U W V W U W
A A A A

x x x y y x x x y y

V W V W V W
A A d h V Wd

y x x y y y
 





                             
                        

                 
            





. (26) 

2.3.1 Choice of the weighting functions 

Eqs. (25) and (26) are theoretically valid for isotropic, orthotropic, or anisotropic plates, 
provided that the laminate is symmetrical. As it can be seen, the function W is arbitrary 
since itself and its first order derivative is continuous in the domain Ω. Amplitudes U(x,y) 
and V(x,y), and frequencies j  are obtained from dynamic tests. Dimensions of the plate 
and parameters  and h can also be easily measured on the sample plate. Thus, the next 
steps are the choice of a suitable numerical method to compute the derivatives and integrals 
in Eqs. (25) and (26). Furthermore, suitable mode shapes and weighting functions should be 
chosen. In this work, finite differences and Gauss-Legendre numerical integration scheme 
are used to compute these derivatives and integrals, respectively. For numerical reasons, 
modes with several sign changes in the mode shape are avoided because their numerical 
derivatives and integrals are more sensitive to errors (Grédiac & Paris, 1996). Generally, first 
modes present more smooth curvatures and are, at the same time, easier to be obtained 
experimentally. It is worth noting that in-plane modal analysis presents much higher 
frequencies than transverse modal analysis (bending modes). This is because stiffness along 
direction x and y is much higher than stiffness along the transversal direction of the plate. 
For numerical reasons, smooth mode shapes associated with smooth weighting functions 
are preferred. For all these reasons, and in order to simplify Eqs. (25) and (26), the following 
group of weighting functions are proposed: 
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W(x, y) = x2, which applied to Eqs. (25) and (26) provides the following integral equations: 

 
       

 2 2
11 16 122

j j j j
j

j

U U V V
A x A x x A x d h U x d

x y x y
 

 

                    
               

  , (27) 

 
       

 2 2
16 66 262

j j j j
j

j

U U V V
A x A x x A x d h V x d

x y x y
 

 

                    
               

  . (28) 

W(x, y) = y2, which applied to Eqs. (25) and (26) provides the following integral equations: 

 
       

 2 2
16 66 262

j j j j
j

j

U U V V
A y A y y A y d h U y d

x y x y
 

 

                    
               

  , (29) 

 
       

 2 2
12 26 222

j j j j
j

j

U U V V
A y A y y A y d h V y d

x y y y
 

 

                    
               

  . (30) 

W(x, y) = 2xy, which applied to Eqs. (25) and (26) provides the following integral equations: 

 

         

     
   

11 16 12

2
66 26

2

2

j j j j j

j j j
j

j

U U U V V
A y A y x y A y

x y x x y

U V V
A x x A x d h U xy d

y x y
 





                    
               

              
         




, (31) 

 

       

       
   

16 66 12

2
26 22

2

2

j j j j

j j j j
j

j

U U V U
A y A y y A x

x y x x

U V V V
A x y x A x d h V xy d

y y x y
 





                  
              

                
          




 (32) 

Defining: 

 uxx

U
x d K

x

      , uyx

U
x d K

y

 
  

 
 , uxy

U
y d K

x

      , uyy

U
y d K

y

 
  

 
 ,  

 vxx

V
x d K

x

      , vyx

V
x d K

y

 
  

 
 , vxy

V
y d K

x

      , vyy

V
y d K

y

 
  

 
 . 

Eqs. (34)-(38) can be written as: 

           2 2
11 16 12

1
2

j j j j j
uxx uyx vxx vyx jA K A K K A K h U x d 


     , (33) 
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           2 2
16 66 26

1
2

j j j j j
uxx uyx vxx vyx jA K A K K A K h V x d 


     , (34) 

           2 2
16 66 26

1
2

j j j j j
uxy uyy vxy vyy jA K A K K A K h U y d 


     , (35) 

 
          2 2

12 26 22
1

2
j j j j j

uxy uyy vxy vyy jA K A K K A K h V y d 


     , (36) 

 

          

          

11 16 12

2
66 26

1 22

j j j j j
uxy uyy uxx vxy vyy

j j j j
uyx vxx vyx j

A K A K K K A K

A K K A K h U xy d 


    

    
, (37) 

 

               
     

16 66 12 26

2
22

1 22

j j j j j j j
uxy uyy vxy uxx uyx vyy vxx

j j
vyx j

A K A K K A K A K K K

A K h V xy d 


      

  
, (38) 

or, in matrix form: 

 

        
        
        

        
                 

                 

0 0 0

0 0 0

0 0 0

0 0 0

0

0

j j j j
uxx vyx uyx vxx

j j j j
uxx vyx uyx vxx

j j j j
uxy vyy uyy vxy

j j j j
uxy vyy uyy vxy

j j j j j j j j
uxy vyy uyy uxx vxy vyx uyx vxx

j j j j j j j j
uxx uxy vyx uyx vyy vxx uyy vxy

K K K K

K K K K

K K K K

K K K K

K K K K K K K K

K K K K K K K K












  

  



     

     

 

 

 

 

   
   

11

12

16

22

26

66

2

2

2

2

2
1

2

2

2

j

j

j

j j

j

j

A

A

A

A

A

A

U x d

V x d

U y d
h

V y d

U xy d

V xy d

 

















 
   
   
   
                     
 
 
 


 
 

 
 
 
 
    

 
 
 
 
  
 
 













 (39)
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Eq. (39) can also be rewritten in a compact form as: 

 KA C , (40) 

where, considering L modes, K is a 6L x 6 matrix in Eq. (40), A is a 6 x 1 matrix, and C is a 6L 
x 1 matrix in Eq. (40). Eq. (40) is an over determined system. Thus, the solution can be found 
by least squares: 

    1T T
A K K K C , (41) 

from where the extensional elastic constants Aij are computed. 

3. Results and comments 

A commercial finite element code (ANSYS 11.0) was used to give particular mode shapes 
and their corresponding natural frequencies from both in-plane and out-of-plane numerical 
modal analysis. Element SHELL99 was used and plates under free-edge boundary 
conditions were considered. 
To exemplify the method proposed by Grédiac and Paris (1996), it was used an anisotropic 
plate with dimensions 0.450 x 0.350 x 0.0021 m and density 1500 kg/m3. It was used a 
laminate with 8 plies, [0  45  90  135]S, and the following engineering elastic constants by ply: 
E1=120 GPa (Young’s module along the principal direction 1), E2=10 GPa (Young’s module 
along the principal direction 2), G12=4.9 GPa (shear module along the plane 1-2), and ν12=0.3 
(Poisson’s ratio along the plane 1-2). A mesh of 651 nodes was used. Fig. 2 shows the three 
modes used to identify the required properties. As can be seen, depending on type of 
material anisotropy, it is not possible to find all three modes necessary to apply the method. 
In this case, it is necessary to find the more approximated ones. 
 

 

(a) (b) (c) 

Fig. 2. Numerical modes obtained from Ansys: (a) Mode shape 1, (b) Mode shape 2, (c) 
Mode shape 3. 

Table 1 shows the bending elastic stiffness constants computed using the engineering 
constants and the classical theory of laminates, and it also shows the errors computed after 
applying the identification method. As can be observed, the technique is able to find very 
satisfactory results when it is used the correct modes. The problem of this technique is the 
high sensitivity to noise presence because of second-order derivatives. More results and 
comments about this method can be found in Grédiac & Paris, 1996. 
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In order to verify the accuracy of the extensional elastic stiffness identification method, it 
was used six graphite/polymer symmetric laminated plates (Table 2): a fully anisotropic 
with all Aij different from zero (i, j = 1, 2, and 6); a cross-ply orthotropic with A11 = A22, A16 = 
A26 = 0, and A11 – A12 ≠ 2A66; a 0° unidirectional orthotropic; a 30° unidirectional orthotropic 
(generally orthotropic); a +30°/-30 angle-ply orthotropic; and a quasi-isotropic with A11 = 
A22, A16 = A26 = 0, and A11 – A12 = 2A66. These laminates have 8 plies with the following 
engineering elastic constants by ply: E1=155 GPa, E2=12.10 GPa, G12=4.4 GPa, and ν12=0.248. 
Dimensions considered were 0.450 x 0.350 x 0.003 m (x, y, and z plate coordinate axis, 
respectively), for the rectangular plate, 0.350 x 0.350 x 0.003 m, for the square plate, and, the 
density material was 1500 kg/m3. The plates were modeled using a mesh with 651 nodes, 
for the rectangular plates, and with 441 nodes, for the square plate. The extensional elastic 
stiffness constants are shown in Table 2. The terms “Aniso”, “Ortho” and “Quasi-iso” are 
simplifications of “Anisotropic”, “Orthotropic” and “Quasi-isotropic”, respectively. Only 
the first fifteen mode shapes were analyzed. 
As can be seen in Table 2, the constants A12 and A66 for the orthotropic laminates I and II are 
equals. They also are equals to laminates with the same characteristics but with 90° 
unidirectional fibers. 0° and 90° unidirectional laminated plates are only different in relation 
to A11 and A22 terms. These are inverted: A11 term of the 0° laminate is equal to A22 term of 
the 90° laminate, and vice-verse. For the generally orthotropic laminate III and orthotropic 
laminate IV the difference are only the A16 and A26 constants: they are nulls for the laminate 
IV and non-nulls for the laminate III. For laminate III all extensional elastic constants are 
non-nulls, similar to fully anisotropic laminates, what, consequently, originates to full 
extensional elastic stiffness matrix. 
 

Bending elastic constants N x mm Errors (%)

D11 64363.9 0.02 

D22 24155.8 0.04 

D12 8875.1 0.02 

D66 10032.7 1.22 

D16 6019.6 0.63 

D26 6019.6 0.64 

Table 1. Bending elastic stiffness constants of the tested anisotropic plate and the computed 
errors. 

The key point of this technique of identification is related with the correct choice of mode 
shapes together to the weighting functions (virtual fields). The correct mode shapes are 
called here by “suitable modes” and the correct combination between these modes and the 
weighting functions are called by “suitable combinations”. The identification of the suitable 
modes is not difficult, as it will be shown in the next topics. But, the suitable combinations 
are more difficult because they depend on the type and the geometry of the material. 
Fortunately, there are some aspects that help finding the best choice. Unlike the bending 
stiffness identification method originally proposed, for this method there are a lot of modes 
and suitable combinations that give satisfactory results.   
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Aij 
108 

[N/m] 

Aniso 
[90 0 0 45]S

Ortho I 
[90 0 90 0]S

Ortho II 
[0]4S 

Ortho III 
[30]4S 

Ortho IV 
[30  -30]2S 

Quasi-iso 
[90 45  0  

-45]S 
A11 2.7865 2.5186 4.6724 2.7840 2.7840 1.9776 
A12 0.3610 0.0905 0.0905 0.9020 0.9020 0.6315 
A16 0.2692 0 0 1.4012 0 0 
A22 1.7096 2.5186 0.3648 0.6301 0.6301 1.9776 
A26 0.2692 0 0 0.4641 0 0 
A66 0.4025 0.1320 0.1320 0.9436 0.9436 0.6730 

Table 2. Laminated plates used for the verification of the method 

 [90  0  0  45]S anisotropic plate   

Table 3 shows some errors computed for the anisotropic plate, rectangular and square. It 
was considered only the first fifteen in-plane modes shapes. Anisotropic plates, in general, 
give very satisfactory results using the combinations among suitable modes. This factor can 
be justified by the fact of these combinations be hardly involved with all required 
extensional elastic constants Aij’s. 
The numerical contribution of each mode to the computation of a specific constant cannot be 
jeopardized by numerical contribution of another mode during the solution of the system 
given by Eq. (40). The suitable modes are those that when associated with weighting 
functions do not null or give very low values for integrals of the right (K matrix) and/or left 
(C matrix) hand sides of Eq. (40). The suitable combinations are one composed by suitable 
modes and that give more accurate results. In the majority of the cases, combinations using a 
higher number of suitable modes can be suitable combinations. According to Table 3 is 
possible to see that using combinations with only two suitable modes very satisfactory 
results can be obtained. Satisfactory results would also be obtained using combinations with 
any modes since the number of suitable modes among all used modes is higher than non-
suitable modes. But the accuracy of these results cannot be guaranteed for all combinations.  

[0  90  0  90]S orthotropic plate (ortho I) 

In general, for the orthotropic and isotropic materials is more difficult to find the suitable 
combinations when it is compared to fully anisotropic materials. It is necessary to take care to 
correctly identifying the combinations that give the best results. In these types of materials not 
all combinations are among suitable modes that can be considered as being suitable 
combinations. According to values found to terms of the K and C matrices, Eq. (40), and using 
combinations among suitable modes, it is possible to see the following types of systems: 

For the rectangular plate: 

Type 1: 

 

1 4 11 5

3 16 6

2 4 66

1 4 12

3 26

3 1 4 22 7

0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0 0

0 0 0

I I A I

I A I

I I A

I I A

I A

I I I A I

     
     
     
             
     
     
     
          

. (42) 
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Type 2: 

 

2 11

1 3 16

1 2 3 66 5

2 12 6

1 3 26 7

1 4 22

0 0 0 0 0 0

0 0 0 0 0

 0 0 0

0 0 0 0 0

0 0 0 0

0 0 0 0 0

I A

I I A

I I I A I

I A I

I I A I

I I A

     
     
     
             
     
     
     
          

. (43) 

 
Anisotropic rectangular plate – suitable modes: 2, 3, 6, 9, 10, 13, and 14 

Suitable 
combinations 

Errors (%) 
A11 A12 A22 A16 A26 A66 

2-3-6-9 2.20 1.95 1.56 1.89 1.46 0.78 
2-3-6 0.04 0.20 0.21 0.93 0.79 0.97 
2-3-9 0.37 2.63 0.27 0.78 0.93 0.28 
2-6-9 0.30 2.46 0.17 1.45 1.03 0.02 
3-6-9 0.17 1.77 0.11 0.97 1.09 0.21 
2-3 0.00 0.32 0.24 0.78 0.53 1.08 
6-9 0.01 2.06 0.11 1.62 1.50 1.51 

Anisotropic square plate – suitable modes: 2, 3, 6, 9, 10, 13, and 14 
Suitable 

combinations 
Errors (%) 

A11 A12 A22 A16 A26 A66 
2-3-6-9 3.73 3.41 2.23 3.21 1.88 1.06 
2-3-6 0.20 0.62 0.23 0.86 0.09 1.08 
2-3-9 0.41 3.86 0.54 1.36 0.77 0.50 
2-6-9 0.35 3.43 0.44 2.00 1.61 0.13 
3-6-9 0.24 2.59 0.14 1.66 0.84 0.30 
2-3 0.04 0.06 0.17 1.02 0.97 1.49 
6-9 0.08 2.66 0.25 2.70 1.08 1.93 

Table 3. Errors computed for the anisotropic plate using some suitable combinations. 

where I1, I2, I3, I4, I5, I6, and I7 are the integral values of Eq. (40). These integrals can be 
negatives or positives depending on strain direction and reference coordinate axis. As can 
be observed, for these two types of systems, Eq. (42) and Eq. (43), all elastic constants are 
involved, and, however, combinations associated to only one type of system can be suitable 
combinations and sufficient to give correct results. For this plate were found the following 
suitable modes: 2, 3, 6, 8, 11, and 14.  
For the square plate: for this plate, the suitable modes are: 2, 3, 6, 7, 11, and 12. The systems of 
equations are full, even though of the additional terms, that are null in rectangular plate, to 
be low in this square plate. It is observed in this plate that for each suitable mode there is 
another identical but out-of-phase at 90°: modes 2 and 3, 6 and 7, and, 11 and 12.  
Table 4 shows errors computed to some suitable combinations for these orthotropic plates. 
As can be seen, very satisfactory results can be obtained using correct combinations of 
modes. For this type of orthotropy, it can be more difficult to compute an accurate value for 
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constant A12. The identification of the suitable combinations is not so clear. As this technique 
of identification is associated to the solution of an equation system having different modal 
contributions, it is difficult to identify which modes compose a correct combination.  
 

Ortho I rectangular plate – suitable modes: 2, 3, 6, 8, 11, and 14 

Suitable 
combinations 

Errors (%) Differences (N/m) 

A11 A12 A22 A66 A16 A26 

2-3-6-8-11-14 0.14 3.80 0.12 1.22 -2.7 x 104 0.8 x 104 

2-3-6-8 0.11 2.90 0.24 0.74 -2.5 x 104 0.6 x 104 

3-6-8-11 0.17 1.58 0.31 1.67 -1.4 x 104 0.5 x 104 

2-8-11 0.17 0.29 0.23 1.46 -1.5 x 104 0.6 x 104 

6-8-11 0.18 0.89 0.34 1.91 -4.8 x 104 1.0 x 104 

3-8 0.02 5.75 0.91 0.13 -1.4 x 104 8.4 x 103 

8-11 0.25 0.42 0.40 2.17 -2.6 x 104 1.1 x 104 

Ortho I square plate – suitable modes: 2, 3, 6, 7, 11, and 12 

Suitable 
combinations 

Errors (%) Differences (N/m) 

A11 A12 A22 A66 A16 A26 

2-3-6-7-11-12 0.09 5.81 0.05 1.89 2.7 x 104 -1.6 x 104 

2-3-6-11 0.10 5.09 0.06 1.92 -4.4 x 104 -8.7 x 104 

3-6-7-12 0.38 2.33 0.08 2.92 6.4 x 104 -1.7 x 104 

2-6-11 0.13 5.47 0.11 2.51 -1.0 x 105 -1.8 x 104 

2-7-12 0.22 5.37 0.04 1.95 1.1 x 105 0.5 x 105 

2-11 0.02 9.04 0.18 0.56 -1.3 x 104 -1.9 x 104 

6-11 0.18 5.63 0.30 3.46 -1.1 x 105 -2.7 x 104 

Table 4. Errors computed for the ortho I plate using some suitable combinations. 

[0]4S orthotropic plate (ortho II) 

For the rectangular plate: for this plate, modes 3, 10, 11, and 14 originate systems of type 1, Eq. 
(42), and modes 2, 5, 9, and 15 originate systems of type 2, Eq. (43).  
For the square plate: for this plate, modes 4, 10, 12, and 14 originate systems of type 1, Eq. (51), 
and modes 2, 5, 9, and 13 originate systems of the type 2, Eq. (43).  
Table 5 shows the errors computed to some suitable combinations for these orthotropic 
plates. Using correct combinations very satisfactory results can be obtained. Similar to ortho 
I plate, for this type of orthotropy, constant A12 is more difficult of being accurately 
computed.  
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Ortho II rectangular plate – suitable modes: 2, 3, 5, 9, 10, 11, 14, and 15 
Suitable 

combinations 
Errors (%) Differences (N/m) 

A11 A12 A22 A66 A16 A26 
2-3-5 2.77 6.06 0.08 0.38 2.4 x 104 0.5 x 104 

11-14-15 1.14 2.15 0.92 1.15 2.3 x 105 0.1 x 105 
2-3 2.36 0.57 0.19 0.72 1.7 x 104 0.1 x 104 

2-10 2.10 0.82 0.60 2.42 -2.0 x 105 -0.4 x 105 
2-14 2.04 5.22 0.37 1.12 -3.9 x 104 -1.2 x 104 
11-14 1.64 2.14 0.87 0.98 -1.8 x 105 -0.1 x 104 

Ortho II square plate – suitable modes: 2, 4, 5, 9, 10, 12, 13, and 14 
Suitable 

combinations 
Errors (%) Differences (N/m) 

A11 A12 A22 A66 A16 A26 
2-4-5 4.13 8.63 0.39 0.45 -3.5 x 104 -0.1 x 104 
2-4-14 2.43 0.78 0.72 2.89 4.2 x 104 1.1 x 104 

2-4 3.35 0.10 0.21 1.25 -3.2 x 104 -0.1 x 104 
2-14 1.63 1.59 1.30 4.72 1.1 x 105 0.3 x 105 
5-14 2.67 13.54 2.21 2.82 5.6 x 104 -1.0 x 104 
9-14 2.12 62.05 0.85 3.89 1.1 x 105 0.2 x 105 

Table 5. Errors computed for the ortho II plate using some suitable combinations. 

 [30]4S orthotropic plate (ortho III) 

For these plates, rectangular and square the computed matrices K and C, Eq.(40), are full 
matrices, similar ones of the anisotropic plates. Thus, the majority of combinations among 
suitable modes are suitable combinations. Combinations that are not suitable present high 
errors for all constants, what, consequently, make them easy to be identified. Table 6 shows 
the errors computed to some suitable combinations. Using correct combinations very 
satisfactory results can be obtained. 
 

Ortho III rectangular plate – suitable modes: 2, 3, 6, 8, 10, 12, and 13  
Suitable 

combinations 
Errors (%)

A11 A12 A22 A66 A16 A26 
3-6-12 0.25 0.51 0.10 1.05 0.69 0.99 

8-10-12 4.26 5.42 3.67 3.43 4.60 5.62 
2-3 0.85 1.72 1.22 1.39 0.10 0.96 
3-6 0.63 0.32 0.04 0.22 0.53 0.14 

6-12 0.71 1.06 0.05 1.39 1.19 1.30 
10-13 4.42 2.05 0.71 4.07 5.21 0.63 

Ortho III square plate – suitable modes: 2, 4, 6, 8, 9, 12, and 13
Suitable 

combinations 
Errors (%) Differences (N/m) 

A11 A12 A22 A66 A16 A26 
2-4-6 2.62 3.94 3.18 0.59 2.02 3.23 
2-4-8 1.20 2.40 1.64 1.27 0.11 1.19 
2-4 2.35 1.11 0.02 5.46 4.26 2.90 
2-6 0.76 2.76 3.52 0.01 0.53 2.90 

2-13 1.75 2.75 1.51 1.92 0.33 1.25 
12-13 3.08 2.41 2.63 0.53 1.85 2.54 

Table 6. Errors computed for the ortho III plate using some suitable combinations. 
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[30  -30  30  -30]S orthotropic plate (ortho IV) 

For the rectangular plate: it was found the following suitable modes: 2, 4, 5, 8, 11, 12 and 14. 
For this plate, the majority of combinations among the suitable modes are suitable 
combinations. 
For the square plate: it was found the following suitable modes: 1, 4, 6, 9, 11, 12, and 14. 
Similar to rectangular plate, here the most of combinations among the suitable modes are 
suitable combinations. 
Table 7 shows errors computed to some suitable combinations. Using correct combinations, 
very satisfactory results can be obtained. 
 

Ortho IV rectangular plate – suitable modes: 2, 4, 5, 8, 11, 12, and 14  

Suitable 
combinations 

Errors (%) Differences (N/m) 

A11 A12 A22 A66 A16 A26 

2-4-5 1.52 2.15 1.28 1.54 -1.7 x 104 -0.6 x 104 

2-4-8 1.50 2.09 0.83 1.14 1.4 x 104 0.9 x 104 

5-11-12 0.27 0.09 0.04 1.11 -1.2 x 104 1.9 x 104 

2-4 1.18 1.83 1.02 2.87 -1.2 x 104 -0.4 x 104 

2-5 0.49 1.01 1.01 1.41 -1.8 x 104 -0.7 x 104 

5-11 0.90 0.37 0.04 1.05 3.1 x 104 0.2 x 104 

Ortho IV square plate – suitable modes: 1, 4, 6, 9, 11, 12, and 14 

Suitable 
combinations 

Errors (%) Differences (N/m) 

A11 A12 A22 A66 A16 A26 

1-6-12 0.16 0.30 0.13 3.07 1.7 x 104 2.5 x 104 

6-9-12 0.18 0.35 0.30 2,68 1.3 x 104 4.8 x 104 

9-12-14 0.18 1.87 0.40 0.68 -6.2 x 104 8.1 x 104 

1-12 0.59 0.26 0.74 2.79 2.0 x 104 2.9 x 104 

4-11 0.94 1.55 2.77 0.23 2.2 x 104 0.8 x 104 

12-14 0.26 2.17 0.19 0.90 -9.7 x 104 9.4 x 104 

Table 7. Errors computed for the ortho IV plate using some suitable combinations. 

[90  45  0  -45]S quasi-isotropic plate 

For the rectangular plate: it was found the following suitable modes: 1, 4, 6, 8, 11, 12, and 14. 
For this plate the most of combinations among the suitable modes are suitable 
combinations. 
For the square plate: it was found the following suitable modes: 2, 3, 7, 8, 10, and 11. Similar to 
rectangular plate, here the majority of combinations among the suitable modes are suitable 
combinations. 
Table 8 shows errors computed to some suitable combinations. Using correct combinations, 
very satisfactory results can be obtained. 
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Quasi-iso rectangular plate – suitable modes: 1, 4, 6, 8, 11, 12, and 14  

Suitable 
combinations 

Errors (%) Differences (N/m) 
A11 A12 A22 A66 A16 A26 

1-4-6 0.60 1.47 0.19 0.19 9.1 x 103 4.7 x 103 
1-4-8 0.09 0.80 0.11 0.96 7.4 x 103 9.5 x 103 
1-4-11 0.33 2.04 0.26 0.08 1.4 x 103 8.1 x 103 

1-4 0.25 0.54 0.29 1.93 5.7 x 104 7.1 x 104 
1-6 0.28 0.91 1.77 0.00 1.0 x 104 0.1 x 104 
4-8 0.73 0.39 0.05 0.95 1.1 x 104 0.3 x 104 

Quasi-iso square plate – suitable modes: 2, 3, 7, 8, 10, and 11 
Suitable 

combinations 
Errors (%) Differences (N/m) 

A11 A12 A22 A66 A16 A26 
2-3-7 0.37 1.33 0.35 0.91 4.7 x 105 4.7 x 105 
2-3-8 0.32 1.36 0.33 0.97 -4.4 x 105 -4.4 x 105 

2-10-11 0.07 3.29 0.45 0.81 -2.3 x 105 -1.1 x 105 
2-3 0.33 0.79 0.34 2.68 2.2 x 104 1.3 x 104 
3-7 0.56 1.73 0.43 0.80 6.1 x 105 5.2 x 105 

8-11 0.89 3.05 0.06 1.34 1.1 x 105 -1.2 x 105 

Table 8. Errors computed for the quasi-isotropic plate using some suitable combinations. 

Figs. 3 to 14 show the fifteen first in-plane mode shapes to all the analyzed plates: 
rectangular and square geometry. 
 
 

 
 
 

Fig. 3. Fifteen first in-plane mode shapes and natural frequencies to anisotropic rectangular 
plate. 
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Fig. 4. Fifteen first in-plane mode shapes and natural frequencies to anisotropic square plate. 

 
 
 

 
 

Fig. 5. Fifteen first in-plane mode shapes and natural frequencies to ortho I rectangular 
plate. 
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Fig. 6. Fifteen first in-plane mode shapes and natural frequencies to ortho I square plate. 

 
 

 
 
 

Fig. 7. Fifteen first in-plane mode shapes and natural frequencies to ortho II rectangular 
plate. 
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Fig. 8. Fifteen first in-plane mode shapes and natural frequencies to ortho II square plate. 

 
 

 
 
 

Fig. 9. Fifteen first in-plane mode shapes and natural frequencies to ortho III rectangular 
plate. 
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Fig. 10. Fifteen first in-plane mode shapes and natural frequencies to ortho III square plate. 

 
 

 
 

Fig. 11. Fifteen first in-plane mode shapes and natural frequencies to ortho IV rectangular 
plate. 
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Fig. 12. Fifteen first in-plane mode shapes and natural frequencies to ortho IV square plate. 

 
 

 
 
 

Fig. 13. Fifteen first in-plane mode shapes and natural frequencies to quasi-iso rectangular 
plate. 
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Fig. 14. Fifteen first in-plane mode shapes and natural frequencies to quasi-iso square plate. 

4. Conclusions 

The identification of elastic properties using VFM has shown to be a very efficient technique 
since the correct combinations among mode shapes and weighing functions are used. This 
factor is the key point to find the correct results. However, the identification of these suitable 
combinations is not so simple in some situations, mainly to the extensional elastic stiffness 
identification method. Fortunately, there are some characteristics that can help to find such 
combinations, as it was shown here. A great advantage of this method is related to the large 
number of possibilities to make combinations able to give very satisfactory results. 
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