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1. Introduction  

Large DNA viruses such as herpesviruses and poxviruses constitute a group of highly  

relevant pathogens for animals and humans. Genetic and functional analysis of these viruses 

has been a constant research challenge mainly because of their large and complex genomes, 

which are difficult to access by standard molecular biology techniques. Homologous  

recombination is the major principle for the manipulation of such viral genomes. The simple 

site-directed integration of a selection marker gene into the viral DNA allowed for the first 

time the enrichment of recombinants in permissive eukaryotic cells (Mocarski et al., 1980; 

Smiley, 1980). Essential genomic sites including those involved in DNA replication cannot 

be efficiently investigated by this method, since mutants with such defects would not start 

to replicate and, thus, would not be generated. To some extent, amplicon constructs in the 

presence of a wild-type helper virus have been instrumental for functional studies, which 

were, however, hampered by the background of similar helper virus sequences. Such  

limitations were resolved by cloning entire virus genomes as cosmid libraries in Escherichia 

(E.) coli (van Zijl et al., 1988). The virus is reconstituted in permissive mammalian cells after 

cotransfection of overlapping viral cosmids. Essential genome sites involved in DNA 

replication can then eventually be identified by providing the missing function through 

trans-complementation. However, unwanted second-site mutations after recombination of 

the homologous overlapping sequences and the resulting spontaneous mutation 

possibilities at the overlapping stretches are considerable disadvantages, rendering this 

procedure rather unreliable. 
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The major methodological break-through was achieved by cloning entire herpesvirus  
genomes as infectious large plasmids, co-called bacterial artificial chromosomes (BACs) in E. 
coli (Messerle et al., 1997). This technology was first introduced for the murine  
cytomegalovirus genome and was subsequently applied to numerous other virus 
pathogens. This permitted the stable maintenance and the targeted mutagenesis of the virus 
genomes as single plasmids in E. coli. Afterwards, the transfer of the BAC DNA into virus-
permissive eukaryotic cells allowed the reconstitution of the mutant virus representing a 
homogenous population. Initially, the selection marker and the BAC cassette remained 
obligatory after the manipulation of the genomes in E. coli and the virus reconstitution in 
eukaryotic cells, respectively. As an improvement, site-specific recombinase systems were 
applied for the excision of the BAC vector sequences, leaving behind only one recombinase 
recognition site. Also transposon mutagenesis was used for generating libraries of virus 
genomes saturated with single-site mutations. As the second break-through, manipulation 
techniques such as en passant mutagenesis enabled the seamless alteration of the BAC DNA 
in bacteria and, thus, the reconstitution of mutant progeny virus which was free of 
secondary mutations such as selection markers or recombinase recognition sites (Tischer et 
al., 2006). The third break-through was achieved, when all BAC vector sequences were 
deleted autonomically after transfection of restructured BACs into permissive eukaryotic 
cells, allowing the generation of virus progeny completely devoid of any operational 
sequences. This approach uses functional features of virus DNA replication in order to 
reconstitute the wild-type configuration at the previous BAC vector insertion site. In 
addition, methods were developed for the targeted transposition of the vector sequence 
within a BAC construct in order to optimize genomic vector design. Thus, BAC constructs of 
large mammalian DNA viruses have become crucial for functional studies, even of essential 
genes including that for viral DNA replication.  
In this review, we summarize the development of viral BAC vectors and the bacterial  
genetics tools used. We discuss the advantages and disadvantages of different BAC vector 
strategies for herpes- and poxviruses, as well as the application potential for functional 
studies into DNA replication and other viral functions and the perspectives for future  
preventive and therapeutic strategies.  

2. Generation of recombinant large DNA viruses 

Herpesvirus genomes consist of 120-250 kb double-stranded (ds) linear DNA which is  
circularized after infection of the cell. They are composed of different unique and repetitive 
regions with densely packed or even overlapping open reading frames of approximately 70-
220 genes. Poxvirus genomes are even larger. Whereas poxviruses replicate in the  
cytoplasm, the DNA replication of herpesviruses occurs in the nucleus. Functional studies in 
large DNA viruses require the precise generation of virus mutants; thus, accessory  
operational sequences and selection markers should be avoided in order to exclude 
unwanted side-effects which may hide or distort the effects mediated by the precise mutant 
position. The development of precise mutagenesis protocols has been a constant challenge in 
herpes- and poxvirology. Eight human herpesviruses are of major interest in this research 
field: herpes simplex virus 1 (HSV-1), herpes simplex virus 2 (HSV-2), varicella-zoster virus 
(VZV), Epstein-Barr virus (EBV), human cytomegalovirus (hCMV), human herpesvirus 6 
(HHV-6), human herpesvirus 7 (HHV-7), and Kaposi’s sarcoma-associated herpesvirus 
(KSHV). In addition, a series of animal herpesviruses have been subjected to recombinant 
mutagenesis. While all these herpesviruses are capable of persisting life-long in the human 
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body, they can be reactivated and cause disease under specific conditions during primary 
infection or during reactivation. Among the poxviruses, the major interest lies in vaccinia 
viruses which are highly important tools for vaccine development. 

2.1 Basic strategies for the manipulation of large viral genomes 
The classical, pre-recombinant strategy for mutant generation was developed approximately 
forty years ago by the targeted phenotypic selection of chemically induced and randomly 
generated temperature-sensitive variants which are conditionally expressing specific virus 
proteins (Schaffer, 1975). This strategy was a pacemaker for virus research and allowed the 
temperature-dependent study of defined virus functions, including properties which are 
essential for virus replication. However, the precise definition of the respective mutation 
was demanding and unwanted second-site mutations were difficult to exclude. 
The size of herpes- and poxviral genomes was by far too large in order to utilize naturally 
occurring unique endonuclease recognition sites for the precise manipulation of the viral 
DNA. The targeted mutagenesis of herpes- or poxviral genomes was successfully achieved 
by the integration of a selection marker flanked by viral DNA sequences including the  
desired genetic mutation by homologous recombination into the virus genome during virus 
replication in cultured permissive eukaryotic cells (Manning & Mocarski, 1988; Mocarski et 
al., 1980; Post & Roizman, 1981; Smiley, 1980; Spaete & Mocarski, 1987). Since the  
homologous recombination occurred as a rare event, the recombinants were difficult to 
isolate from a dominating amount of wild-type virus. This method did not yet allow the 
targeting of essential genes, since the strategy was dependent on active virus replication. 
A considerable step forward was done by introducing the concept of virus reconstitution by 

cotransfection of overlapping genomic cosmid clones into permissive cells (Cohen & Seidel, 

1993; Cunningham & Davison, 1993; Kemble et al., 1996; Tomkinson et al., 1993; van Zijl et 

al., 1988). For this purpose, virion DNA was prepared, degraded to fragment sizes of  

approximately 30-40 kb, and cloned in E. coli into cosmid vector libraries. Selected 

overlapping and complementing genomic cosmid DNA clones were then selected and 

transfected as sets of three to five cosmids into permissive cells in order to reconstitute 

infectious virus. The major advantage of the cosmid complementation method is the fact, 

that the cloned viral DNA can be manipulated precisely by molecular biology or bacterial 

genetic techniques. Moreover, the obtained virus progeny is free of cosmid vector 

sequences, although selection markers cannot be avoided in most cases. By providing 

essential functions in trans or by trans-complementing cell lines, even essential virus genes 

were analyzed using this method. The cosmid-complementation technique is limited in 

eukaryotic cells by illegitimate events of homologous recombination or unwanted second-

site mutations which are difficult to exclude. The technique of cosmid complementation was 

instrumental for developing entire virus genomes in the form of viral BACs.  

2.2 Bacterial artificial chromosomes of entire large viral genomes 
BACs were established for studies in human and animal genetics. BACs are single-copy  
bacterial F-factor-derived plasmids of approximately 7.5 kb which carry an own origin of 
replication, encode own DNA replication factors (e.g., repE), and an antibiotic resistance 
function (e.g., against chloramphenicol). BACs can stably maintain DNA molecules of up to 
300 kb in recombination-deficient E. coli strains (Shizuya et al., 1992). A frequently used BAC 
vector is pBeloBAC11. The F-plasmid based vector sequences are often designated “mini-F” 
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fragments. The BAC copy number is strictly restricted to one or two copies per bacterial cell 
by regulatory elements (e.g., parA & parB) of the mini-F vector. Thus, intermolecular 
homologous recombination events are largely excluded. However, repeated or duplicated 
sequences can still undergo homologous recombination (Shizuya et al., 1992). Bacteriophage 
P1-based vectors (PACs) are comparable to BACs. In contrast to BACs, yeast artificial 
chromosomes (YACs) can accommodate even larger inserts. However, YACs often have 
chimeric structures and sequence rearrangements (Ramsay, 1994; Schalkwyk et al., 1995). 
BACs show higher insert stability in E. coli in comparison to cosmid-based plasmids, which 
are restricted to DNA-fragment sizes of up to 50 kb (Kim et al., 1992). Therefore, BACs have 
become the vectors of choice for the cloning of large and complex genomes in E. coli 
(Ioannou et al., 1994; Shizuya et al., 1992). Moreover, BACs are instrumental in sequencing 
strategies, for functional genomics, and for the construction of gene targeting or gene 
therapy vectors (Copeland et al., 2001; Sparwasser & Eberl, 2007; Yang & Gong, 2005). For 
the application in cloning large DNA virus genomes, the BAC vector needs flanking virus 
homology regions of 300-500 bp for the precise targeting into the desired genomic region. 
Depending on the planned applications, accessory operational markers are included, such as 
genes for an autofluorescent protein, luciferase, or antibiotic resistance. Many strategies 
include flanking recognition sites (e.g., loxP) for recombinases (e.g., Cre) at the ends of the 
BAC insert sequence in order to allow the vector excision from recombinant progeny 
viruses. 
Herpes- and also poxvirus BACs (Figure 1) can be constructed by inserting a mini-F vector 
into a specific site of a non-essential genomic region via homologous recombination of a 
linearized recombination construct during active virus replication in permissive eukaryotic 
cells after lipofection or electroporation. The recombination fragment may be cotransfected 
with virion DNA or the transfected culture may superinfected with wild-type virus after 
transfection. The transfer of the circular replication intermediates of recombinant progeny 
viruses or artificially created circular DNA is carried out into a RecA– E. coli strain, such as 
DH10B (Messerle et al., 1997). Alternatively, the BAC vector can be inserted into a non-
essential region of a specific viral cosmid clone, in addition to the pre-existing cosmid vector 
fragment. After cotransfection of sets of three to five overlapping viral cosmids into  
permissive cells, the BAC vector-containing virus is reconstituted. Similarly, the circular 
replication intermediates are then transferred into E. coli (Saeki et al., 1998; Tischer et al., 
2007). A detailed molecular analysis of the viral BACs is necessary in order to show genetic 
integrity. Importantly, viral BAC DNA can be prepared in large quantity and high quality in 
order to compensate for the inefficient transfection procedures into permissive eukaryotic 
cells. After retransfer of the viral BAC into permissive cells, the resulting recombinant virus 
is reconstituted and compared with wild-type virus for genome structure and replication 
properties. If possible, plaque purification is recommended in order to ensure a 
homogenous virus population. Selectable markers such as genes for autofluorescent 
proteins may be useful for the rapid identification of recombinant viruses. A detailed  
analysis is necessary since unwanted genotypic and phenotypic changes in viral BACs have 
been observed (Ali et al., 2009; Messerle et al., 1997). In viruses with particular large  
genomes, such as cytomegaloviruses, the 7.5 kb BAC vector insert may already lead to  
obvious retardation of viral replication (Yu et al., 2002).  
After the initial cloning of murine cytomegalovirus (mCMV; Messerle et al., 1997), the  
genomes of many herpesviruses, some poxviruses, and some large RNA viruses were 
constructed as infectious viral BACs (Table 1; Adler et al., 2003; Britt, 2000; Brune et al., 1999,  
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Fig. 1. Generation and mutagenesis of herpesvirus BACs. A) Cloning of a herpesviral 

genome as a bacterial artificial chromosome (BAC). A mini-F vector (green) is inserted into 

the viral DNA via homologous recombination (crossed lines) during virus replication in  

infected permissive eukaryotic cells. Circular replication intermediates are isolated and 

transferred into E. coli to establish an infectious viral BAC. Alternatively, the mini-F plasmid 

is first inserted into a viral cosmid (blue) DNA clone. Overlapping linear viral genome  

fragments from cosmid vectors are subsequently transfected into permissive cells. Circular 

DNA intermediates of recovered replicating virus are then isolated and transformed into E. 

coli. B) Herpesvirus BAC technology. The herpesviral BAC is maintained in E. coli and a 

mutation is introduced into the viral DNA by homologous recombination. The BAC is isolated 

and transfected into permissive eukaryotic cells, where mutant progeny is reconstituted  

(adapted from Felix Wussow, Ph.D. thesis, Christian Albrecht University of Kiel, 2009). 

2000; Feederle et al., 2010; McGregor & Schleiss, 2001b; Wagner & Koszinowski, 2004; 

Wagner et al., 2002, 2004; Warden et al., 2011). Full-length viral DNA can be maintained and 

mutagenized in E. coli and delivered into permissive eukaryotic cells for virus  

reconstitution. Since poxviruses replicate in the cytoplasm, the initiation of viral  

transcription and DNA replication requires the presence of a related helper virus (Domi and 

Moss, 2002). Infectious homogenous progeny is recovered from mutated viral BAC-DNA in 

a defined manner without any further homologous recombination events to restore genome 

integrity, in contrast to virus reconstitution from overlapping cosmid fragments. 

Nevertheless, mini-F sequences in a non-essential genomic region can interfere with specific 

viral functions especially in further in vivo experiments. The complete removal of the mini-F 

vector by homologous recombination has been limited to laborious cotransfection 

experiments or to BAC constructs with restricted stability in bacteria (Strive et al., 2007; 

Wagner et al., 1999; Yu et al., 2002). Alternatively, the vector elements can be flanked by 

recognition sites for site-specific recombinases, which leave behind only one small 

recognition sequence (Adler et al., 2000, 2001; Chang & Barry, 2003; Smith & Enquist, 2000; 

Strive et al., 2006; Tanaka et al., 2003; Zhao et al., 2008). 
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Virus  Species Abbr. Major references

┙-Herpesviruses 
- Simplexviruses 
Herpes simplex virus type 1 
 
 
Herpes simplex virus type 2 
- Varicelloviruses 
Varicella-zoster virus  
 
 
Simian varicella virus 
Pseudorabies virus 
Bovine herpesvirus type 1 
Equine herpesvirus type 1 
 
Canine herpesvirus 
Feline herpesvirus type 1 
- Mardiviruses 
Marek’s disease virus 
Turkey herpesvirus 

 
human  
 
 
human 
 
human  
 
 
rhesus 
porcine 
bovine 
equine  
 
canine 
feline 
 
turkey 
turkey

 
HSV-1  
 
 
HSV-2 
 
VZV 
 
 
SVV 
PrV 
BHV-1 
EHV-1  
 
CHV 
FHV-1 
 
MDV 
HVT 

 
Horsburgh et al., 1999a, b; Nagel et al., 
2008; Saeki et al., 1998; Stravropoulos & 
Strathdee, 1998; Tanaka et al., 2003 
Meseda et al., 2004 
 
Nagaike et al., 2004; Tischer et al., 2007; 
Wussow et al., 2009; Yoshii et al., 2007; 
Zhang et al., 2007  
Brazeau et al., 2011; Gray et al., 2011 
Smith & Enquist, 1999 
Mahony et al., 2002; Robinson et al., 2008 
Rudolph & Osterrieder, 2002; Rudolph et 
al., 2002 
Strive et al., 2006 
Costes et al., 2006; Tai et al., 2010 
 
Schumacher et al., 2000 
Baigent et al., 2006

┚-Herpesviruses 
- Cytomegaloviruses 
Human cytomegalovirus 
 
 
Rhesus cytomegalovirus  
Murine cytomegalovirus  
Guinea pig cytomegalovirus 
- Roseoloviruses 
Human herpesvirus 6 

 
human 
 
 
rhesus 
murine 
guinea pig 
 
human 

 
hCMV 
 
 
rhCMV 
mCMV 
gpCMV 
 
HHV-6 

 
Borst et al., 1999; Dulal et al., 2009; Hahn 
et al., 2002, 2003; Marchini et al., 2001; 
Murphy et al., 2003; Sinzger et al., 2008 
Chang & Barry, 2003 
Messerle et al., 1997 
McGregor & Schleiss, 2001a 
 
Borenstein & Frenkel, 2009

┛-Herpesviruses 
- Lymphocryptoviruses 
Epstein-Barr virus 
- Rhadinoviruses 
Kaposi-Sarcoma associated 
herpesvirus 
Rhesus rhadinovirus 
Murine ┛-herpesvirus 68 
Herpesvirus saimiri 

 
human  
 
human  
 
rhesus 
murine 
saimiriine 

 
EBV  
 
KSHV  
 
RRV 
MHV-68 
HVS

 
Delecluse et al., 1998  
 
Delecluse et al., 2001; Zhou et al., 2002 
 
Estep et al., 2007 
Adler et al., 2000; Song et al., 2005 
White et al., 2003; Toptan et al., 2010 

Alloherpesviruses
Koi herpesvirus  carp KHV Costes et al., 2008 

Poxviruses 
Vaccinia virus  
 
Cowpox virus  

 
 
bovine 

VAC 
 
CPXV 

Cottingham et al., 2008; Domi & Moss, 
2002; Meissinger-Henschel et al., 2011 
Roth et al., 2011 

Coronaviruses 
Transmissible gastroenteritis 
coronavirus  
Severe acute respiratory 
syndrome coronavirus  
Coronavirus OC43  
Coronavirus NL63  

porcine  
 
human  
 
human 
human 

TGCV  
 
SARS 
CoV  
OC43 
NL63 

Almazan et al., 2000  
 
Almazan et al., 2006 
 
St. Jean et al., 2006 
Donaldson et al., 2008 

Table 1. List of cloned viral bacterial artificial chromosomes with key references. 
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3. Manipulation of viral bacterial artificial chromosomes 

The generation of a molecular viral BAC clone forms the prerequisite for efficient virus  
mutagenesis. The site-directed manipulation of single-copy plasmid DNA in E. coli by 
homologous recombination was established in several conditionally or transiently expressed 
forms. Alternatively, transposon mutagenesis can be used as a non-directed random 
method. 

3.1 Site-directed mutagenesis of viral bacterial artificial chromosomes 
Common techniques for the rapid and targeted DNA mutagenesis are based on Red  

recombination or RecET cloning encoded by prophages λ or Rac, respectively (Court et al., 

2002; Lee et al., 2001; Murphy, 1998; Muyrers et al., 1999, 2001, 2004; Yu et al., 2000; Zhang et 

al., 1998). Recombination-mediated genetic engineering (termed “recombineering”) via Red 

and RecET allows almost unlimited modifications of large BAC-cloned DNA sequences in E. 

coli and is widely used in functional genomics (Copeland et al., 2001; Muyrers et al., 2001; 

Narayanan et al. 1999; Sawitzke et al., 2007; Sharan et al., 2009; Thomason et al., 2007; 

Warming et al., 2005). The Red-recombination system from phage λ consists of the 5’-3’- 

exonuclease Exo and of the single-strand (ss) DNA-binding protein Beta. These proteins 

mediate the recombination between dsDNA ends and homologous target sequences on 

replicating DNA molecules in E. coli and are biologically responsible for the integration of λ 

phage DNA into the bacterial chromosome (Carter & Radding, 1971). Exo acts on dsDNA 

ends to generate 3’-ssDNA sticky ends (Little, 1967). Then, Beta recognizes the recessed 

ssDNA ends and anneals them to complementary ssDNA in preformed replication forks  

leading to their recombination with the homologous sequence (Kmiec & Holloman, 1981;  

Muniyappa & Radding, 1986). The Red genes are expressed together with the λ gam gene 

under a temperature-inducible promoter for the efficient induction and DNA manipulation 

in bacteria. Gam is a natural inhibitor of the E. coli RecBCD exonuclease, which rapidly 

degrades dsDNA invading into bacteria (Karu et al., 1975; Murphy, 1991, 1998, 2007; Yu et 

al., 2000).  

While the Red recombination system is expressed, a linear DNA fragment with 40-50 bp  

homologous flanking regions is inserted into to the selected target sequence by Exo and 

Beta, whereas Gam blocks the RecBCD enzyme from degrading dsDNA ends. The Red  

system does not need the E. coli RecA protein, which is the main endogenous mediator of 

homologous recombination in E. coli (Murphy, 1998; Yu et al., 2000). Therefore, the Red 

recombination is useful for the easy manipulation of plasmids or bacterial chromosomes in a 

recA–recombination-deficient E. coli background (e.g., DY380-derived strains or GS1783) by 

linear products of the polymerase chain-reaction (PCR) that were generated with primers 

containing short homologous target sequences at their 5’-ends (Copeland et al., 2001; 

Oppenheim et al., 2004; Yu et al., 2000). The application of Red-mediated DNA mutagenesis 

for BAC mutagenesis was greatly simplified by expressing the red and gam genes from a 

defective prophage integrated in the E. coli-genome, when the culture temperature is 

increased from 32 to 42°C, without the need for additional expression plasmids. In 

comparison to the plasmid coexpression strategy, the λ prophage system is up to 100-fold 

more efficient in Red recombineering and the Red protein expression is more tightly  

controlled under the temperature-inducible promoter of the λ prophage (Lee et al., 2001; Yu 

et al., 2000). This more stringent control also reduces the risk for unwanted recombination 
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during bacterial DNA replication. During the mutagenesis procedure, the mutation of 

interest is introduced into the target sequence together with an antibiotic resistance gene. 

The selection marker may be flanked by recombinase recognition sites in order to allow its 

secondary excision from the recombinants (Lee et al., 2001; Yu et al., 2000). The remaining 

single copy of a recombinase recognition site limits further repeated steps of the procedure 

and may also interfere with gene functions in tightly packed genomes. The site-directed 

mutagenesis may be used to delete further non-essential regions if the cloning capacity is 

limited in particularly large virus genomes. In addition, genetic elements of the BAC 

constructs can even be moved within the BAC by site-directed mutagenesis to optimized 

insertion positions (Wussow et al., 2009). 

3.2 Two-step en passant mutagenesis 
By the combination of homologous recombination steps, “traceless”, “seamless”, or  
“markerless” recombineering strategies were developed which allow the highly efficient 
mutagenesis of BAC DNA in E. coli without retaining any operational sequences (Sawitzke 
et al., 2007;  Sharan et al., 2009; Thomason et al., 2007; Tischer et al., 2006, 2010a, b; Warming 
et al., 2005). The en passant procedure combines Red recombination with cleavage by the  
homing endonuclease I-SceI (Tischer et al., 2006, 2010a, b). The asymmetrical 18 bp I-SceI 
recognition site can be inserted into plasmid DNA and cleaved after induced expression of 
the homing enzyme. This highly sequence-specific restriction endonuclease produces 
dsDNA ends accessible for homologous recombination (Jamsai et al., 2003). For the en  
passant protocol, large oligonucleotide primers are designed which allow generation of a 
PCR product for the Red-mediated insertion of a selection marker together with an I-SceI 
recognition site flanked by a 50 bp direct sequence duplication. After selection of  
recombinants, a double-strand break is induced by I-SceI cleavage at the respective 
recognition site. This permits the seamless excision of the positive selection marker (psm) by 
a second Red-mediated homologous recombination event via short duplicated sequences. 
En passant mutagenesis can be used to generate single point-mutations, substitutions, 
deletions, or insertions, e.g., of expression constructs, epitope tags, or autofluorescent fusion 
proteins (Figure 2). For the generation of single point mutations, a fragment including a psm 
and an I-SceI site is amplified with primers adding 60-80 bp extensions to the psm-I-SceI 
unit. The distal 40-50 bp of the primer sequences and of the resulting PCR fragments are 
homologous to the target site in the BAC. Additionally, 40-50 bp of the mutated target site 
are included into both primers in reverse complementary orientation. The psm fragment 
with the appropriate flanking sequence duplication and point mutation is inserted into the 
site of interest by the first Red recombination step. After induction of I-SceI cleavage, the 
psm is excised between the duplicated sequences and the markerless point mutation is 
generated by the second Red recombinetion step (Figure 2A). Similar procedures are used 
for large deletions. In this case, the PCR-primers for psm-I-SceI amplification carry 5’-
extensions from the up- and downstream regions flanking the deletion area (Figure 2C). For 
the seamless insertion of large sequences by en passant mutagenesis, a cassette containing the 
psm and the I-SceI site and a 40-50 bp sequence duplication is PCR amplified. This PCR 
fragment is then inserted into a unique restriction endonuclease site of the cloned sequence 
of interest. The fragment is released from the plasmid by terminal restriction endonuclease 
sites and used for the precise insertion into the target region by Red recombination. In 
selected recombinants, the psm is seamlessly removed by the second en passant  
recombination of the 50 bp duplication of the inserted sequence of interest (Figure 2B). 
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Fig. 2. En passant mutagenesis. A) Point mutation. A positive selection marker (psm) and an 
I-SceI site are PCR-amplified with primers carrying 60-80 bp homologous extensions 
(coloured elements). In both primers, 40-50 bp (red and blue) around the core sequence are 
reverse complementary and carry the mutation (triangles). The PCR product is inserted into 
the target site by Red recombination. After a double-strand break by I-SceI, the psm is exci-
sed by Red recombination of the duplication, resulting in the precise point mutation. B) In-
sertion of large sequences. The psm-I-SceI cassette is amplified using one primer with a 40-
50 bp duplication (yellow) and inserted into a unique restriction site (*) of a cloned sequence 
of interest (soi). The soi transfer construct is then amplified using primers with 40-50 bp ex-
tensions (red and blue) and inserted into the target site by Red recombination. After I-SceI 
and red expression, the psm is deleted from soi by recombination of the short duplications. 
C) Large deletion. The psm-I-SceI element is amplified using primers with 5’-ends homolo-
gous to adjacent sequences from the deletion region (coloured). The soi is then deleted by 
Red recombination. The procedure follows the further steps as in panel A (adapted from 
Tischer et al., 2006; Felix Wussow, Ph.D. thesis, Christian Albrecht University of Kiel, 2009). 

The well-established and highly versatile markerless manipulation techniques allow for the 
repetitive manipulation of the cloned genomes even within the direct or inverted viral 
repeat sequences. This unique feature makes the BAC technology especially useful to  
mutagenize elements involved in DNA replication or maturation, e.g., the origin of DNA 
replication or DNA packaging signals, which are usually present in the repeat sequences or 
in the genomic termini of herpesviral genomes. Similarly, many DNA elements relevant for 
the establishment of latency and the reactivation from the latent state as well as for the 
integration of the viral DNA into the host genome are located in the viral repeats and can be 
efficiently studied by the BAC technology. 
The en passant mutagenesis strategy can also be used for the seamless removal of the BAC-
vector sequences from the viral genomes during virus reconstitution in eukaryotic cells  
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(Figure 3). Appropriately designed viruses will delete the mini-F element due to homo-
logous recombination of duplications of viral genome fragments or due to intrinsic genome 
features. Such strategies were based on genomic duplications engineered in direct  
orientation at either site of the vector elements (Strive et al., 2007; Wagner et al., 1999). 
However, such BACs with direct duplications can apparently not be stably maintained in E. 

coli with the temperature-inducible Red expression cassette on a defective λ prophage 
integrate, since the mini-F vector will be lost presumably by homologous recombination 
between the duplicated viral sequences, even in the non-induced state. This has been 
overcome by providing the ET cloning functions from an additionally transfected plasmid 
for the efficient removal function after the mutagenesis procedure (Strive et al., 2007; 
Wagner et al., 1999), although recombineering mediated by plasmid-encoded functions is up 

to 100-fold less efficient than the integrated λ prophage system (Lee et al., 2001; Muyrers et 

al., 1999; Narayanan et al., 1999; Yu et al., 2000). In another λ-based self-excision system 
(Figure 3), the duplicated viral sequences flanking the mini-F integration site were inserted 
in inverse orientation. This arrangement allowed the stable maintenance of the BAC DNA in  
 

 

Fig. 3. Self-excision of BAC sequences by stabilized genomic duplication. A) BAC vector 
(green) self-excision from the viral DNA (black) by a forward genomic duplication (yellow 
to red gradient bars) inserted between the mini-F replicon (mFr) and the antibiotic resistance 
gene (arg). Two recombination events are necessary to release the mFr or the arg from the 
viral DNA. B) Self-excision of the BAC sequences from the viral DNA by a genomic  
duplication inserted in inverse orientation into the vector elements. Two successive events 
of recombination are required for the complete BAC vector excision from the viral DNA 
(adapted from Felix Wussow, Ph.D. thesis, Christian Albrecht University of Kiel, 2009). 

E. coli, since two successive events of homologous recombination would be required for the 
deletion of the complete BAC sequences. BACs with these inverse viral duplications 
flanking the mini-F integration site within a viral direct S-repeat area did not lead to any 
detectable BAC instability in the recombineering E. coli strain GS1783 and allowed the 
efficient deletion of the vector moiety (Tischer et al., 2007). 
Mini-F vector sequences containing inverse genomic duplications that were inserted into 
different essential viral replication genes also allow the efficient mini-F vector self-excision. 
Alternatively, certain repeat regions or terminal virus sequences are suitable under specific 
conditions for the autonomous vector excision (Tischer et al., 2007; Wussow et al., 2009; 
Zhou et al., 2010). Different genomic insertion sites for the mini-F vector were compared for 
the seamless reconstitution of recombinant virus. The most efficient variant pHJOFpac 
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carried the mini-F vector insertion at the terminal genomic junction of VZV, which is an 
optimal vector integration site permitting the rapid and spontaneous generation of recombi-
nant progeny devoid of any vector elements (Wussow et al., 2009). A similar integration site 
was described for rhesus rhadinovirus (RVV), from which the vector is also efficiently re-
leased (Zhou et al., 2010). Therefore, the terminal genomic junction might be in general an 
optimal integration site for the mini-F vector to construct other large linear viral DNA 
genomes as infectious BACs. In addition, the recombineering methodology even allows the 
transposition of genetic elements to defined new locations within the same BAC molecule 
(Wussow et al., 2009). Thus, the mini-F-transposition strategy eliminated the last hurdle to 
perform any imaginable kind of targeted seamless BAC modifications in E. coli. This is in 
general a valuable tool to reorganize or repair any other established BACs, e.g., for the 
development of gene therapy or vaccine vectors or of specific targeting vectors for 
conditional knock-out mice. 

3.3 Transposon mutagenesis of viral BACs 
Alternatively, the random and non-directed approach of transposon mutagenesis was 
adapted for virus BAC mutagenesis (Brune et al., 1999; Smith & Enquist, 1999) and provides 
saturated libraries of diverse recombinant mutants. The random transposon mutagenesis 
was successfully performed for the large genomes of hCMV, mCMV, equine herpesvirus 
type 1 (EHV-1), and murine herpesvirus type 68 (MHV-68) (Bubeck et al., 2003; Hansen et 
al., 2006; Hobom et al., 2000; Song et al., 2005; Yu et al., 2003). Fortunately, the transposon 
insertion occurs preferentially into plasmid DNA in comparison to the bacterial genome. 
After transposon mutants have been tested for their functional phenotype, the respective 
genotype must be determined. This is accomplished using PCR primers which bind to the 
transposon insert and allow an easy genome-wide mapping and specific sequencing from 
the viral BAC genome. The major advantages of transposon mutagenesis are the unbiased 
random approach and the rapid generation of large BAC mutant libraries. However, this 
may be complicated by multiple insertions in the same BAC or by an uneven distribution of 
the insertion sites over the virus genome. 

3.4 Functional mutagenesis of specific viral BACs 
BAC generation and mutagenesis has been reported on numerous viruses (Table 1). HSV-1, 

the prototype genome of the herpesviruses in general, as well as of the α-herpesviruses and 

simplexviruses in particular, exists as BACs from different virus strains (Horsburgh et al., 

1999a, b; Nagel et al., 2008; Saeki et al., 1998; Stavropoulos & Strathdee, 1998; Tanaka et al., 

2003). Many BAC-based studies were performed on mutations in HSV-1 genes (e.g., Boutell 

et al., 2002; Leege et al., 2009; O’Hara et al., 2010; Roberts et al., 2009; Tong & Stow, 2010). 

Also, HSV-2 is available as a viral BAC (Meseda et al., 2004). Several strains of the highly 

cell-associated varicellovirus prototype, VZV, were cloned as infectious BACs, the vaccine 

and parental OKA strains, as well as the wild-type isolate HJO (Nagaike et al., 2004; Tischer 

et al., 2007; Wussow et al., 2009; Yoshii et al., 2008; Zhang et al., 2007, 2008). A VZV BAC 

with a luciferase reporter gene allowed viral replication studies in vivo (Zhang et al., 2007, 

2008). VZV was also subjected to saturating mutagenesis for determining essential genes for 

viral replication (Zhang et al., 2010). The genome of the closely related simian varicella virus 

(SVV) of rhesus monkeys has also been made available as a BAC (Brazeau et al., 2011; Gray 

et al., 2011). Pseudorabies virus (PrV) is another varicellovirus with highly important model 
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function for herpesvirus biology. PrV was cloned as a BAC and used for pathogenesis 

studies in vivo (Smith & Enquist, 1999, 2000; Fuchs et al., 2009; Kopp et al., 2004]. Additional 

varicellovirus BACs of various animals have been studied in vitro and in vivo: Bovine 

herpesvirus type 1 (BHV-1; Gabev et al., 2009; Mahony et al., 2002; Robinson et al., 2008; 

Trapp et al., 2003), EHV-1 (Goodman et al., 2007; Rudolph & Osterrieder, 2002; Rudolph et 

al., 2002; Yao et al., 2003), canine herpesvirus (CHV; Strive et al., 2006), and feline 

herpesvirus type 1 (FHV-1; Costes et al., 2006; Richter et el., 2009; Tai et al., 2010). Moreover, 

BACs exist for the mardiviruses Marek’s disease virus (MDV) and herpesvirus of turkeys 

(HVT) (Baigent et al., 2006; Petherbridge et al., 2003; Schumacher et al., 2000; Zhao et al., 

2008). The particularly large BAC-cloned koi herpesvirus belongs to the alloherpesviruses 

and not to the typical α- to γ-herpesviruses (Costes et al., 2008, 2009). 

The prototype for the β-herpesviruses, hCMV, has the largest genome among the human 

herpesviruses containing approximately 165 genes. Clinical hCMV isolates have larger 

genomes and replicate well in macrophages and endothelia cells, whereas the laboratory 

strains have undergone deletions and replicate efficiently only in fibroblasts (Dolan et al., 

2004). Therefore, after the laboratory strain AD169, various laboratory strains and clinical 

isolates were cloned as infectious BACs in order to provide defined genetic conditions for 

functional studies (Borst et al., 1999; Dulal et al., 2009; Hahn et al., 2002, 2003; Marchini et al., 

2001; Murphy et al., 2003; Sinzger et al., 2008). Many functional studies were performed 

with hCMV BACs (e.g., Britt et al., 2004; Spaderna et al., 2005). Saturating random  

mutagenesis over the entire hCMV genome was performed by transposon insertion (Hobom 

et al., 2000; Yu et al., 2003). Moreover, the necessity for virus replication was determined for 

162 individual hCMV genes (Dunn et al., 2003). mCMV as an important animal model for 

hCMV pathogenesis was the first herpesvirus genome to be cloned as an infectious BAC 

(Messerle et al., 1997) which has been used for in vitro and in vivo mCMV studies (e.g., 

Wagner et al., 1999; Cicin-Sain et al., 2003, 2007; Menard et al., 2003; Schnee et al., 2006). 

BAC-clones have also been constructed for the genomes of rhesus CMV (rhCMV; Chang & 

Barry, 2003; Lilja et al., 2008; Rue et al., 2004) and guinea-pig CMV (gpCMV; Crumpler et al., 

2009; McGregor & Schleiss, 2001a; Schleiss, 2008). The BAC of the human roseolovirus 

HHV-6 is still dependent on a helper virus infection (Borenstein & Frenkel, 2009; Borenstein 

et al., 2010). 

The oncogenic γ-herpesvirus and lymphocryptovirus EBV (Delecluse et al., 1998) was one of 
the first cloned viral BACs and many studies have applied this technique, e.g., on oncogene 
functions (Ahsan et al., 2005; Anderton et al., 2008; Chen et al., 2005; Kanda et al., 2004). The 
oncogenic rhadinovirus KSHV is hampered by its non-efficient replication in cell culture. 
Also for KSHV, several BACs were constructed and applied for functional analyses  
(Delecluse et al., 2001; Fan et al., 2006; Lu et al., 2010; Lukac et al., 2001; Luna et al., 2004; 
Majerciak et al., 2007; Xu et al., 2005, 2006; Yakushko et al., 2011 Zhou et al., 2002). 
Additionally, the major rhadinovirus animal model viruses were cloned in BACs, such as 
RRV (Estep et al., 2007; Zhou et al., 2010), MHV-68 (Adler et al., 2000; Pavlova et al., 2003), 
and herpesvirus saimiri (HVS; Calderwood et al., 2005; Toptan et al., 2010; White et al., 2003, 
2007). 
Besides the herpesviruses, BAC-cloning has been successfully applied for the poxvirus Vac-
cinia virus (Cottingham et al., 2008; Domi & Moss, 2002; Meissinger-Henschel et al., 2011) 
and cowpox virus (Roth et al., 2011). Moreover, this method was useful to generate full-
length molecular clones of the large RNA genomes of different coronaviruses such as the 
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porcine virus of transmissible gastroenteritis, the severe acute respiratory syndrome 
coronavirus and the human coronaviruses NL63 and OC43 (Almazan et al., 2000, 2006; 
Donaldson et al., 2008; St. Jean et al., 2006). 

4. Conclusion 

The viral DNA replication strategies were very well exploited for the generation of 
efficient BAC cloning, mutagenesis and reconstitution techniques. BAC cloning and 
recombineering strategies are essential for the efficient mutagenesis and analysis of her-
pesviral and poxviral gene functions and reduce problems due to unwanted mutations 
outside of the region of interest. In addition, only the existence of a cloned full-length 
genome guarantees the usage of defined genome structures, especially in variable virus 
genes. For example, the BAC-mediated expression of fusion proteins of viral factors with 
autofluorescent moieties can be used for analysing the expression and localization 
patterns of viral functions (e.g., Antinone & Smith, 2006). The precise, seamless, and 
repetitive manipulation of repeat regions may facilitate the study of viral DNA elements 
involved in DNA replication, genome maturation, and packaging, as well as in latency, 
reactivation, and chromosomal integration.   
Besides basic research, the BAC technology has its major translational applications in 
vector and vaccine development. In the case of viral vector design, the recombineering 
technique allows the easy deletion of useless non-essential regions or virulence genes 
from the viral vector genome (e.g., Cicin-Sain et al., 2007). This may reduce unwanted 
side-effects and may increase the cloning potential for transgenes. Even large and 
complex multi-unit transgene cassettes can be inserted as well as novel conditional 
replication and expression control systems (e.g., Glass et al., 2009). Such viral vectors 
include optimized transgene cassettes, the lack of genomic integration, and the advantage 
of physiologic infection routes. This may also comprise cell-type specific functions as for 
example in EBV or HVS vectors for B- or T-lymphocytes, respectively. Viral vectors may 
be constructed as efficiently replicating oncolytic agents (Kuroda et al., 2006; Marconi et 
al., 2009; Terada et al., 2006) or as packaging-cell dependent transduction vehicles (e.g., 
Hettich et al., 2006).  
The BAC technology has also provided new possibilities for vaccine development. For 
example, EHV-1 BAC-derived viruses were constructed for immunization against West Nile 
virus, bovine diarrhea virus or Venezuelan equine encephalitis virus (Rosas et al., 2007a, b, 
2008). Especially for possible vaccination strategies for hCMV, the detailed analysis of the 
animal model viruses is important. In the case of mCMV and gpCMV, such BAC-based 
immunization strategies have shown promising results (Cicin-Sain et al., 2003, 2007; 
Crumpler et al., 2009; Redwood et al., 2005). In the rhesus monkey model, the viral 
inhibition mechanism for secondary rhCMV infections suggests respective strategies for 
hCMV vaccines (Hansen et al., 2010). Such observations may lead the way to novel 
recombinant human vaccines, for example by replication-deficient hCMV or HSV-1 (Schleiss 
et al., 2006; Suter et al., 1999).  
Although the highly efficient modified vaccinia virus Ankara (MVA) has already been well 
established as a vaccine for the application in humans, the BAC strategy shows considerable 
advantage for optimizing novel vaccine generations (Cottingham et al., 2008; Domi & Moss, 
2002; Meissinger-Henschel et al., 2011; Roth et al., 2011), especially since MVA and related 
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poxviruses are also useful as transgene vectors for the efficient immunization against 
heterologous pathogens. 
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