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1. Introduction 

Telomeres serve two vital functions to eukaryotes. They act as a protective chromosome cap 
to distinguish natural chromosome ends from double stranded DNA breaks and to avoid 
inappropriate fusions of telomeric sequences, and they maintain chromosome length by 
adding DNA to the ends of chromosomes. Telomeres thus balance the loss of terminal DNA 
due to the inability of the replication machinery to completely replicate linear DNA 
molecules (Olovnikov, 1973; Watson, 1972). In many cases the newly replicated chromosome 
ends are resected to allow for the formation of a t-loop that helps to hide the tip (Griffith et 
al., 1999; Wellinger et al., 1996). Most eukaryotes elongate chromosome ends with a special 
reverse transcriptase, telomerase, that carries a specific RNA template with telomeric 
sequence (Greider, 1996). The telomerase enzyme repeatedly adds copies of the short 
telomeric DNA sequence to the chromosome end. While there is strict conservation of 
telomeric sequence repeat in most species, the repeat unit has changed over evolutionary 
time. Holotrichous ciliates, e. g. Tetrahymena, use the sequence (TTGGGG)n (Blackburn & 
Gall, 1978), while hypotrichous ciliates, e. g. Oxytricha, use (TTTTGGGG)n (Klobutcher et al., 
1981; Oka et al., 1980). The primary telomeric sequence in plants is (TTTAGGG)n (Richards 
& Ausubel, 1988; Zellinger & Riha, 2007), although the alga Chlamydomonas uses 
(TTTTAGGG)n. In the yeasts the telomeric sequence has the same general motif, but is not as 
tightly controlled. Saccharomyces for example uses (TG1-3)n (Shampay et al., 1984; Wang & 
Zakian, 1990), while Schizosaccharomyces has (TTACAG1-8)n (Matsumoto et al., 1987). The 
sequence found at the telomeres of most metazoans is (TTAGGG)n (Meyne et al., 1989; Traut 
et al., 2007), although arthropods use (TTAGG)n (Okazaki et al., 1993).  
Lack of the predominant telomeric sequence in a species does not, however, signify that 
telomerase-generated terminal sequences are missing. For example, the metazoan-type 
telomeric sequence is found in place of the plant sequence in Aloe species (Weiss & 
Scherthan, 2002). In order to establish that a telomerase- independent, chromosome 
maintenance system exists it is also necessary to show a lack of a telomerase gene and 
telomerase activity, and to identify the nature of the DNA sequence at the chromosome 

termini. Establishing the negative is always difficult, and confirming that a specific sequence 
is at, not merely near, the chromosome tip is not trivial. Conversely, the presence of a 
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canonical telomeric sequence does not necessarily indicate telomerase as a telomere 
maintenance mechanism. Some species of Calcarea (sponges), Cnidaria (sea anemones and 
jellyfish) and Placozoa, which keep the metazoan telomeric sequence, display little or no 
telomerase activity (Traut et al., 2007). 
Although telomerase may have been the mechanism of telomere maintenance of the last 
common eukaryotic ancestor, it is not the only mechanism used to maintain chromosome 
length. Telomerase has been lost a few times in the evolution of plants and animals. During 
insect evolution, for example, telomerase has been lost at least six times. Here, we discuss 
telomere maintenance mechanisms that replaced telomerase in telomere length maintenance. 
In most cases the nature of the chromosome ends in organisms lacking telomerase is not 
known. In some species the telomerase-generated short telomeric repeat arrays have been 
replaced by tandem arrays of DNA sequences that look much like heterochromatin and can be 
elongated by copying information from one chromosome end to another, i. e. gene conversion. 
A completely different mechanism has been found in Drosophila, where tandem arrays of non-
long terminal repeat (LTR) retrotransposons are found. Newly synthesized copies of these 
retrotransposons target chromosome ends and can even transpose to unique sequence 
chromosome ends. Similar telomere-specific retrotransposons have been found in Drosophila 
species that diverged as long as 40 million years ago, suggesting that this mechanism is 
reasonably stable. Three families of retrotransposons are found at Drosophila telomeres; these 
elements may cooperate with each other during transposition to maintain all three in the 
Drosophila genome. Mutations are known that either increase or decrease the rate of addition to 
the chromosome ends, leading to longer or shorter terminal retrotransposon array lengths. 
While these mutations have not been well characterized, they suggest that telomere 
maintenance by retrotransposition is genetically regulated by the host. 

2. Plants without telomerase 

The plant telomeric sequence (TTTAGGG)n appears to be highly conserved in all phyla of 
the plant kingdom (Fuchs et al., 1995; Fuchs & Schubert, 1996; Richards & Ausubel, 1988). 
Nevertheless, in the order Asparagales the plant telomeric motif has been replaced with 
(TTAGGG)n but is still maintained by telomerase (Fajkus et al., 2005). In addition, three 
genera within the family Solanaceae appear to have lost both the canonical telomeric DNA 
motif as well as telomerase, which is required to maintain this motif. 

2.1 The nightshade family 
In the family Solanaceae the canonical plant telomeric repeat is replaced by a less 
conventional telomeric sequence that may be associated with a different compensation 
pathway. Detailed analysis of Solanaceae species revealed that although plant telomeric 
sequence is present in tobacco, tomato and other representatives of this family, the telomeric 
motif and telomerase activity are missing in the three closely related genera of Cestrum, 
Vestia and Sessea. The actual telomeric sequence and compensation mechanism in this group 
of plants, however, remain unknown (Fajkus et al., 1995; Peska et al., 2008; Sykorova et al., 
2003; Watson & Riha, 2010). 

2.2 The onion family 
Chromosome termini of the onion, Allium cepa, and other Alliaceae species represent 
another known case of unusual telomeres lacking telomerase in plants. Telomeres of A. cepa 
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consist of two tandemly organized repeats – a 375-bp satellite sequence and rDNA repeats 
(Barnes et al., 1985; Pich et al., 1996; Pich & Schubert, 1998). Besides this, the telomeres in A. 
cepa are enriched with En/Spm transposable element-like sequence and Ty1-copia-like 
retrotransposons. The Ty1-copia retroelements have been reported not only at telomeres of 
A. cepa but dispersed throughout its genome (Pearce et al., 1996; Pich & Schubert, 1998). 
Based on these findings it has been proposed that the telomeres of Alliaceae species are 
maintained through transposition of the mobile elements or through homologous 
recombination between the satellite sequences (Pich et al., 1996; Pich & Schubert, 1998).  

3. Animals without telomerase 

In the case of animals, the lack of a telomerase system has been reported in a few insect 
species. The (TTAGG)n sequence has been detected in most tested insect orders and is 
considered as the ancestral telomeric motif not only for insects but also for all arthropods 
(Vitkova et al., 2005). In some groups of arthropods, such as damselflies or spiders this 
telomeric motif was lost (Frydrychova et al., 2004; Vitkova et al., 2005), however in most 
cases it remains unknown if the sequence was replaced by another similar motif or a 
different type of sequence associated with a telomerase-independent elongation mechanism 
(Figure 1).  

3.1 The silkworm 
A highly interesting case of telomeres was revealed in another model organism, the 

silkworm, Bombyx mori (Lepidoptera). The telomeres of the silkworm consist of the insect 

telomeric repeats but harbor many types of non-LTR retrotransposons, designated TRAS 

and SART families (Fujiwara et al., 2005; Kubo et al., 2001; Okazaki et al., 1995). TRAS and 

SART are abundantly transcribed and actively transpose into TTAGG telomeric repeats in a 

highly sequence-specific manner. The silkworm genome contains a telomerase gene, but  the 

telomerase itself displays little or no enzymatic activity. It is believed that compensation of 

telomeric loss in B. mori occurs almost exclusively by transposition of TRAS and SART 

elements to the chromosome ends (Fujiwara et al., 2005; Tatsuke et al., 2009). Nevertheless, 

in contrast to Drosophila, in which the telomerase system was completely lost and replaced 

by telomeric retrotransposition (see below), B. mori may be in transition from one telomere 

elongation pathway to another. 

3.2 Lower diptera 
Telomerase has not been found in any dipteran species (Figure 1). As fossils for this order 

date to the middle Triassic period, it is possible that telomerase may have been lost as much 

as 225 million years ago. Nevertheless, Diptera as a group are very successful, accounting 

for some 10% of known animal species. Thus, loss of telomerase does not seem to have been 

a major impediment to survival. Replacement of short telomerase-generated repeats with  

long satellite sequences is reported in lower dipteran species. Chromosome tips of non-

biting midges (genus Chironomus) consist of large, 50-200 kb, blocks of complex, tandemly 

repeated sequences that are classified into subfamilies based on sequence similarities. 

Different telomeres display different sets of subfamilies, and the distribution of subfamilies 

differs between different individuals in a stock. The variation of the satellite sequences 

supports the proposal that telomeres in Chironomus are elongated by a homologous 
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Fig. 1. Distribution of telomere repeat motifs in Metazoa. (TTAGGG)n is the ancestral telomeric 
sequence of Metazoa and its sister group, Choanozoa. The ancestral motif was replaced with 
(TTAGG)n and (TTAGGC)n in Arthropoda and Nematoda, respectively. Tardigrada (green) do 
not display either of these motifs. Insect orders in red do not exhibit the arthropod sequence. 
Coleoptera (blue) is heterogeneous for the arthropod motif. With a few exceptions among 
Diptera, Tardigrada and the insect orders in color have unknown telomeric sequences. Arrows 
mark the replacement of the metazoan motif with other motifs, as shown. The cladogram is 
based on Frydrychova et al., 2004; Vitkova et al., 2005; Traut et al., 2007. 
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recombination mechanism involving these long blocks of complex repeat units (Biessmann 
& Mason, 1997; Cohn & Edstrom, 1992; Cohn & Edström, 1992; Nielsen & Edstrom, 1993). A 
situation has been observed in Anopheles gambiae with a plasmid insertion into the complex 
satellite telomeric sequences at the tip of chromosome 2L. The plasmid sequence was used 
as a marker to follow the specific telomere, which was found to engage in frequent 
recombination events to extend the array length (Biessmann et al., 1998; Roth et al., 1997). 
Recently, a similar case was reported in Rhynchosciara americana (Madalena et al., 2010). 
Tandem arrays of short repeats, 16 and 22 bp in length, were found to extend to 
chromosome ends. Although telomere elongation could not be assayed in this case, it seems 
likely that the mechanism is similar to that seen in other dipterans. In many respects, these 
complex arrays resemble subtelomeric sequences (Pryde et al., 1997). 

3.3 Drosophila 
Most of our information on the structure and maintenance of telomeres in Drosophila is 

based on D. melanogaster, although some recent studies have been performed on other 

species, especially D. virilis. As in other dipterans, Drosophila telomeres do not posses a 

canonical telomeric sequence and are not maintained by a telomerase-dependent system. 

Instead, chromosome ends in Drosophila carry an array of retrotransposons. This unusual 

telomere structure is common among all drosophilids that have been studied (Casacuberta 

& Pardue, 2002, 2005), although species within this genus may have diverged as much as 40 

million years ago (Russo et al., 1995).  

3.3.1 Drosophila melanogaster 
Three distinct telomeric regions have been identified in Drosophila (Andreyeva et al., 2005; 

Biessmann et al., 2005). At the extreme terminus is a proteinaceous chromosome cap that 

covers approximately 4 kb of terminal DNA sequence (Melnikova & Georgiev, 2005) and 

identifies the end as distinct from a chromosome break. The telomere-specific components 

of the cap in Drosophila are collectively termed 'terminin' by analogy to the shelterin protein 

complex at mammalian telomeres (Raffa et al., 2009). The terminin proteins differ from the 

shelterin proteins, in part because the TRF1 and TRF2 components of shelterin bind 

specifically to the canonical telomeric repeat, while the formation of the telomere cap in 

Drosophila is sequence independent, and in part because many of the terminin proteins are 

among the fastest evolving proteins in Drosophila (Gao et al., 2010; Raffa et al., 2010; Schmid 

& Tautz, 1997). There is no direct evidence that the cap in Drosophila plays a role in 

maintaining chromosome length. Most chromosome ends in Drosophila carry a tandem array 

of telomere-specific non-LTR retrotransposons (Mason & Biessmann, 1995; Pardue & 

DeBaryshe, 2003), although the length of this array can vary considerably. Located between 

the terminal retrotransposons and the unique sequence DNA of euchromatin is another 

repeat array. This array is often referred to as telomere associated sequences (TAS) or the 

subtelomere region (Karpen & Spradling, 1992; Walter et al., 1995). As in other eukaryotes 

TAS sequences in Drosophila include irregular arrays of relatively long repeat units that can 

vary from one chromosome end to another within the same organism (Pryde et al., 1997). 

3.3.1.1 Telomeric retrotransposons 

Studies on D. melanogaster revealed three telomere-specific retrotransposable elements, HeT-
A, TART and TAHRE (collectively abbreviated HTT) present in multiple copies on each 

www.intechopen.com



 
DNA Replication - Current Advances 

 

328 

chromosome end. These retrotransposons are in the same family of elements as mammalian 
LINEs. Although the D. melanogaster genome has some 60 families of known 
retrotransposable elements, only these three are found at chromosome ends. Further, these 
three elements are present only in the telomere arrays. HTT elements are not found in 
euchromatic regions, although tandem arrays of short segments of the 3' noncoding region 
of HeT-A have been found in centric heterochromatin, especially in the Y chromosome 
(Abad et al., 2004a; Agudo et al., 1999; Berloco et al., 2005).  
As a group the HTT elements have characteristics that distinguish them from other 
retrotransposons (Figure 2A). HeT-A is about 6 kb in length, has only a single open reading 
frame (ORF), encoding a Gag-like nucleic acid binding protein, but lacks an ORF for a 
 

 

Fig. 2. Structure of Drosophila telomeres. (A) There are three families of telomeric non-LTR 
retrotransposons. The GAG open reading frame encodes a nucleic acid binding protein that 
helps to target chromosome ends. The RT open reading frame encodes a reverse 
transcriptase needed to copy the RNA intermediate onto the chromosome end. HeT-A does 
not carry a reverse transcriptase gene. All three elements carry relatively short 5' UTRs and 
very  long 3' UTRs. Promoters are indicated by bent arrows. The 3' oligo(A) tail used to 
attach to chromosome ends is indicated by AAA. TART has a strong antisense promoter. (B) 
The Drosophila terminal array is composed of a tandem mixed array of variably 5' truncated 
transposons. At the distal end the chromosome carries a protein complex that binds to the 
end independently of DNA sequence and stabilizes the terminus. The "A" at each junction 
indicates the 3' oligo(A) tail. Proximal to the retrotransposons is a complex subterminal, 
telomere associated sequence (TAS) followed by unique sequence chromosomal DNA. 
Adapted from Capkova Frydrychova et al., 2008). 
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reverse transcriptase. HeT-A also has a 2.4 kb 3' untranslated region (UTR), which includes 
two to five imprecise 80 bp tandem repeats that may help establish chromatin structure. 
This region has a strong G-rich strand bias, which resembles the strand bias found in 
canonical telomeric motifs (Abad & Villasante, 1999; Biessmann et al., 1992b; Danilevskaya 
et al., 1998a), suggesting selection for their presence. Despite the fact that the sequence of the 
3' UTR of D. yakuba, a sister species of D. melanogaster, has diverged by about 50%, these 
repeat features have been conserved (Danilevskaya et al., 1998b). The TART element is about 
10 kb in length with two ORFs, which encode a Gag protein and a Pol protein with a reverse 
transcriptase domain. TART also carries a pair of perfect non-terminal repeats that may be 
important for its replication (Sheen & Levis, 1994; George et al., 2010). TAHRE is about 11-13 
kb in length and has extensive sequence similarity to HeT-A along its entire length, except 
that it carries a second ORF for a reverse transcriptase (Abad et al., 2004b; Shpiz et al., 2007). 
As they all carry unusually long 3' UTRs of about 2-3 kb, the HTT retrotransposons are 
exceptions to the pattern that transposable elements usually have very little sequence that 
does not code for polypeptides involved in their own transposition (Abad et al., 2004b; 
Biessmann et al., 1992b; Sheen & Levis, 1994). It seems likely that this non-coding DNA is 
related to their role at the telomere (Villasante et al., 2007). 

3.3.1.2 The terminal retrotransposon array  

The three retrotransposons present in Drosophila telomeres are arranged in head-to-tail 
arrays of mixed complete and 5'-truncated elements with their 3' oligo-A tails oriented 
toward the centromere (Figure 2B). HeT-A is the most abundant of the three families, 
accounting for 80-90% of the telomeric array. TART elements occupy about 10%, while 
TAHRE elements occupy only 1-2% of the telomeric array. The 5' ends of many of these 
elements are truncated to varying extents, as might be expected from terminal erosion due 
to the end replication problem or incomplete reverse transcription (Mason & Biessmann, 
1995). In one stock the HTT array length varied from about 20 to 150 kb for individual 
chromosome ends (Abad et al., 2004a). The length and composition of the telomeric 
retrotransposon arrays can also vary significantly between chromosomes and among fly 
stocks (Walter et al., 1995). In some mutants the terminal array may be several fold longer 
than found in standard laboratory strains (Melnikova & Georgiev, 2002; Savitsky et al., 2002; 
Siriaco et al., 2002). Conversely, not all chromosome ends in Drosophila have terminal 
retrotransposon arrays. Broken chromosomes with ends far from the original telomere have 
been found in a number of different circumstances (Capkova Frydrychova et al., 2008). It is 
important to note that these broken chromosome ends lack both the retrotransposon array 
and TAS but do not induce cell cycle arrest and are not subject to DNA repair or telomere 
fusions. These broken chromosome ends can be maintained in vivo for hundreds of 
generations without gaining new HTT sequences (Biessmann et al., 1990a; Cenci et al., 2003; 
Fanti et al., 1998). Thus, these broken chromosome ends have been ‘healed’ in the sense that 
McClintock (1941) described newly stabilized broken chromosome ends, and they are 
associated with a protein complex that includes a number of terminin proteins (Cenci et al., 
2005; Ciapponi & Cenci, 2008). This suggests that chromosome caps in Drosophila are 
epigenetic and form independently of telomeric DNA sequence (Biessmann & Mason, 1988, 
2003). These capped broken ends may eventually acquire retrotransposons by what appears 
to be a stochastic process (Biessmann et al., 1992a; Mikhailovsky et al., 1999). 
As expected from the end replication problem, the broken chromosome ends recede. Erosion 
at these terminally deficient chromosomes was estimated at a constant rate of about 75 bp 
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per sexual generation (Biessmann & Mason, 1988; Levis, 1989; Mikhailovsky et al., 1999). 
Considering the number of germline cell divisions, the rate of terminal erosion was 
estimated at 2-3 bp per chromosome end per cell cycle (Biessmann & Mason, 1988). This is 
formally equivalent to the degradation of an 8-12 nt RNA primer from the end of the 
lagging strand after each round of replication leaving a short 3' overhang (Biessmann et al., 
1990a). In mammals telomere erosion is faster, in large part because chromosome ends are 
resected to produce relatively long 3' overhangs necessary for t-loop formation (Griffith et 
al., 1999; Wellinger et al., 1996). The slow rate of loss in Drosophila suggests that resection of 
the chromosome ends after replication is not extensive, and that t-loops are not required for 
telomere protection. It is possible that chromosome ends with telomeric retrotransposons 
behave differently from healed broken ends, but to date the evidence is lacking. 

3.3.1.3 Transposition to elongate telomeres 

To counter terminal erosion and maintain their length, telomeres must be elongated. The 
broken chromosome ends provide an entrée to study telomere elongation. Southern blots to 
monitor terminal fragment length at a broken chromosome end identified the addition of 
new sequence onto the terminal fragment at a frequency of about 1% per generation, with 
an average length for the added fragment of 6 kb (Biessmann et al., 1992a; Biessmann et al., 
1990b). This averages out to an addition of 60 bp per generation, just enough to balance 
terminal erosion. It is important to note that the frequency of addition onto chromosome 
ends may be sensitive to different factors, including genetic background and possibly 
external conditions. Using genetic assays, two groups have identified stocks with much 
different frequencies of addition, possibly by as much as two orders of magnitude in either 
direction (Golubovsky et al., 2001; Savitsky et al., 2002; Savitsky et al., 2006). The new 
additions onto the receding chromosome ends were identified as HeT-A and TART 
elements, the same retrotransposons as found at natural telomeres. These elements were 
attached to the broken end by an oligo(A) tail, as would be expected from retrotransposition 
(Figure 3). Further, when broken chromosome ends that had gained a HeT-A element were 
used as a target they too acquired new HeT-A elements by transposition (Biessmann et al., 
1992a). Thus, retrotransposition through target primed reverse transcription may be a 
mechanism for extending natural chromosome ends as well as broken ends.  

3.3.1.3.1 The transcription step 

The first step in the process of retrotransposition is transcription of the transposable element 
(Figure 3). All three telomeric elements have unusual transcription patterns. TART has 
active promoters at both the 5' and 3' ends that initiate in both the sense and antisense 
directions, although the major product seems to be a nearly full length antisense RNA 
(Danilevskaya et al., 1999; Maxwell et al., 2006). TART has a single promoter in the 5' UTR 
that drives transcription of the transposition intermediate (Maxwell et al., 2006). HeT-A and 
TAHRE, on the other hand, do not have promoters at the 5' end. Instead, they have a 
promoter in the 3' end that drives transcription of the adjacent downstream element 
(Danilevskaya et al., 1997; Shpiz et al., 2007). This literally means that HeT-A promotes its 
neighbor. The placement of this promoter is important for the long-term integrity of the 
telomeric array, because a promoter in the standard 5' position would be subject to erosion 
due to the end replication problem and lost immediately after transposition. A 3' promoter 
resurrects the element downstream. HeT-A transcription is developmentally regulated and 
occurs only in diploid cells of ovaries, testes, imaginal discs, and embryos (Capkova 
Frydrychova et al., 2007). 
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Fig. 3. Transposition as a mechanism for telomere elongation. The model proposes that 
transcripts (colored arrows) are generated from telomeric retrotransposons using promoter 
activity located in the 3' UTR of an upstream HeT-A or TAHRE element. Transcripts leave 
the nucleus to serve as mRNA for translation of the encoded Gag protein and possibly 
reverse transcriptase (ovals). Gag proteins bind the RNA, facilitate re-entry into the nucleus 
and target the chromosome end. After docking to a telomere a reverse transcriptase uses the 
free 3' hydroxyl group at the chromosome end as primer to copy the RNA intermediate into 
the first DNA strand. Second strand synthesis completes the addition of a new 
retrotransposon. Sequence analyses of recently transposed HeT-A elements and several in 
native telomeric arrays suggest that there is a selection for the incorporation of elements 
with a functional Gag ORF. 

One appealing mechanism for controlling the length of the terminal retrotransposon array is 
to regulate transcription of these elements. Two forms of this mechanism have been 
proposed, but both have problems. First, it was noted that transgenes inserted into 
subtelomere regions are repressed and variegate (Cryderman et al., 1999; Roseman et al., 
1995). In addition, TAS arrays can silence in cis the activity of a neighboring transgene as 
well as a HeT-A element when they are distal (telomeric) of TAS (Boivin et al., 2003; 
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Capkova Frydrychova et al., 2007; Kurenova et al., 1998), suggesting that TAS can control 
terminal retrotransposon array length by regulating transcription (Mason et al., 2003a). The 
TAS silencing effect, however, only extends a short distance into the terminal array and has 
little or no effect on overall HeT-A transcript levels (Biessmann et al., 2005; Capkova 
Frydrychova et al., 2007). Thus, silencing orchestrated by TAS arrays is not sufficiently 
strong to regulate transcription of the terminal retrotransposons. Second, it was noted that 
HeT-A and TART transcript levels are under the control of an RNA interference pathway 
(Savitsky et al., 2006; Shpiz et al., 2009). Transposition frequency and terminal array length, 
however, did not increase with increasing retrotransposon transcript levels (Capkova 
Frydrychova et al., 2008). It thus appears that the transcript levels of these retrotransposons 
are not the limiting factor in their transposition. 

3.3.1.3.2 Telomere targeting 

After transcription the RNA is transported into the cytoplasm and translated. The HeT-A 
RNA produces only a Gag protein, which binds a transcript, enters the nucleus and attaches 
to chromosome ends. Evidence supports the hypothesis that the Gag protein binds 
preferentially to the transcript that encoded it, because while many HeT-A elements in the 
terminal array are 5' truncated or otherwise lack an ORF, newly transposed HeT-A elements 
have a complete Gag ORF (Biessmann et al., 1994). Unlike Gag proteins for closely related 
parasitic retrotransposons, the HeT-A and TART Gag proteins are transported efficiently 
into the nucleus (Rashkova et al., 2002b). Unlike other non-LTR elements telomere specific 
elements do not require nicked DNA, because they are reverse transcribed directly onto the 

end of the chromosome. The HeT-A Gag can associate with telomeres on its own. The TART 
Gag, however, can only be seen to associate with telomeres in the presence of expressed 
HeT-A Gag protein (Rashkova et al., 2002a). Similarly, transport of the TAHRE Gag into the 
nucleus is facilitated by HeT-A and TART Gag proteins (Fuller et al., 2010). This presents a 
possible explanation for the presence of HeT-A, TAHRE and TART transposons in all 
Drosophila stocks. HeT-A does not encode a reverse transcriptase, which is required for 
retrotransposition, but may use the one encoded by either the TART or TAHRE elements. 
TAHRE and TART, on the other hand, cannot target chromosome ends without the aid of 
the HeT-A Gag protein. 

3.3.1.3.3 Consequences of transposition on terminal array structure 

Given the constant erosion of chromosome ends and the stochastic addition of transposon 
sequences to the same ends, one might expect that the terminal retrotransposon array would 
be very dynamic, constantly changing in length and composition. We have found this to be 
true using a genetic assay for the number of transposons at a specific telomere (Golubovsky 
et al., 2001; Mason et al., 2003b). One consequence of this turnover is that the transposon 
elements at the terminus are younger than those nearer to TAS. Virtually complete terminal 
arrays have been identified in overlapping BAC clones (Abad et al., 2004a). The age 
differential can be seen in the distribution of transposable elements that do not specifically 
target the chromosome end. These transposons are found primarily in the older, proximal 
portion of the terminal array (Pardue & DeBaryshe, 2008). Turnover in the younger, distal 
portion of array the removes evidence of these transposons. Newly transposed P elements 
have also been found inserted into the terminal array with reasonable frequency (Biessmann 
et al., 2005). Although the exact positions of these P elements in the terminal array could not 
be determined for most of the insertions, there is no evidence that any portion of the HTT 
array is refractory to insertion by non-telomere-specific elements.  
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HeT-A transcription start sites reside 31 and 62 bp upstream of the oligo-A tail 
(Danilevskaya et al., 1997). Thus, newly transposed transposons are slightly longer than the 
same elements before transposition, because they carry a tag at the 5' end identical to the 3' 
end of the previous upstream element (Traverse et al., 2010). Surprisingly, some of the 
elements carry multiple tags, suggesting that they have transposed several times without 
being subjected to terminal erosion. The simplest explanation is that multiple transposition 
events occur in rapid succession, possibly more than one per generation. Evidence of this 
has been found in measurements of transposition rate (Biessmann et al., 1992a), in which it 
was found that many of the new sequence additions were 12 kb or longer, and the 3' half of 
these long additions consisted of a (6 kb) HeT-A element. As these long addition events were 
shown to be the result of transposition, they could have resulted from either rapid multiple 
transposition events or transcriptional read-through to produce an RNA intermediate 
encompassing more than one element. The latter, however, have been found to be relatively 
rare (Capkova Frydrychova et al., 2007) and don't explain the presence of tandem tags. 
Rapid multiple transposition events may be the natural consequence of terminal 
transposition. When one retrotransposon attaches to the chromosome end, the old protective 
telomere cap must jump to the new terminus 6-12 kb away. If the cap is unstable during this 
transition, more transposons may have access to the new terminus, allowing for more 
transposition events to occur in rapid succession.  
The 5' and 3' UTRs of TART carry perfect non-terminal repeats. These repeated regions vary 
among TART families and among individuals within a family but are identical at both ends 
of individual elements (Sheen & Levis, 1994). It has been proposed that the two repeated 
sequences evolve in concert by a mechanism of template switching during the reverse 
transcription step (George et al., 2010). 

3.3.1.4 Recombination to elongate telomeres 

Transposition is not the only mechanism for telomere elongation in Drosophila. Gene 
conversion allows genetic information to be transferred from one chromosome to another by 
homologous recombination (Figure 4). Georgiev and colleagues made use of broken 
chromosome ends with the yellow gene placed close to the terminus, such that the upstream 
controlling sequences were deleted, but the ORF was still present (Kahn et al., 2000; 
Mikhailovsky et al., 1999). Expression of the yellow gene was thus inactivated, but HeT-A 
transposition to the broken end could activate yellow expression via the promoter in its 3' 
UTR, while recombination with a wild type chromosome can reintroduce the yellow 
promoter and enhancers to their position on the broken end. Genetic assays were used to 
identify changes in yellow expression, then the length and sequence of the upstream region 
were characterized. Approximately 20-30% of the yellow reactivation events were the result 
of gene conversion. In one study the average length of the conversion track was estimated at 
2.7 kb (Mikhailovsky et al., 1999), in another conversion tracks exceeding 20 kb were found 
(Kahn et al., 2000). 
Although experiments using broken chromosome ends to monitor telomere elongation use 
an artificial system of telomere maintenance, it is assumed that the telomere elongation 
mechanisms identified in these experiments also work at the ends of long retrotransposon 
arrays. Extensions of long terminal arrays by individual transposition events or short gene 
conversion tracks cannot be monitored genetically or molecularly. If, however, genetic 
factors cause an imbalance between elongation and erosion, terminal retrotransposon arrays 
may grow or shrink. This can be measured cytologically by in situ hybridization on polytene 
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chromosomes as changes in the terminal array length, or molecularly by quantitative PCR as 
changes in the genomic copy number of the telomere-specific retrotransposons.  
 

 

Fig. 4. Gene conversion as a mechanism for telomere elongation. The model proposes that 
the 3' strand of a chromosome end invades another chromosome, possibly a sister or 
homologue. The invading strand is extended using the host sequence as a template then is 
used as a template in second strand synthesis. Ligation of the newly replicated fragment 
results in an extended chromosome.  

Mutations have been identified in three genes that cause terminal transposon array length to 

increase. Telomere length is sensitive to HP1 concentration, as mutations in the gene encoding 

this protein lead to an increase in HeT-A and TART transcript levels and a 100 fold increase in 

the frequency of new HeT-A and TART attachments (Savitsky et al., 2002). The increased rate 

of elongation resulted from both transposition and gene conversion, and was associated with 

extremely long terminal array length after several generations. As HP1 protein is enriched in 

www.intechopen.com



 
Telomere Maintenance in Organisms without Telomerase 

 

335 

the telomere cap, at least two possible hypotheses present themselves: (1) increased 

transcription increases transposition of the telomere-specific elements, and (2) disruption of 

the cap by decreasing one of its component proteins increases accessibility of the transposons. 

Our data (RCF and JMM, unpublished data), however, suggest that neither is true. Other 

mutations associated with increased HeT-A transcript levels are not associated with long 

telomeric arrays, and disruption of the cap by making heterozygous mutations in other genes 

encoding cap proteins does not increase telomeric array length. Two dominant mutations, 

E(tc) and Tel (Melnikova & Georgiev, 2002; Siriaco et al., 2002), exhibit abnormally long 

telomeres and are located in the same small genetic region in the middle of chromosome 3R. In 

the Tel mutant the copy number of HeT-A at telomeres is increased seven-fold, while TART 

and TAHRE copies are increased somewhat less (Siriaco et al., 2002; Walter et al., 2007). The 

mechanism of action of these mutations has not been elucidated, although one study indicated 

that the Tel mutation causes telomere elongation by transposition as well as gene conversion, 

while E(tc) causes mainly gene conversion (Proskuryakov & Melnikova, 2008). 

3.3.2 Drosophila virilis 
The DNA sequence of individual HeT-A and TART elements in D. melanogaster differ 
considerably throughout their lengths, but especially in the 3' UTR regions. Although it is 
possible to identify families of these elements, there is still some variation within each 
family. A comparison of telomeric retrotransposons between two sibling species of 
Drosophila, D. melanogaster and D. yakuba, shows substantial divergence in the HeT-A and 
TART UTRs but less divergence in the ORFs that encode the Gag-like polypeptides 
(Casacuberta & Pardue, 2002; Danilevskaya et al., 1998b). These two elements have the most 
amino acid sequence conservation around the zinc knuckle motif typical of Gag proteins, 
and there are conserved islands scattered throughout the coding region. The overall 
structure of the elements, however, is well conserved. HeT-A in D. yakuba also lacks a pol 
ORF and has a very long 3' UTR. Although the high sequence divergence of the telomeric 
elements makes it difficult to find these elements in new species, it also increases the 
probability that the conserved features are of biological importance. 
Searching for telomeric retrotransposons in more distantly related species presents a 
problem because of the extensive sequence divergence. Only the most conserved part of the 
D. melanogaster TART pol gene can cross-hybridize, even at low stringency, with D. virilis 
DNA. This hybridization, however, allowed the isolation of DNA fragments that provided 
entry into the D. virilis telomere arrays (Casacuberta & Pardue, 2003a). The D. virilis TART 
resembles its D. melanogaster homolog in several respects. They are both found in tandem 
arrays, but not in the euchromatic arms, and they both produce an excess of antisense 
transcripts. The TART in D. virilis is different in that it has a relatively short 3' UTR without 
perfect non-terminal repeats and a pol gene (ORF2) that encodes an additional ‘X’ domain 3' 
to the reverse transcriptase domain. A HeT-A element was found in the terminal array next 
to a TART from D. virilis. As with its homolog in D. melanogaster, the HeT-A element carried 
only a single ORF for a Gag protein and had a long 3' UTR (Casacuberta & Pardue, 2003b). 
Experiments to localize GFP-tagged Gag proteins indicated that the Gag encoded by the D. 
virilis TART element requires HeT-A Gag to target the telomeres, similar to the situation 
found in D. melanogaster (Casacuberta et al., 2007). 
There are significant differences between the telomere specific elements in D. melanogaster 

and D. virilis. HeT-A in D. virilis has its promoter in the 5' UTR, similar to nontelomeric 
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retrotransposons and thus produces transcripts that lack 5' tags. Even so, full length HeT-A 

elements persist in the array. The D. virilis TART, on the other hand, has a 3' promoter that 

generates 5' tags on its transcripts (George et al., 2010; Traverse et al., 2010). This 

arrangement is the reverse of that found in D. melanogaster. Unlike in D. melanogaster, the 

HeT-A 5' UTR in D. virilis is highly conserved. This suggests a different transposition 

mechanism for HeT-A in these two species. Unlike the situation in D. melanogaster, in which 

the retrotransposons attach to the chromosome terminus, it is possible that the HeT-A 

element in D. virilis inserts into the 5' UTR of other elements already in the array by making 

a sequence-specific nick followed by target primed reverse transcription. This proposed 

mechanism resembles that used by canonical non-LTR retrotransposons. The ‘X’ domain 

specific to the D. virilis pol gene may play a role in this endonuclease activity. If it is true that 

HeT-A elements behave differently in these two distantly related Drosophila species and that 

HeT-A in D. virilis uses a mechanism similar to nontelomeric retrotransposons, then 

retrotransposon telomeres may have arisen near the dawn of Drosophila. HeT-A transposons 

in the Sophophora subgenus, which includes D. melanogaster, may have lost the endonuclease 

needed to nick chromosomal DNA to initiate insertion, while HeT-A transposons in the 

Drosophila subgenus, which includes D. virilis, may have retained the endonuclease but 

made it sequence specific. Further, if telomeric retrotransposons arose in the Drosophila 

genus, it follows that other Dipteran species may have other means of controlling telomere 

length. This is consistent with the finding of complex tandem sequence arrays at the extreme 

chromosome ends in Chironomus and Sciaridae species (Cohn & Edstrom, 1992; Cohn & 

Edström, 1992; Madalena et al., 2010; Nielsen & Edstrom, 1993). 

4. Conclusion 

Although rare, telomerase has been lost several times in plants and animals. In some cases, 

such as Diptera, telomerase was lost in the distant past, and the descendents of this event 

have thrived and diversified. This raises the possibility that, once established, organisms 

with noncanonical mechanisms of telomere maintenance may not be at a severe selective 

disadvantage. How, then, do we account for the paucity of organisms lacking telomerase? 

One possibility is that there is a strong selective barrier to the loss of telomerase-generated 

DNA motifs. Binding of the shelterin protein complex necessary for the protection of 

chromosome ends depends on sequence-specific binding. The shelterin components TRF1 

and TRF2 in particular recognize the double stranded telomeric motif, while POT1 

recognizes the single stranded form (Palm & de Lange, 2008). Thus, in most cases loss of 

telomerase results in loss of the telomeric motif, followed by loss of the chromosome cap, 

massive chromosome rearrangement and death. If, however, telomeric attachment of the 

cap complex in some lineages does not depend strongly on a specific DNA sequence, loss of 

the telomeric motif might not have the same catastrophic consequences. This might explain 

why insects have lost telomerase and the canonical arthropod-type telomeric sequence 

multiple times (Figure 1). This hypothesis assumes the existence of an effective backup 

mechanism that can replace the canonical telomerase system. Alternatively, it may be 

misleading to suggest that loss of telomerase occurred only in the small number of 

organisms already reported. There may be, for example, cases similar to B. mori, in which an 

unconventional telomere structure maintained without telomerase is camouflaged by the 

presence of canonical telomeric sequences. Loss of telomerase in Solanaceae, Alliaceae and 
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insects may thus represent the tip of the proverbial iceberg, and it is possible that many 

other groups will be found with unusual telomere structures.  

Recombination seems like a ready backup mechanism for telomere maintenance by 
transferring information from one DNA strand to another, because it is widely used by 
eukaryotes both during meiotic recombination and as a means of repairing DNA damage 
(Heyer et al., 2010). Some organisms are known to use recombination to maintain the 
canonical telomeric DNA sequence in the absence of telomerase. In Saccharomyces cerevisiae, 
for example, loss of telomerase causes gradual loss of the terminal array and ultimately cell 
death. A few survivors, however, appear in a recombination-dependent manner (Lundblad 
& Blackburn, 1993). In mammals telomerase activity is reduced in most somatic tissues, thus 
limiting the growth of tumors. Most cancer cells overcome this obstacle by reactivating 
telomerase, but about 15% use an alternative lengthening of telomeres mechanism, which is 
recombination-dependent (Cesare & Reddel, 2010). Dysfunctional telomeres may actually 
stimulate telomeric recombination (Brault & Autexier, 2011). It is thus reasonable to 
hypothesize that a recombination-based gene conversion mechanism would be available if 
telomerase fails. As seen in yeast and human tumors, this pathway can maintain telomeric 
repeats. If the canonical motif is lost another DNA sequence, possibly related to the complex 
arrays of subtelomeric regions, could be maintained by the same mechanism. It is difficult to 
prove that organisms without telomerase use gene conversion to elongate their chromosome 
ends, in large part because many of these organisms lack the genetic tools to test the 
hypothesis. Recombination could be demonstrated in the malaria vector Anopheles gambiae 
because of the fortuitous transgene insertion into the telomeric array (Roth et al., 1997). In 
other cases it can be shown that a complex repeat array extends to, or close to, the 
chromosome end (Madalena et al., 2010; Nielsen & Edstrom, 1993). In these cases gene 
conversion was suggested as the default mechanism. Regardless of the mechanism, it is clear 
that a few well established lineages of both plants and animals lack telomerase and the 
canonical telomeric DNA motif it produces. Elucidation of these unusual telomeres will help 
us to understand what it means to be a telomere. 
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