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1. Introduction

The annual volume of imaging data in modern paperless hospitals can approach up to 10
terabytes, heavily pressing the storage and transmission requirements (Choong et al.,
2007). Utilizing efficient compression techniques for those data in order to
reduce associated costs is very attractive from both viewpoints: financial and
organizational (Sanchez, Abugharbieh & Nasiopoulos, 2009; Sanchez et al., 2008). Although
lossy techniques can yield better compression results, due to possible compression artifacts
in the compressed image, they are less favored compared to lossless compression techniques
in certain medical applications such as image-based diagnosis, archival etc. Compression
itself helps in alleviating storage requirements for medical imaging system. Additionally, it
also helps in accommodating the on-line transmission and availability of patient diagnostic
imaging data which is essential for future electronic health frameworks.
Moreover, new approaches in medical imaging such as 3D and 4D imaging and bio–modeling
produce even greater amounts of image data. For efficient storage and transmission of those
data and utilization of systems that exploit 3D and 4D imaging technologies, compression
is inevitable. In this field, at least certain parts of images are required to be stored and
transmitted without any loss of information. The lossless compression algorithm that we
propose can also be efficiently employed for at least those vital parts of interest in this kind of
applications (Zagar et al., 2007).
Important property of image data is high degree of correlation among neighboring pixels
which is crucial for any compression technique since it makes it possible to decorrelate the
samples using some sort of prediction–based modeling. If employed modeling technique
effectively models the spatial correlation among neighboring pixels, remaining data will be
mostly decorrelated and easily coded with an entropy coder. On the other hand, it is well
known that image data are nonstationary, i.e. properties of image regions vary all over the
image (Memon & Wu, 1999). Accordingly, it is necessary to adapt the model to the changing
image characteristics. Another assumption of local stationariness is very well applicable to
the image data. This means that for arbitrarily small image regions, the model adapted to
the dominant local property will be effective inside the region. Predictive image coding in
which the prediction error of the current pixel is coded has shown to be the most effective
technique in lossless image compression. Using prediction, image data are decorrelated prior
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Fig. 1. Block scheme of predictive image coding

to the entropy coding so that better compression is achieved. In the framework of sequential,
backward adaptive lossless image compression, predictive image coding can be formulated
as composed of the following steps as shown in Figure 1:

1. Prediction of the current pixel based on the casual set of surrounding pixels - pixel
prediction.

2. Contextual error modeling: Determination of the conditional probabilistic context in which
the current prediction error occurs (Memon & Wu, 1999).

3. Entropy coding of the prediction error in the detected probabilistic context - entropy
coding.

In this work a new predictive model for lossless image compression is proposed. The model
is based on classification and blending of static predictors which is followed by heuristic
contextual error modeling. The classification is performed in order to capture and model
higher order redundancies inside the local image region. Then, on the causal set of classified
neighboring pixels, the set of selected static predictors is dynamically blended to produce the
prediction. The idea behind the blending of predictors is to find a dominant property inside
the current image region while taking other properties into account. The dominant property
will have the biggest impact on the final, blended predictor. Based on our proposed predictor,
we developed two lossless image compression codecs characterized with high compression
efficiency. First codec neglects computational complexity while the second proposal employs
an effective technique which reduces the computational requirements of the first proposal
while maintaining compression efficiency.

2. Proposed Predictive Coding Method

We treat image as a two-dimensional array I(x, y) of pixel grey intensity values of width W
and height H, where 0 ≤ x < W and 0 ≤ y < H. Pixels are observed sample by sample
in raster scan order, from top to bottom, left to right. In the assumed backward adaptive
approach, the encoder is allowed to use only past information that is also available to decoder.
This means that for forming the prediction only previously observed pixels are used, as shown
in Figure 1. In fact, only a small subset of previously encoded pixels is used to form the causal
template. Predictor from Figure 1 uses causal context of surrounding pixels for the prediction
of the current pixel :

Î(x, y) = f (Ω(x, y)) (1)
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Novel Prediction Based Technique for Efficient Compression of Medical Imaging Data 3

In simple prediction schemes that use small causal context the compass point notation for
surrounding pixels is used which is also illustrated in Figure 1. For example N denotes North
pixel, W denotes the West pixel from the current pixel, NE North–East, NW North–West etc.
After the prediction is performed, the model outputs the prediction error. This means that
instead of coding the real pixel value, the pixel prediction Î(x, y) = f (Ω(x, y)) is performed
and the prediction error e(x, y) = I(x, y)− Î(x, y) is further encoded by the statistical encoder.
As previously observed, a typical image can be treated as composed of regions with varying
dominant properties such as edges, textures, smooth regions, noisy regions etc. Those
properties pose different and conflicting constraints on the prediction function if it is required
to adapt to the region properties. The main properties of image regions and their requirements
on the predictor are given in (Seemann & Tischer, 1997). If we consider a linear predictor:

Î(x, y) = f
(

Ω(x, y)
)

= ∑
I(i,j)∈Ω

ai,j · I(i, j), (2)

then we can formulate the following constraints on the predictor coefficients {ai,j} depending
on the dominant property of the current region:

• Smooth regions in which the intensity of pixel doesn’t change require that ∑ ai,j = 1. For
planar region it is required for at least one of ai,j to be negative so that the gradient can be
estimated.

• Noisy regions require the minimum magnitude of noise is introduced into prediction
which implies that ∑ |ai,j| should be as small as possible. Therefore, the best approach
for noisy regions is the use of averaging prediction function.

• Edges and textured regions constitute the most important visual part of
images (Seemann & Tischer, 1997). Edges require some kind of adaptation mechanism in
the predictor to provide the detection and orientation of the edge. Textures are the most
difficult to model and they can be considered as combination of noise and edges.

In general, image regions can be viewed as composed of structures mentioned before with
one or two dominant properties; therefore the choice for predictor to satisfy given constraints
is very often in conflict. The best choice for the most cases is to assume the noisy property
and corresponding constraint as suggested in (Seemann & Tischer, 1997) where the blending
of static predictors is proposed which practically gives the final predictor to be an averaging
predictor.
The effectiveness of any prediction scheme depends on its ability to adapt to different
image regions. This precludes the use of static predictors if efficient prediction
is required. Typical, heuristically tuned switching predictors use a set of static
prediction functions and heuristics to determine which function will be used for
the prediction of the current pixel. Such predictors include GAP from the CALIC
algorithm (X. Wu and N. Memon and K. Sayood, 1995), MED predictor from the LOCO-I
and JPEG–LS standard (M.J. Weinberger and G. Seroussi and G. Sapiro, 1998), etc. The main
drawback of switching predictors is the lack of robustness in the presence of nontrivial
image structures. Another approach is to use adaptive predictor which we also propose.
There is a large spectrum of adaptive predictors with various mechanisms of adaptation
and complexities such as LS–based predictors (G. Motta and J.A. Storer and B. Carpentieri,
2000; X. Li and M.T. Orchard, 2001) and blending predictors (Seemann & Tischer, 1997;
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Fig. 2. Contextual elements of proposed predictor

Seemann et al., 1997). The aim of the prediction scheme proposed in this paper is to predict
well in all various image regions with moderate computational complexity.

2.1 Proposed predictor

In order to efficiently model different image structures we propose adaptive predictor based
on the idea of predictor blends (Seemann & Tischer, 1997). The blending predictor is extended
with dynamic determination of blending context on a pixel–by–pixel basis. The set of
predictors

F = { f1, f2, · · · , fN}

is composed of N static prediction functions adjusted to predict well in the presence of
specific property. For example simple predictor fW = I(x − 1, y) is known to predict well
in the presence of sharp horizontal edge. The classification process determines the set of
neighboring pixels on which the blending of F is performed. It is similar to initial step
of vector quantization design substantially simplified in order to be usable in symmetric,
backward adaptive algorithm (M.J. Slyz and D.L. Neuhoff, 1994). The process of blending of
selected predictors will finally produce an averaging predictor which is known to predict well
in the noisy regions. This way, the final predictor will try to adapt to the most relevant image
properties while detecting and adjusting to the dominant property in the current local region,
whether it is an edge, a planar region or even a texture with nontrivial coarseness and period.
Figure 2 depicts basic elements of proposed prediction scheme. ΩC denotes the causal context
used by the predictor. It is a rectangular window of radius R composed of previously encoded
pixels on which the search procedure for classification is performed. Each pixel from the
ΩC and currently unknown pixel I(x, y) is associated with its vector template v(x, y) that is
composed of d closest causal neighboring pixels as shown in Figure 2(b). As an example, the
vectors of size d = 4 (v4(x, y)) and d = 10 (v10(x, y)) are shown. In Figure 2(a) the vectors
of size four are used. The Euclidean distance between associated vectors will be used for
classifications of pixels into the current cell of pixels similar to the current pixel I(x, y), just
like in VQ design (A. Gersho, 1993; A. Gersho and V.M. Gray, n.d.). In order to reduce the
complexity of proposed scheme some basic simplifications are introduced. First, as shown by
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Slyz and Neuhoff, we do not perform full vector quantization. Rather, only the current cell in
which the current pixel lies needs to be calculated (M.J. Slyz and D.L. Neuhoff, 1994). Next,
the cell population, i.e. number of pixels that go into the cell together with the current pixel’s
vector, is set as constant M at the beginning of the coding process.
Proposed prediction scheme operates as follows:

Classification and Blending Predictor CBP

1. Iteration: Iterate for every pixel I(x, y) in the image.

2. Classification: For each pixel I(i, j) ∈ ΩC compute the Euclidean distance D(i, j) between
its corresponding vector v(i, j)=w and the current pixel’s vector v(x, y)=v:

D(i, j) = ||v(i, j)− v(x, y)||
= ||w − v||

= ∑
d
k=1 |wk − vk|

2 .
(3)

Based on the computed distances, determine M pixels from ΩC that belong to the current
cell, i.e. with the smallest vector distances from the current pixel’s vector. The current cell
will be used as blending context ΩB for F . This step is similar to nearest neighbor selection
in VQ design.

3. Predictor penalties: For every predictor fk the penalty Gk is calculated by the following
equation:

Gk = ∑
I(i,j)∈ΩB

( Îk(i, j)− I(i, j))2, (4)

where Îk = fk(i, j) is the prediction of fk ∈ F for the pixel I(i, j) ∈ ΩB.

4. Final predictor blending: Based on the penalties we form the prediction for the current pixel
Î(x, y) as:

Î(x, y) = F(x, y) =

⎡

⎣

(

∑
N
k=1

1
Gk

· Îk(x, y)
)

∑
N
k=1 1/Gk

⎤

 . (5)

The prediction for the current pixel is the weighted sum of predictions of all the predictors
from F with weights inversely proportional to corresponding penalties. The penalty of
predictor reflects its prediction accuracy on the blending context. If the predictor predicts
well, its contribution, i.e. its weight in the final prediction will be higher. The predictors
that do not predict well on the current blending context will eventually be blended out by
associated large penalties. The denominator in (5) normalizes the final prediction so that
the sum of weights equals to 1.

5. Error correction: On the blending context ΩB calculate typical error of the final predictor as:

ē(ΩB) =
1
M ∑

I(i,j)∈ΩB

(F(i, j)− I(i, j)). (6)

Based on the typical error of blending predictor F the final prediction for the current pixel
is further refined as:

İ(x, y) = F(x, y) + ē = Î(x, y) + ē. (7)

This final step of proposed predictor captures typical bias of the blending predictor F on
the classified set of pixels ΩB that are the part of similar structure as current pixel.
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Through the classification and blending process, proposed predictor adjusts itself to the
dominant local property. The blending allows other non–dominant properties to be included
in the final predictor, although with less contribution. This is crucial difference compared
with switching predictors that don’t have the capability to model nontrivial image structures
with mixture of properties. Note that pixels from the search window that do not belong to the
region with the same dominant property as the region in which current pixel resides will not
be included in the current cell and thus they will not be part of the blending context.

2.2 Contextual error modeling

Although the prediction step removes statistical redundancies within image data, there are
remaining structures in the error image which cannot be completely removed using only
previously applied prediction step (Memon & Wu, 1999). Those structures are removed using
contextual modeling of prediction error, where the context or the state is the function of
previously observed pixels, errors or any other relevant variables. As reported by Wu, the
heuristic method that uses both, previous pixels template and causal error energy estimate is
best suited for this purpose (Wu, 1997). Wu’s contextual model is composed of two different
submodels: (1) Model with large number of states that is used for prediction error feedback;
and (2) Model with low number of states used for error probability estimation. On the other
hand, Wu’s predictor is a heuristic predictor with low degree of adaptation and our proposal
is highly adaptive predictor with already built in error feedback mechanism (error correction
step in the prediction). This implies that our mechanism needs smaller and less complex
contextual model for estimation of symbol probabilities. Therefore it is built as follows:
Besides of the high correlation with texture pattern, current prediction error is also highly
correlated with the errors on neighboring pixels. This is modeled with the error discriminant

∆ = dh + dv + 2|ew|, (8)

where
dh = |W − WW|+ |N − NN|+ |N − NE|, (9)

and
dv = |W − NW|+ |N − NN|+ |NE − NNE|, (10)

are horizontal and vertical gradients around the current pixel, and ew is the prediction error on
the west pixel W from the current pixel. ∆ is uniformly quantized into eight levels to produce
the state of the model (Wu, 1997). Every state contains the histogram table which is used
for probability estimation of the prediction error in the current state. Because of the context
dilution effect, this contextual model is required to have small number of states.

2.3 Entropy coding of prediction error

The final step of proposed image compression algorithm is entropy coding of the resulting
prediction error. For the given error symbol and given probability estimate obtained from the
contextual state, the codeword is computed by the entropy coder. This codeword is output
as the final result of predictive image coding algorithm. Our proposal uses highly efficient
implementation of adaptive arithmetic coding (P.G. Howard and J.S. Vitter, 1994).
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3. Selective computation of Predictor Blends

In this section we extend our Classification and Blending Predictor CBP with the goal to
reduce the computational requirements of the method while maintaining its compression
efficiency. We achieve this by implementing an effective heuristic approach in the predictive
part of the compression method.
Our optimization is based on the observation that the changes in the predictor, i.e. the
changing of predictor weights, i.e. coefficients, mainly happens on the boundaries of image
regions. For example, once computed prediction parameters in the CBP predictor remain
mostly unchanged while the coder is in the local region with dominant property such as
smooth or planar region. Noticeable change in the CBP predictor parameters happens when
the coder reaches out of the one local region and enters into another with a new dominant
property. Shortly, this change happens on the edge areas. Based on this fact, we propose a
novel way of reducing the number of required computations in the predictor by preserving
the predictor coefficients as long as we are inside a local region. This idea is implemented
in the CBP predictor in a way that when the magnitude of the prediction error on the
current pixel is beyond a predefined threshold, we trigger the compute-intensive calculation
of the predictor weights in the CBP. As long as the prediction error magnitude is below
the threshold, previously calculated predictor weights are used for the prediction of the
current pixel. This way, we evict the pixel-by-pixel computation of predictor weights, and
perform it only on pixels on which the current predictor fails beyond a predefined threshold.
This technique is motivated by the Edge Directed Property of LS–based predictor reported
in (X. Li and M.T. Orchard, 2001).
Modified prediction scheme operates as follows:

Selective Classification and Blending Predictor SCBP

1. Initialization: Set the previous prediction error to zero.

2. Iteration: Iterate for every pixel I(x, y) in the image.

3. Selective computation: Check the previous prediction error. If it is less than the predefined
prediction error threshold Te, skip the computation and go to step 6; otherwise go to step
4.

4. Classification: For each pixel I(i, j) ∈ ΩC compute the Euclidean distance D(i, j) between
its corresponding vector v(i, j)=w and the current pixel’s vector v(x, y)=v:

D(i, j) = ||v(i, j)− v(x, y)||
= ||w − v||

= ∑
d
k=1 |wk − vk|

2 .
(11)

Based on the computed distances, determine M pixels from ΩC that belong to the current
cell, i.e. with the smallest vector distances from the current pixel’s vector. The current cell
will be used as blending context ΩB for F . This step is similar to nearest neighbor selection
in VQ design.

5. Predictor penalties: For every predictor fk the penalty Gk is calculated by the following
equation:

Gk = ∑
I(i,j)∈ΩB

( Îk(i, j)− I(i, j))2, (12)

175Novel Prediction Based Technique for Efficient Compression of Medical Imaging Data 175Novel Prediction Based Technique for Efficient Compression of Medical Imaging Data
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Fig. 3. Effects of selective computations of predictor weights

where Îk = fk(i, j) is the prediction of fk ∈ F for the pixel I(i, j) ∈ ΩB.

6. Final predictor blending: Based on the blend penalties we form the prediction for the current
pixel Î(x, y) as:

Î(x, y) = F(x, y) =

⎡

⎣

(

∑
N
k=1

1
Gk

· Îk(x, y)
)

∑
N
k=1 1/Gk

⎤

 . (13)

The prediction for the current pixel is the weighted sum of predictions of all the predictors
from F with weights inversely proportional to corresponding penalties.

7. Error correction: On the blending context ΩB calculate typical error of the final predictor as:

ē(ΩB) =
1
M ∑

I(i,j)∈ΩB

(F(i, j)− I(i, j)). (14)

Based on the typical error of blending predictor F the final prediction for the current pixel
is further refined as:

İ(x, y) = F(x, y) + ē = Î(x, y) + ē. (15)

This final step of proposed predictor captures typical bias of the blending predictor F on
the classified set of pixels ΩB that are the part of similar structure as current pixel.

Based on the step of selective computation in which the algorithm checks whether the
current predictor penalties form the prediction which is reasonably accurate, we omit a
number of computations of predictor weights which do not contribute substantially to the
overall prediction efficiency and therefore the compression. On the other side, this simple,
yet effective technique reduces the computational complexity of our first proposal, a CBP
predictor.
As an illustration, Figure 3 shows the effects of applying Selective Classification and Blending
Predictor SCBP on a sample medical image. Left image is the original while on the right side,
white pixels denote the positions for which the recomputation of the predictor penalties was
performed. More specifically, we set the recomputation threshold Te to zero, meaning that
only the perfect prediction on the previous pixel will not trigger the predictor recomputation.
For this particular case, this resulted in reduction of predictor blend calculations by a factor
of 2.05 and reduced the computation time by 39% of the original CBP predictor. At the

176 Telemedicine Techniques and Applications176 Telemedicine Techniques and Applications
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Predictor Prediction function Description

f1 N North pixel to the current pixel

f2 W West pixel to the current pixel

f3 NW Northwest pixel to the current pixel

f4 NE Northeast pixel to the current pixel

f5 N + W − NE Planar region predictor

f6 2N − NN Planar region predictor horizontal

f7 2W − WW Planar region predictor vertical

Table 1. Set of static predictors

same time the compression efficiency measured by zero–order entropy of prediction error was
unnoticeably increased by approximately 2%. More details are given in the Section 4 where
we demonstrate our experimental results.

4. Experimental results

In this section we show the experimental results obtained with our proposed predictors. We
also show the results obtained while implementing our predictors in complete lossless image
codecs. Proposed predictors have several parameters that can be varied in order to balance
between the compression ratio and the computational complexity. These are, as illustrated in
Figure 2:

1. Radius R of the classification context which defines the size of the classification template
ΩC on which the current cell is estimated. Increasing R, the algorithm has more chance to
capture the structure of the current region, but at the cost of requiring more computations.

2. Population size M of the current cell. Captures the similar pixels to the current pixel
for blending of predictors. If this parameter is too small the resulting predictor is
overspecialized and having too few samples to effectively model the local region. On the
other hand, higher value of would result in pixels in the current cell that are not similar
enough to the current pixel. This will also jeopardize the final predictor efficiency to predict
well in the current region.

3. The size of the vector template d. Vector template is composed of d closest already observed
pixels. In proposed predictor we experimented with the vector size 1 to 10 as shown
in Figure 2(b). The higher vector size, the higher capability to capture more complex
structures. Also higher vector size demands more computations.

4. Set of predictors F . Exhaustive tests on a large number of medical test images had shown
that the set F should contain simple static predictors that are suited to various regions,
such as oriented edges, planar regions, smooth regions etc. Our experiments resulted in
best choice for set F to be:

F = {N, W, NW, NE, N + W − NW, GW , GN}, (16)

where GW = 2N − NN and GN = 2W − WW. Table 1 gives the details of the static
predictors used in our experiments. We use compass point notation for surrounding pixels,
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Fig. 4. Average zero order entropy of prediction error

i.e. W denotes west pixel, N denotes a pixel placed on the North side of the current pixel,
NN denotes pixel placed two pixels to the North of the current pixels and so on. We
selected a set of seven predictors that include horizontal and vertical edge predictors and
planar predictors. The process of blending of selected predictors will finally produce an
averaging predictor which is known to predict well in the noisy regions. This way, final
predictor will try to adapt to most relevant image properties while detecting and adjusting
to the dominant property in the current local region, whether it is an edge, a planar
region or even a texture with nontrivial coarseness and period The set includes simple
predictors suited for edges, planar predictor and predictors with gradient modeling for
planar regions. Through the blending process the final predictor has the form of averaging
predictor which is suited for noisy regions and for modeling higher structures such as
textures.

Figure 4 shows the average zero-order entropy of the Classification and Blending Predictor
CBP obtained on a test set of images shown in Figure 5. The zero-order entropy is shown in
bits per symbol (bps) versus radius of the classification template and with the cell population
M as a parameter. The vector size was fixed to four. As can be seen, the entropy saturates
for R > 6 and M > 7. That clearly shows that increasing the radius and cell size beyond
these limits will result in diminishing returns in terms of compression while increasing
computational time. Consequently, in Table 2 we show experimentally chosen working
parameters of the CBP and SCBP predictors that we will further use in the comparison
with other popular predictors for lossless image compression. We used these settings in
experiments in which we employ our predictors as parts of the complete image compression
algorithms. Notice that due to the decreased computational requirements, SCBP predictor can
afford larger classification template ΩC with higher radius R = 6 as opposed to CBP with the
R = 5.

178 Telemedicine Techniques and Applications178 Telemedicine Techniques and Applications
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Predictor Radius R Cell size M Vector size d Threshold Te

CBP 5 7 4 –

SCBP 6 7 4 0

Table 2. Working parameters for CBP and SCBP

CR chest CT abdo CT brain

CT lomb MR head MR head1

MR knee OT an7 OT colon

Fig. 5. Test set of medical images

In order to demonstrate the performance of proposed predictors we will show their
results on the set of nine medical images obtained with varying modalities (Meyer, 2005;
S. Barré Medical Image Samples, 2004). Those images are grey level images with 8 bits per
pixel precision and their thumbnails are shown in Figure 5.
We compared our predictors CBP and SCBP with several popular predictors used in
predictive lossless image compression algorithms in Table 3. The results show the zero-order
entropy of the prediction error in bits per symbol for the same test set of medical images.
GAP predictors is static heuristically tuned predictor used in the CALIC algorithm (Wu,
1997), and MED is the predictors from LOCO-I algorithm which is used as JPEG-LS
standard (M.J. Weinberger and G. Seroussi and G. Sapiro, 1998). Our predictors outperform
other predictors for all images in the set except for CT abdo where MED predictor performed
best. CBP was slightly better than SCBP for all test images.

179Novel Prediction Based Technique for Efficient Compression of Medical Imaging Data 179Novel Prediction Based Technique for Efficient Compression of Medical Imaging Data
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Image GAP(CALIC) MED(JPEG–LS) CBP SCBP

CR Chest 2.49 2.52 2.28 2.29

CT Abdo 2.73 2.67 2.72 2.75

CT Brain 1.93 1.79 1.17 1.19

CT Lomb 2.59 2.46 2.19 2.19

MR Head 4.75 4.80 4.55 4.65

MR Head1 4.82 4.85 4.51 4.55

MR Knee 5.20 5.24 5.12 5.16

OT An7 4.28 4.20 4.17 4.19

OT Colon 3.91 3.84 3.75 3.77

Average 3.63 3.60 3.38 3.42

Table 3. Zero–order entropy of prediction error (bps)

We built two complete lossless image codecs that incorporate CBP and SCBP predictors,
contextual error modeling described section 2.2, and arithmetic coding. We call them
Classification and Blending Predictive Coder CBPC and Selective Classification and Blending
Predictive Coder SCBPC, respectively. To compare both coders we show their compression
efficiency in the Figure 6. We show the compression ratios obtained on the test set. From the
figure, we can see that the SCBPC encoder closely follows the CBP although with reduced
computational complexity. Geometric mean of compression ratios is within 2% of the CBP
results. Additionally, Figure 7 illustrates the time savings of SCBPC encoder compared to
CBPC encoder on the test set. On average, SCBPC encoder has reduced the execution time by
more than 35% compared to CBPC method.
Finally, Table 4 shows the results of our CBPC and SCBPC coders compared with the
results of popular lossless coders for our test set of medical images. The first column
shows the compression ratios of the CALIC algorithm (Memon & Wu, 1999), the second
column the JPEG-LS results (M.J. Weinberger and G. Seroussi and G. Sapiro, 1998) and the
third column shows the results of JPEG 2000 lossless compression that uses reversible wavelet
transform (Santa-Cruz & Ebrahimi, 1997). Last two columns show the results of CBPC and
SCBPC encoders respectively. Our both coders outperform other coders. CBPC obtained
the best compression ratios on all test images except for CT abdo where it was slightly
outperformed by JPEG–LS. SCBPC closely followed CBPC encoder beating other encoders
on all images except on CT abdo.

5. Conclusions

The results obtained with our proposed compression algorithms are encouraging. Proposed
approach of modeling the image as composed of regions with the mixture of dominant and
non–dominant properties has shown to be useful for lossless image compression. On the
other hand, it should be noted that the increase in compression performances comes with
the increase in computational complexity. This was extensively studied and resulted in the
heuristic approach described in this work. Our predictors are moderately more complex
than predictors used in contemporary lossless compression algorithms such as CALIC and
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Image CALIC JPEG–LS JPEG2000R CBPC SCBPC

CR Chest 3.40 3.35 3.17 3.52 3.51

CT Abdo 3.52 4.23 3.09 4.17 4.08

CT Brain 6.45 6.20 5.67 7.27 6.90

CT Lomb 3.62 3.42 3.36 3.69 3.64

MR Head 1.87 1.80 1.79 1.91 1.91

MR Head1 1.80 1.73 1.70 1.85 1.84

MR Knee 1.61 1.57 1.57 1.63 1.61

OT An7 2.16 2.18 2.02 2.21 2.19

OT Colon 2.49 2.50 2.32 2.58 2.55

Geom.mean 2.72 2.71 2.52 2.86 2.82

Table 4. Obtained compression ratios

JPEG–LS, but less complex than highly–adaptive predictors that can be found in proposals
based on least squares approach (X. Li and M.T. Orchard, 2001). Also, the complexity of
proposed predictors can be tuned for both goals: better compression and faster time by
changing its parameters which can be set on a image basis.
As part of the future work, we plan to investigate possible extension of our image compression
techniques to 3D and volumetric medical data. In this framework, we would propose to
have regions of data that will be stored using lossless compression, while other, less relevant
parts could be compressed with lossy algorithms. Additionally, prediction template can be
extended by incorporating three dimensions rather than using two dimensions as is currently
the case.
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