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1. Introduction 

Since the inception of the research field on carbon nanotubes (CNTs), there has been an 
enormous effort to understand how the tubes form and how to best garner their unique 
electronic and mechanical properties. It soon became apparent that in order to develop the 
next generation of functional materials, a way to modify the surface of the tubes and connect 
them was required. The development of the oxidation process with acids was the first 
revolution in the field of CNTs, potentially opening the door to an extensive library of 
modifications. Research progressed by integrating the nanotubes into composites at low 
concentrations with some success, but the goal of producing high nanotube component 
covalently cross-linked materials was still problematic. Two decades after the report by 
Sumio Ijima on their discovery, cross-linked CNT materials are still difficult to produce, and 
this has shifted the field towards a back-to-basics approach to try and solve the problem.  
One key problem identified was the presence of lattice fragments immobilized on the 
surface of the CNTs (Fig. 1.). The current methods of characterization such as X-ray 
photoelectron, Infrared and Raman spectroscopy are indirect and generally fail to 
distinguish between the surface attached functional groups and oxidized lattice fragments. 
A CNT washing technique has been developed to remove these fragments and any 
electrostatically attached products to allow pure covalent interactions with the surface of the 
nanotube (Wang et al., 2010). With an industry now thriving on the production of cheap 
functionalized carbon vapor deposition (CVD) CNTs, priced according to the percentage 
surface functionalization, and the decline in published materials on arc-produced CNTs, the 
need for effective characterization and quality control increases. 
It is the intention of this chapter to review some of the successful approaches used to cross-
link CNTs with a focus on the importance of the chemistry and techniques involved, and 
highlight two areas of research we are currently investigating at Florida State University. 

1.1 The characterization dilemma 
As the basic unit for nanotubes, single-walled carbon nanotubes (SWCNT) have been 
envisaged as a solution in areas such as molecular wires to biological transport vectors, 
however in order to reach this potential, we need to be able to modify the surface structure. 
The solubility of SWCNTs is on average 0.1 mg/ml, however this can be increased to 1 
mg/ml with surface modification. The problem with this form of modification is that the 
inherent properties of the nanotubes, both the mechanical and electronic properties, can be 
significantly altered, questioning the reasons for modifying the tubes.  
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Fig. 1. A carbon nanotube with lattice fragments on the surface. These fragments can be 
easily oxidized and result in an incorrect assessment of the degree of CNT surface 
functionalization. 

One aspect of CNT research that can prove discouraging at times is the difficulty in the 

direct characterization of functional moieties after a chemical process. Sidewall 

functionalization is important for the use of the tubes in cross-linked composites. One of the 

most popular techniques used in journals was Fourier Transform Infrared Spectroscopy 

(FTIR). Whilst it is a powerful technique in organic chemistry, for CNTs it is difficult to 

prove the presence of covalently attached groups although there are good indications of 

hydroxyls, carbonyls and amine derivatives. The low concentration of functional groups on 

the surface is also a problem for acquiring a sufficient signal and the generation of a good 

baseline requires careful preparation. Raman spectroscopy is extremely popular due to the 

characteristic D-band that measures the degree of disorder and the G-band that provides a 

measure of the sp2 character. While the ratio of the bands can provide an insight into the 

quality of the tubes, it can be difficult to form a correlation between the distribution of the 

functional groups and the ratio of the bands. UV spectroscopy (UV) requires the nanotubes 

to be dispersed at a low concentration which is difficult, as the CNTs tend to sediment 

during acquisition. Visual techniques such as transmission electron microscopy (TEM) and 

scanning electron microscopy (SEM) can be useful for identifying regions and trends, but 

the sample area is small for TEM and there are charging issues with SEM. Table 1 gives an 

overview of the types of issues encountered with characterization. 

2. Cross-linking methods 

In this section, we will discuss some of the successful methods employed to facilitate the 

cross-linking of CNTs. There are a variety of methods available and theoretical studies have 

shown the possibility of the assembly of higher ordered structures, however the examples 

listed here differ in the approach to cross-linking from aspects of defunctionalization to 

nanocrystal interactions. 
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Methods Type Information Limitations of Technique 

TGA Solid Functionalization ratio 
No information on covalent 

modification. 

XPS Solid 
Elements present and the 

functionalization ratio 

Inference of covalent 
attachment but quantification is 

restricted 

Raman Solid 
Degree of  disorder and 

sp2  character 

No direct chemical information 
and interpretation is 

problematic 

Infra red (IR) Solid & Liquid Groups 
Analytical quantification not 

advisable 

UV/visible Liquid Sidewall functionalization Solubility of sample is difficult 

AFM Solid Topography 

Sample size is small. 
No information on the covalent 

functionalization and no 
chemical identity 

TEM Solid 
Transmission Image, 

Lattice 

Sample size is small. 
Inference of covalent 

functionalization only. 

SEM Solid Secondary electrons No chemical identity 

Table 1. A list of the limitations of the characterization techniques typically applied to CNTs. 
Table adapted from a module by Liling Zeng and Andrew R. Barron. 

2.1 Cyclo-addition reactions 
The side-wall functionalization of CNTs is of great importance, primarily for increasing the 

solubility of tubes, but equally important is the ability to process the CNTs to form 

composites. One successful method is that of nitrene chemistry. Nitrenes (R-N:) are 

structurally similar to  carbenes (RR’C:) and are electron-deficient uncharged molecules, 

which depending on the side groups, can facilitate addition and rearrangement reactions. 

The singlet nitrenes can react with the sidewall of CNT’s by electrophilic [2+1] cyclo-

additions or by inter-system crossing. The triplet state reacts with the π system of the CNT 

with both the singlet and triplet states resulting in the formation of aziridine rings (Fig. 2A).  
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Cross-linking was achieved by using a di-azidocarbonate, based on poly-ethylene glycol 
(PEG) (Holzinger et al., 2004).  The preparation of the cross-linked nanotubes is a simple 
process using SWCNTs dispersed in 1,1,2,2-tetrachloromethane (TCE) by sonication. The 

suspension is then heated to 160 C and a 20-fold excess of diluted di-azidocarbonate in TCE 
is added over a period of 30 mins. After cooling, the mixture is filtered and washed with 
TCE and ethanol. This process is highly effective in cross-linking, but because of the length 
and flexibility of the cross-linker it is possible for the linker to attach to the same tube 
forming a loop (Fig. 2B). 
The characterization of the composite was performed by using a range of techniques 
including transmission electron microscopy, atomic force microscopy, Raman spectroscopy 
and X-ray photoelectron spectroscopy. This cyclo-addition technique holds huge promise 
for the development of further films using long chain nitrene based cross-linkers.  

2.2 Ion beam and irradiation techniques 
One other method of cross-linking carbon nanotubes is through electron or ion beam 

irradiation.  It has been theorized that cross-linking nanotubes could improve the overall 

characteristics of nanotubes on the bulk scale. While this method can be achieved on both 

SWCNTs and MWCNTs, this technique of cross-linking has both its advantages and 

disadvantages. One advantage is that the setup is simple and there are no chemical reactions 

that need to be performed.  Another advantage is that the bonds formed between the tubes 

are much stronger than the van der Waals interactions that are sometimes used to link 

nanotubes. In addition to this, not only can individual tubes be cross-bonded, but it has been 

demonstrated that it should be possible to link macroscopic carbon structures such as CNT 

mats and fibers. According to simulations, ion irradiation will affect SWCNTs and 

MWCNTs differently.  The incident energy from irradiation will scatter carbon fragments 

from a SWCNT, and a percentage of these fragments will be redistributed along the 

nanotube surface. In the end, these fragments will form the cross-links between the 

nanotubes.  It was predicted that a much higher percentage (~50%) of the fragments will be 

redistributed between the inner walls of MWCNTs.  Therefore, cross-linking via irradiation 

is more suitable for SWCNTs but it can still be used to reinforce the inner walls of a 

MWCNTs. These theoretical predictions for cross-linking nanotubes have been confirmed 

experimentally by researchers.  An improvement in electron transport properties in bundles 

of SWCNTs due to increased intertube coupling, after exposure to an Ar+ beam, has also 

been demonstrated (Stahl et al., 2000). It has been shown that electron irradiation of 

MWCNTs can reinforce the inner walls (Fig. 3.) and stiffen the tubes by up to five  

times (Duchamp et al., 2010). Studies have also looked into the possible mechanisms 

involved in the radiation induced modification of CNTs (Kis et al., 2004). Similar results 

have been reported (Peng et al., 2008) and have demonstrated improvements in fracture 

strength. 

Despite all these advantages and promising results for irradiation cross-linking, there are a 

few drawbacks.  One disadvantage is that it destroys the sp2 bonding of the nanotube which 

could be detrimental to the tubes’ intrinsic properties. Another disadvantage of this 

technique is that the cross-linking capabilities are dependent on where the nanotube can be 

exposed to the electron or ion beam. If you wanted to produce a cross-linked nanotube mat 

(similar to buckypaper) only the surface layers of the CNT mat would be cross-linked as the 

interior tubes would not be exposed to the incident beam.  
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Fig. 2. A) Schematic presentation of the reaction of nitrenes with the nanotube sidewall. B) 
Reaction of di-nitrenes with the nanotubes using diazidocarbonate polyglycolesters as 
precursors. The addition of the di-functional molecule can also happen on the sidewall of 
the same CNT resulting in the formation of a loop. Adapted from (Holzinger et al., 2004) 
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Fig. 3. The reinforcement of the sidewalls of a MWCNT by an electron beam. This form of 
cross-linking may be extended to neighboring tubes forming a covalently linked intertube 
junction. 

2.3 Michael addition 
At Florida State University we have been exploring the nature of cross-linking between 

CNTs. Inspired by the interaction of maleimides with cysteine for biological labeling and the 

potential for the covalent interaction of CNTs, we used benzoquinone to cross-link thiolated 

carbon nanotubes (MWCNT-SH) to form mats similar to buckypaper. We wanted to 

develop a way of producing a cross-linked mat without the need to use high pressure 

processes or electron beams to fuse the tubes together, so we applied a back-to-basics 

approach and tried to identify the problems associated with poor cross-linking between the 

tubes. It became apparent that the inability to control reaction conditions during the 

formation of the mats was a problem so we attempted to maintain the temperature and 

dispersion of the tubes until the mat was ready to be cast. The procedure involved 

sonicating MWCNT-SH (1g, Nanocyl) with an excess of dithiothreitol (DTT) to separate the 

nanotubes and break up the disulfide bonds. The MWCNT-SH were then washed with DMF 

and dried for 12 h. From this batch, MWCNT-SH (20 mg) were dispersed in DMF (15 ml) 

and sonicated. In a separate vial, benzoquinone (100 mg) was dissolved in DMF (10 ml). The 

benzoquinone solution was slowly added to the nanotube suspension and the mixture was 

stirred at 75 C for 12 hours before being vacuum filtered and washed with excess DMF. It 
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was noted that the use of a heat gun to maintain the temperature of the mixture at 75 C 

aided cross-linking during filtration (Ventura et al., 2010). 

 

 

Fig. 4. Reaction scheme for cross-linking MWCNT-SH with benzoquinone. 

The products formed during the reaction are of two forms, either the 2,5-dithioMWCNT 1,4-
cyclohexanedione adduct or the 2,6-dithioMWCNT 1,4-cyclohexanedione adduct depending 
on the steric interactions (Fig. 4.). Several concentration ratios of benzoquinone : MWCNT-
SH were tested to obtain the optimum flexibility of the mat produced. Tensile strength 
measurements indicated that the optimum concentration of benzoquinone : MWCNT-SH 
was 5:1 and the SEM images inferred the that there was sufficient cross-linking (Fig. 5A)  
The 10:1 composite produced a brittle mat confirming the link between the increasing 
strength of the mat and the degree of cross-linking.  
The surface of the 5:1 nanotube film also contained unreacted thiol groups that were used to 
attach nanocrystals to enhance the functionality. As a demonstration of this principle, we 
attached 5.7 ± 0.3 nm gold particles to the surface (Fig 5B). 
 

 

Fig. 5. A) The SEM images of a cross-linked bundle of nanotubes and B) a nanotube mat 
decorated with 5.7 ± 0.3 nm gold particles. 
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Once the film was produced we wanted to see if we could create a die-cast composite using 
a 10:1 ratio of benzoquinone : MWCNT-SH. During this procedure, we injected a predrilled 
cast, in the letters “FSU”, with the cross-linking mixture of benzoquinone and MWCNT-SH 

and placed the cast on a hotplate heated to 75 C. We periodically injected more of the 

mixture as the liquid level dropped until the cast was full, and left the cast at 75 C for 9 
hours before cooling to room temperature (Fig. 6A). The cross-linked FSU blocks were 
removed with the aid of a scalpel in smaller blocks (Fig. 6B). 
 

 

Fig. 6. A photograph of A) the letters FSU cast into a stainless steel container with a 10:1 
mixture of benzoquinone : MWCNT-SH injected into the cast. B) The cross-linked composite 
removed from the cast after heating. 

Although the removal of the composite from the cast was difficult, it was primarily due to 

the design of the cast. We plan to explore the use of bismaleimide groups to generate similar 

composites. We are also exploring alternative methods to modify the carbon nanotubes. One 

method that we find intriguing is the use of a mechano-chemical approach. This is a novel 

method in the field of CNTs and provides an alternative route to attach functional groups to 

the surface of CNTs by ball-milling the tubes in the presence of a reactive gas. The milling 

creates defects on the tubes which react with the gas forming covalent attachments (Konya 

et al., 2002). 

For cross-linking, it is preferential to have a fairly uniform CNT size and distribution of 

functional groups on the surface. Both of these requirements were addressed in research 

into the mechano-chemical functionalization of CNTs with a ball mill, for the generation of 

surface thiols, chlorides, acyl chlorides, amines and amides.  

The process involved placing purified CNTs into a ball-mill and degassing in a heated N2 

environment or in a vacuum. The reactant gas was then pumped through the chamber untill 

the milling process was complete. The excess reactant is removed by the evacuation of the 

chamber, and the tubes are subsequently washed with ethanol. The research noted that 

extended periods of milling resulted in the generation of amorphous carbon and lattice 

fragments with a 30-35% amorphous content formed after a period of 2 weeks. The milling 

process shortened the tubes and this was also carefully controlled by the cumulative milling 

time. 

The results inferred that the CNTs obtained had a high degree functional groups around the 

surface as indicated by IR and XPS, and the process can be scaled up depending on the size 

of the mill.   
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2.4 MWCNT-Titania films 
There are many theoretical ways to improve the photocatalytic efficiency of titania (TiO2) 
including increasing the surface area of TiO2 or creating methods to promote charge 
separation, but there needs to be a better way of promoting electron transport. Therefore, 
the development of new materials that are capable of increasing the efficiency of electron 
mobility are required. CNTs are known to be a good candidate for use with TiO2 because of 
the semiconducting and metallic behavior depending on the diameter of the tubes and 
helicity. Enhancing the photocatalytic properties of titania is extremely important, especially 
when it is considered as a potential for the photocatalytic reduction of CO2 with H2O (Xia et 
al., 2007). Titania itself exhibits good photostability properties; however the photocatalytic 
reaction with CO2 is insufficient for applications. This problem was reduced significantly by 
the application of carbon nanotubes as a mediator of electron transfer and MWCNTs have 
been investigated for their charge transfer properties with titania, but a suitable composite 
needs to be constructed.  
We have constructed a nanotube film which uses aminated titania particles as a cross-linker 
for CNT films (Fig. 7.). In a departure from the standard cross-linking theory, we wanted to 
examine the potential for these beads to act as cross-linkers in CNT films. In addition to the 
formation of amide bonds, the nature of interaction allows for the potential of electron 
transfer from TiO2 to the carbon nanotubes.  
 

 

Fig. 7. Reaction scheme of the acylation of CNTs followed by the cross-linking of an 
aminated titania bead. 
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MWCNT-COOH (1 g, 50-80 nm OD, Nanostructured & Amorphous Materials Inc.) were 
converted to MWCNT-COCl by heating the nanotubes under reflux for 3 days in THF with 
thionyl chloride. The MWCNT-COCl were washed with excess THF under vacuum and the 
tubes were dried over a period of 24 h. The MWCNT-COCl (100 mg) were sonicated for 10 
minutes whilst TiO2-NH2 (25 mg/ml, Corpuscular Inc.) 100 nm particles (Fig. 8A) were 
added. The mixture was further heated under reflux and slowly vacuum filtered whilst hot 
to produce a thick film. The films were brittle but the SEM images indicated a sufficient 
dispersion throughout the composite. The particles are amorphous but can be easily 
converted to anatase or rutile by heating, making the film a good candidate for 
photocatalytic activity. 
Using particles and nanocrystals as cross-linking agents is of great interest for increasing the 
surface area for reactivity. Examples can found in literature of the use of such constructs in 
the formation of photoreactive composites of CNTs and titania (Yao et al., 2008) and Pt 
nanoclusters/titanium dioxide nanotube composites (Dong et al., 2010).  In order to increase 
the utility of these composites, they would need to be processed into films to fully take 
advantage of their unique properties. 
 

 

Fig. 8. SEM images of A) aminated titania particles B) low magnification image of the film C) 
a high magnification section of the film surface D) A highly cross-linked fiber at the edge of 
the film. 
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2.5 De-fluorination 
The ultimate goal of cross-linking carbon nanotubes is to find a way of incorporating the 
effectiveness of the electron beam techniques with a chemical approach. This concept was 
highlighted by the work demonstrating the production of binder free cross-linked carbon 
nanotube composites (Sato et al., 2008). The problem addressed in their research focused on 
an additional issue with CNT chemistry. CNTs with smaller diameters are typically more 
reactive than larger MWCNTs because the strain energy is inversely proportional to the 
diameter of a tube. The surface of larger MWCNTs act like a graphite sheet making surface 
modifications extremely difficult. One solution to this was the fluorination of CNTs, and this 
was achieved by reacting purified MWCNTs with a mixture of 20% F2 and 80% N2 at 523 K 
for a period of 2 hours followed by thermal annealing at 523 K for 6 hours under N2 (Sato et 
al., 2008). The cross-linking of the CNTs was achieved by using a spark plasma sintering 
system that produces a significant amount of sp3 carbons, which connect the tubes when 
operated for 10 minutes below 80 MPa. Fig. 9A shows a picture of the defunctionalized 
block. The size and dimensions can be tailored depending on the vessel used to cast the block. 
 

 

Fig. 9. A) The photograph of a defunctionalized MWCNT block and B) a TEM image of a 
cross-linked composite showing bamboo-like structures, at the white arrow positions. 
Adapted from (Sato et al., 2008) 

Fig. 9B shows a characteristic high magnification image of the block. The bamboo-like 
structures have been seen in nitrogen doped carbon nanotubes, however in this case they 
are the result of the CVD process and beneficial for exploiting defect sites.   
The spark plasma sintering solidification process also more accurately relies on the 
liberation of carbon fluorine gases which generate defects and vacancies on the MWCNT 
surface, effectively increasing the reactivity. The comparison of the block with commercially 
available graphite (Table 2.) shows a greater percentage porosity which may indicate a 
future avenue to tailoring the material for applications such as hydrogen storage. The 
Vickers Hardness has a value of 46.9 MPa which is much higher than that of graphite at 16.8 
MPa, but lower than the minimum value for carbon steel calculated to be approximately 
539.4 MPa. It is surprising that the conductivity is slightly more than that of graphite given 
the increase in sp3 character, but this may be a result of the bulk properties of the composite 
rather than the dominance of individual tubes. The process is still highly destructive for the 
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outer layer of MWCNTs and detrimental to that of SWCNTs, which means the fluorination 
process would have to be carefully controlled to prevent extensive damage. Future work on 
this type of cross-linking may require the relationship between the fluorination time and de-
fluorinated cross-linking ability to be established. 
 

Characteristic 
De-F-MWCNT 

Blocks 
Commercial 

Graphite 

Bulk Density, 

(g/cm3) 
1.44 1.74 

Porosity (%) 36.2 23.0 

Young’s Modulus, 
Eb (GPa) 

14.2–16.3 6.5–8.6 

Fracture Bending 

Strength, b (MPa) 
92.4–123.0 42.1–43.7 

Vickers Hardness, 
Hv(MPa) 

46.9 16.8 

Conductivity,  (S/cm) 
(four-probe) 

2.1 X 102 6.0 X 102 

Table 2. The properties of the de-fluorinated MWCNT blocks in comparison to commercially 
available graphite. Adapted from (Sato et al., 2008). 

In general, the cross-linking by de-fluorination is possibly one of the best methods for 

producing strong-robust carbon materials. If the process can be further refined, it may also 

be possible to create thin films for filtration or flexible films for catalytic substrates. 

3. Applications of cross-linked CNTs 

CNTs have been linked to diverse fields from biomedical drug delivery vectors to nanoscale 

computing. This section highlights some of the applications envisaged for the tubes, 

focusing on the development of non-covalent and covalently intertwined architectures, and 

the importance of the techniques used for their assembly. 

3.1 Buckypaper 
One of the more promising avenues for carbon nanotubes is the development of 
buckypaper. This material is made from aggregates of carbon nanotubes and may be held 
together by a variety of methods. In the simplest case, buckypaper can be made by the acid 
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functionalization of the tubes and washing with deionised water. After drying, the tubes are 
suspended in a mixture of solvent and surfactant. A stable suspension is usually achieved 
after sonication and is then filtered and compressed. The advent of double-walled carbon 
nanotubes (DWCNTs) provided a means to create even stronger non cross-linked 
buckypaper due to the coaxial nature of the tubes, that is reflected in a higher stability when 
compared  to  SWCNTs. DWCNTs are in fact perfectly situated to provide the benefits of 
both SWCNTs and MWCNTs and this has been demonstrated by the production of strong 
flexible DWCNT buckypaper (Endo et al., 2005). In this case, buckypaper was produced by 
sonicating 15 mg of DWCNT in 100 ml of ethanol for 30 mins. The suspension was then 
carefully poured onto a polytetrafluroetylene (PTFE) filter and dried for a period of 24 hours 
before being peeled off. It is important to note that the paper was produced without the use 
of a surfactant in order to increase the purity of the paper, and a quick but significant 
mention of the careful pouring with filtration to form the paper was made. This research 
highlights an important issue for the processability of CNTs. Is the application of technique 
equally or more important than the chemistry of cross-linking? 

3.2 Photovoltaic devices 
The addition of CNTs to organic photovoltaic (OPV) cells is of great interest due to the 

inherent properties of the tubes (Li et al., 2010).  Organic solar cells have garnered a lot of 

interest since the discovery of dye sensitized solar cells, and have been envisioned as a 

cheaper alternative to silicon based cells.  The main drive behind the current research is to 

create a robust, flexible cell capable of sustaining many cycles as well as an increase in light 

absorption. One of the hurdles that need to be overcome is the relatively low carrier 

mobility that is found even in thin film organic polymers.   

CNTs present and an attractive addition to thin film composites due to high charge mobility 

and extended conjugation and mechanical strength. SWCNTs provide an advantage to 

MWCNTs due to the diverse band gaps, which may be used to fine tune optical absorption, 

and reduce the effect of carrier scattering. Even with the advantages of SWCNTs in 

polymers, both SWCNTs and MWCNTs have been integrated into photovoltaic composites. 

These cells did improve the carrier mobility even when the doping level was low but the 

issue of solubility and processability still limits its potential efficiency. Another limitation is 

the combination of both the polymer donor and molecular acceptor in the same layers (bulk 

heterojunction design) which results in a highly disordered system with no clear phase 

boundaries (Yun et al., 2008). One way to circumvent these issues is to follow an in situ 

polymerization method for a series of SWCNTs–poly[(2-methoxy,5-octoxy)1,4-

phenylenevinylene] (MO-PPV) nanocomposites using different weight ratios. These are then 

cross-linked to acylated SWCNTs resulting in MO-PPV/SWCNTs nanocomposites with a 

defined interface (Fig. 10.). The result can be seen in the increase in electron mobility from 

the SWCNT to the polymer (Yun et al., 2008). 

Photoluminescence studies showed that there was significant quenching with the addition 

of SWCNTs, and further solid-state photoluminescence spectra of the thin films indicated 

that there was charge transfer from MO-PPV to SWCNTs. The MO-PPV/SWCNTs bulk 

molecular heterojunction solar cells produced exhibited an improvement in the efficiency 

which can be attributed to the nanophase separation which helps to not only enable carrier 

transport and exciton dissociation, but also reduce the recombination of photogenerated 

charge carriers in the thin films. 
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Fig. 10. Reaction scheme of the acylation of CNTs and the cross-linking of the tubes with 
MO-PPV. Figure adapted from (Yun et al., 2008). 

3.3 Artificial muscles 
In the list of potential applications for carbon nanotube films, the nature of biological 

interactions is far more curious, following trends more commonly attributed to science 

fiction. One such concept is that of artificial muscles. The research into using CNTs as 

muscles has been ongoing with various noteworthy achievements of the last few years 

(Vohrer et al., 2004).  The work by Ray Baughman at the University of Texas has shown that 

cross-linking vertically aligned CNTs can produce a material with intriguing properties. The 

films act as CNT actuators and are produced from aerogel sheets which are drawn from 

forests of aligned carbon nanotubes (Aliev et al., 2009). In this design, actuation, which is 

shown as a rapid spreading out of the width of the film after an insertion of charge, is 

followed by the contraction of the length of the film. The actuation across the length creates 

an isometric specific stress that can be up to 4.0 MPa cm3/g. Mammalian skeletal muscle can 

typically withstand a stress of 0.1 – 0.35 MPa (Madden et al., 2004), which in comparison to 

the isometric stress–generation capability of the sheet which was measured at 3.2 MPa, 

many times higher than the stress-generation capability of mammalian skeletal muscle. 

The film is also being explored in relation to the behavior of the strain in extreme 

temperatures, and the advantages of controlling the structural changes.  The research group 

highlight the possibility of tuning the density of the film for use in electrodes and light 

emitting displays.  
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4. Conclusion 

In this chapter, we have discussed some of the successful approaches to cross-linking CNTs. 
For the formation of highly cross-linked CNT composites, the de-fluorination process is 
clearly an advantage. The fluorination of CNTs produces C2F stoichiometries which 
translate across the surface of the tubes, and can be beneficial for further processing. The 
tubes can then be fully defunctionalized by thermal treatment producing volatile fluorinated 
carbonaceous molecules (CFx). The resulting CNTs have active sites all over the surface. 
For the formation of flexible thin films, the production of buckypaper or nanotubes mats 
from thiolated CNTs are possible and may serve to be good electrodes or sensors for future 
applications. 
Although the characterization of the composites formed needs to be extensive, it is possible 
to prove the nature of interactions between the tubes and the cross-linker. It is clear that the 
recent Nobel Prize for the work on graphene is helping to stimulate interest in the field, with 
many aspects envision for carbon nanotubes being translated to novel graphene 
architectures. It is expected that for the immediate future, the research into graphene and 
CNTs will take a synergistic approach especially in the area of cross-linking. There is 
already some promising research available that explores the nature of cross-linking between 
the related graphene oxide sheets (Park et al., 2009).  
The application of artificial muscles really emphasizes the potential for the future of carbon 
nanotube research, demonstrating our ability to unlock the skills required to control 
nanoscale assembly. 
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