We are IntechOpen, the world's leading publisher of Open Access books
 Built by scientists, for scientists

6,900

Open access books available

154
Countries delivered to

186,000

International authors and editors

Our authors are among the

most cited scientists

Downloads

Contributors from top 500 universities

WEB OF SCIENCE ${ }^{\text {N }}$
Selection of our books indexed in the Book Citation Index in Web of Science ${ }^{\text {TM }}$ Core Collection (BKCI)

Interested in publishing with us? Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.
For more information visit www.intechopen.com

A Numerical Study of the Vibration Spectrum for a Double-Walled Carbon Nanotube Model

Marianna A. Shubov ${ }^{1 *}$ and Matthew P. Coleman ${ }^{2}$
${ }^{1}$ Department of Mathematics \& Statistics, University of New Hampshire, Durham
${ }^{2}$ Department of Mathematics and Computer Science, Fairfield University, Fairfield
USA

1. Introduction

In this paper we offer a series of new results devoted to the numerical analysis of a double-walled carbon nanotube model. This model is given in the form of two coupled Timoshenko beams connected through the distributed Van der Waals force (Gibson et al., 2007; Ru, 2000). Typically, nanotubes can be modeled as quantum systems and studied by a molecular simulations approach, or as classical systems (such as flexible beams, shells membranes (Mahan, 2002; Pantano et al., 2003; 2004; Wang et al., 2004; 2005)), or as specific hybrid models (Wang, 2005). The choice of model in any situation involves a tradeoff in that, while molecular models may yield more accurate results, implementing them is extremely time and labor intensive, which is not the case for models from continuum mechanics.
The scientific and engineering communities have acknowledged the very desirable properties of carbon nanotubes (CNTs) and their potential use in wide-ranging applications. The author of (Jamieson, 2000) argues that nanotechnology, mainly due to CNTs, may impact technology more than did the silicon revolution. Depending on the atomic structure, CNTs have electrical properties that can range from those of metals to those of semiconductors. The mechanical properties of CNTs are also unique. They possess exceptionally high specific stiffness and specific strength; they are extremely elastic, being able to bend through a complete 360° without noticeable damage. The application potential for materials with these properties is almost limitless.
Developing mathematical models for CNTs is of critical importance. Such models must be verified and quantified by performing and analyzing experiments. As we have mentioned, two groups of models exist: molecular simulation models and continuum mechanics models. Continuum models are generally based on traditional engineering models such as beams, shells, or membranes. The nanotubes are treated as continuous materials with definite geometries and common material properties such as Young's modulus. In contrast, molecular models consider each atom, and mathematically define the interactions among the atoms. Based on their work on atomic simulations of CNTs, the authors of (Jakobson et al., 1996) provide a justification for incorporating continuum mechanics models into CNTs study,

[^0]stating that "The laws of continuum mechanics are amazingly robust and allow one to treat even intrinsically discrete objects only a few atoms in diameter."
The most commonly used models are the following: the Euler-Bernoulli beam model, Timoshenko beam model, and flexible shell and membrane models. Typically, many models for multi-walled nanotubes allow for independent wall movement, and the wall interaction is a function of the local wall separation distance.
Vibration of a double-walled carbon nanotube (DWCNT) generated by a nonlinear interlayer Van der Waals force is studied in (Xu et al., 2006). The results indicate that the nonlinear factors of the Van der Waals force, on the one hand, have little effect on the coaxial free vibrations. On the other hand, these nonlinear factors greatly affect noncoaxial free vibrations. As is indicated in (Qian et al., 2002), although carbon nanotubes can have diameters only several times larger than the length between carbon atoms, continuum models have been found to describe their mechanical behavior very accurately, in many circumstances.
Our analysis of an initial boundary-value problem models small transversal vibrations of a double-walled carbon nanotube. The system of equations is similar to the ones mentioned in a number of papers (see references (Gibson et al., 2007; Jakobson et al., 1996; Pantano et al., 2003; Qian et al., 2002; Ru, 2001; Wang et al., 2006; Xu et al., 2006; Yoon et al., 2003)). The physical system consists of two nested nanotubes interacting through the distributed Van der Waals force; each nanotube is modeled as a Timoshenko beam with specific parameters. As pointed out in (Wang et al., 2006), "Unlike the Euler-Bernoulli beam model, the Timoshenko beam model allows for the effects of transverse shear deformation and rotary inertia. These effects become significant for carbon nanotubes with small length-to-diameter ratios that are normally encountered in applications."
The model is given in the form of two coupled Timoshenko beams (i.e., in the form of four coupled hyperbolic partial differential equations). The system is equipped with a set of nonself-adjoint boundary conditions involving four independent complex parameters. Indeed, all other articles treating the Timoshenko model consider only the traditional energy-conserving boundary conditions, thus our treatment is a generalization of their work (as these latter conditions are just limiting special cases of the nonself-adjoint conditions treated herein). An asymptotic analysis of the eigenspectrum for this problem was performed in (Shubov \& Rojas-Arenaza, 2010a;b;c), under certain simplifying assumptions. We must mention that the assumptions are somewhat restrictive-indeed, they cannot be satisfied by a physical double-walled carbon nanotube system. However, even for this simplified case, the necessary computations were extremely complex and cumbersome, and it is unclear if the more general problem even is tractable.
Regardless, this special case is a valid and interesting mathematical problem whose behavior should be quite similar to the more general physical problem. Thus, we feel that a study of the vibration spectrum for this case certainly will shed light on the spectrum of the more general problem, particularly by our choosing values for the physical parameters that are similar to those for physical carbon nanotubes.
The paper is organized as follows. In Section 2, we introduce the general mathematical model, perform separation of variables and rewrite the special case of the model treated in (Shubov \& Rojas-Arenaza, 2010a) in dimensionless form. In Section 3, we present the asymptotic results derived in (Shubov \& Rojas-Arenaza, 2010a). The Legendre-tau spectral method is described in Section 4, and in Section 5 we present our numerical results and comparison with the asymptotic results predicted by (Shubov \& Rojas-Arenaza, 2010a).

2. The mathematical model

We consider the system consisting of two Timoshenko beams coupled through the van der Waals force, as given in (Shubov \& Rojas-Arenaza, 2010a;b;c):

$$
\begin{align*}
& \sigma A_{1} W_{1 t t}(x, t)+k_{1} G A_{1}\left[\Phi_{1 x}(x, t)-W_{1 x x}(x, t)\right]=-C\left[W_{2}(x, t)-W_{1}(x, t)\right] \tag{1}\\
& \sigma I_{1} \Phi_{1 t t}(x, t)-E I_{1} \Phi_{1 x x}(x, t)+k_{1} G A_{1}\left[\Phi_{1}(x, t)-W_{1 x}(x, t)\right]=0 \tag{2}\\
& \sigma A_{2} W_{2 t t}(x, t)+k_{2} G A_{2}\left[\Phi_{2 x}(x, t)-W_{2 x x}(x, t)\right]=C\left[W_{2}(x, t)-W_{1}(x, t)\right] \tag{3}\\
& \sigma I_{2} \Phi_{2 t t}(x, t)-E I_{2} \Phi_{2 x x}(x, t)+k_{2} G A_{2}\left[\Phi_{2}(x, t)-W_{2 x}(x, t)\right]=0 \tag{4}
\end{align*}
$$

For boundary conditions, the left end of each beam is free, while the right end of each is subject to the standard set of two-parameter boundary conditions:

$$
\begin{align*}
& W_{1 x}(0, t)-\Phi_{1}(0, t)=\Phi_{1 x}(0, t)=0 \tag{5,6}\\
& W_{2 x}(0, t)-\Phi_{2}(0, t)=\Phi_{2 x}(0, t)=0 \tag{7,8}\\
& k_{1} G A_{1}\left[\Phi_{1}(L, t)-W_{1 x}(L, t)\right]=\sigma I_{1} \alpha_{1} W_{1 t}(L, t) \tag{9}\\
& E \Phi_{1 x}(L, t)=-\sigma \beta_{1} \Phi_{1 t}(L, t) \tag{10}\\
& k_{2} G A_{2}\left[\Phi_{2}(L, t)-W_{2 x}(L, t)=\sigma I_{2} \alpha_{2} W_{2 t}(L, t)\right. \tag{11}\\
& E \Phi_{2 x}(L, t)=-\sigma \beta_{2} \Phi_{2 t}(L, t) \tag{12}
\end{align*}
$$

Here, $0 \leq x \leq L$ where L is the length of each beam, and $t \geq 0 . W_{i}(x, t)$ is the transverse displacement of beam $i, \Phi_{i}(x, t)$ is the bending angle of beam $i, i=1,2$. The physical and geometrical constants are as follows: σ is the mass per unit volume; E, Young's modulus; G, the shear modulus; A_{i}, the uniform cross-sectional area of beam i; I_{i} the uniform area moment of inertia of beam i; and k_{i}; the shear connection factor for beam i. We note that $E=2(1+v) G$, where v is the Poisson's ratio.
Further, we note the following:

$$
\begin{align*}
& \alpha_{i}=\beta_{i}=0 \Rightarrow \text { right end of beam } i \text { is free } \tag{13}\\
& \alpha_{i}=\beta_{i}=\infty \Rightarrow \text { right end of beam } i \text { is clamped } \tag{14}\\
& \alpha_{i}=\infty, \beta_{i}=0 \Rightarrow \text { right end of beam } i \text { is simply-supported } \tag{15}\\
& \alpha_{i}=0, \beta_{i}=\infty \Rightarrow \text { right end of beam } i \text { is roller-supported. } \tag{16}
\end{align*}
$$

We separate variable by letting

$$
\begin{aligned}
W_{j}(x, t) & =e^{-i \omega t} w_{j}(x) \\
\Phi_{j}(x, t) & =e^{-i \omega t} \phi_{j}(x)
\end{aligned}
$$

$j=1,2$, and, following the notation in (Shubov \& Rojas-Arenaza, 2010a), the system (1)-(12) becomes

$$
\begin{align*}
& \omega^{2} w_{1}(x)=\widehat{k}_{1}\left[\phi_{1}^{\prime}(x)-w_{1}^{\prime \prime}(x)\right]+C_{1}\left[w_{2}(x)-w_{1}(x)\right] \tag{17}\\
& \omega^{2} \phi_{1}(x)=-\frac{E}{\sigma} \phi_{1}^{\prime \prime}(x)+\tilde{k}_{1}\left[\phi_{1}(x)-w_{1}^{\prime}(x)\right] \tag{18}\\
& \omega^{2} w_{2}(x)=\widehat{k}_{2}\left[\phi_{2}^{\prime}(x)-w_{2}^{\prime \prime}(x)\right]-C_{2}\left[w_{2}(x)-w_{1}(x)\right] \tag{19}\\
& \omega^{2} \phi_{2}(x)=-\frac{E}{\sigma} \phi_{2}^{\prime \prime}(x)+\tilde{k}_{2}\left[\phi_{2}(x)-w_{2}^{\prime}(x)\right] \tag{20}\\
& w_{1}^{\prime}(0)-\phi_{1}(0)=0 \tag{21}\\
& \phi_{1}^{\prime}(0)=0 \tag{22}\\
& w_{2}^{\prime}(0)-\phi_{2}(0)=0 \tag{23}\\
& \phi_{2}(0)=0 \tag{24}\\
& \tilde{k}_{1}\left[\phi_{1}(L)-w_{1}^{\prime}(L)\right]=-i \omega \alpha_{1} w_{1}(L) \tag{25}\\
& \frac{E}{\sigma} \phi_{1}^{\prime}(L)=i \omega \beta_{1} \phi_{2}(L) \tag{26}\\
& \tilde{k}_{2}\left[\phi_{2}(L)-w_{2}^{\prime}(L)\right]=-i \omega \alpha_{2} w_{2}(L) \tag{27}\\
& \frac{E}{\sigma} \phi_{2}^{\prime}(L)=i \omega \beta_{2} \phi_{2}(L) . \tag{28}
\end{align*}
$$

Here, we have

$$
\tilde{k}_{i}=\frac{k_{i} G A_{i}}{\sigma I_{i}}, \quad \widehat{k}_{i}=\frac{k_{i} G}{\sigma}, \quad C_{i}=\frac{C}{\sigma A_{i}}, \quad i=1,2 .
$$

Again, following (Shubov \& Rojas-Arenaza, 2010a), we consider the special case

$$
\begin{equation*}
\tilde{k}_{1}=\tilde{k}_{2}=\tilde{k}, \quad \widehat{k}_{1}=\widehat{k}_{2}=\widehat{k} \tag{29}
\end{equation*}
$$

We must note that these conditions cannot hold for a physical double-walled carbon nanotube (e.g., the shape factors must be different, $k_{1} \neq k_{2}$). However, without these assumptions, the asymptotic treatment of the problem becomes extremely difficult, and possibly intractable. Thus, at this point in time, this particular special case is the only one for which there are analytical results with which to compare. We now cast the problem in dimensionless form. Following (Traill-Nash \& Collar, 1953) and, more appropriately, (Coleman \& Schaffer, 2010), we introduce dimensionless quantities as follows:

$$
\begin{align*}
& \widehat{x}=\frac{x}{L}, \quad \widehat{w}_{i}(\widehat{x})=\frac{1}{L} w_{i}(x), \quad \widehat{\phi}_{i}(\widehat{x})=\phi_{i}(x), \quad i=1,2, \\
& \lambda=\sqrt{\frac{\sigma \tilde{k}}{E \widehat{k}}} L^{2} \omega, \quad \gamma_{1}=\frac{\widehat{k}}{\tilde{k} L^{2}}, \quad \gamma_{2}=\frac{E}{\sigma \tilde{k} L^{2}}, \tag{30}\\
& \alpha_{i}^{\prime}=\frac{1}{\sigma A \tilde{k} L} \sqrt{\frac{E \widehat{k}}{\sigma \tilde{k}}} \alpha_{i}, \quad \beta_{i}^{\prime}=\frac{1}{\sigma A \tilde{k} L^{3}} \sqrt{\frac{E \widehat{k}}{\sigma \tilde{k}}} \beta_{i}, \quad i=1,2, \\
& C_{i}^{\prime}=\frac{L^{2}}{\widehat{k}} C_{i}=\frac{L^{2}}{k_{i} G A_{i}} C, \quad i=1,2 .
\end{align*}
$$

We abuse notation, and use x, w_{i}, ϕ_{i} instead of $\widehat{x}, \widehat{w}_{i}$ and $\widehat{\phi}_{i}$, and the resulting dimensionless system is

$$
\begin{align*}
& -\gamma_{2} \lambda^{2} w_{1}(x)=-\phi_{1}^{\prime}(x)+w_{1}^{\prime \prime}(x)-C_{1}^{\prime}\left[w_{2}(x)-w_{1}(x)\right] \tag{31}\\
& -\gamma_{1} \gamma_{2} \lambda^{2} \phi_{1}(x)=\gamma_{2} \phi_{1}^{\prime \prime}(x)-\phi_{1}(x)+w_{1}^{\prime}(x) \tag{32}\\
& -\gamma_{2} \lambda^{2} w_{2}(x)=-\phi_{1}^{\prime}(x)+w_{2}^{\prime \prime}(x)+C_{2}^{\prime}\left[w_{2}(x)-w_{1}(x)\right] \tag{33}\\
& -\gamma_{1} \gamma_{2} \lambda^{2} \phi_{2}(x)=\gamma_{2} \phi_{2}^{\prime \prime}(x)-\phi_{2}(x)+w_{2}^{\prime}(x), \quad 0<x<1, \tag{34}\\
& w_{1}^{\prime}(0)-\phi_{1}(0)=0 \tag{35}\\
& \phi_{1}^{\prime}(0)=0 \tag{36}\\
& w_{2}^{\prime}(0)-\phi_{2}(0)=0 \tag{37}\\
& \phi_{2}^{\prime}(0)=0 \tag{38}\\
& \phi_{1}(1)-w_{1}^{\prime}(1)+i \alpha_{1}^{\prime} \lambda w_{1}(1)=0 \tag{39}\\
& \gamma_{2} \phi_{1}^{\prime}(1)-i \beta_{1}^{\prime} \lambda \phi(1)=0 \tag{40}\\
& \phi_{2}(1)-w_{2}^{\prime}(1)+i \alpha_{2}^{\prime} \lambda w_{2}(1)=0 \tag{41}\\
& \gamma_{2} \phi_{2}^{\prime}(1)+i \beta_{2}^{\prime} \lambda \phi(1)=0 . \tag{42}
\end{align*}
$$

3. Asymptotic estimation of vibration spectrum

The first-order asymptotic estimation of the vibration frequencies for problem (31)-(42) is given in Theorem 2.5, of (Shubov \& Rojas-Arenaza, 2010a); we present the results here, but in dimensionless form.
Theorem (Shubov, Rojas-Arenaza). Assume that the boundary parameters α_{i}^{\prime} and $\beta_{i}^{\prime}, i \geq 1,2$, satisfy the following conditions

$$
\begin{gathered}
\alpha_{1}^{\prime} \neq \alpha_{2}^{\prime}, \quad \beta_{1}^{\prime} \neq \beta_{2}^{\prime}, \quad \alpha_{i}^{\prime} \neq \sqrt{\gamma_{2}}, \quad \beta_{i}^{\prime} \neq \sqrt{\gamma_{1}} \gamma_{2}, \quad \text { and } \\
\left|\frac{\alpha_{i}^{\prime}-\sqrt{\gamma_{2}}}{\alpha_{i}^{\prime}+\sqrt{\gamma_{2}}}\right| \neq\left|\frac{\beta_{i}^{\prime}-\sqrt{\gamma_{1}} \gamma_{2}}{\beta_{i}^{\prime}+\sqrt{\gamma_{1}} \gamma_{2}}\right| .
\end{gathered}
$$

Then, the set of frequencies - i入 of system (31)-(42) splits into the following four separate branches:

$$
\begin{align*}
-i \lambda_{n}^{(1)} & =\frac{1}{2 \sqrt{\gamma_{2}}}\left[\log \frac{1-\alpha_{1}^{\prime \prime}}{1+\alpha_{1}^{\prime \prime}}+2 n \pi i\right]+O\left(\frac{1}{n}\right) \tag{43}\\
-i \lambda_{n}^{(2)} & =\frac{1}{2 \sqrt{\gamma_{1}}}\left[\log \frac{1-\beta_{1}^{\prime \prime}}{1+\beta_{1}^{\prime \prime}}+2 n \pi i\right]+O\left(\frac{1}{n}\right) \tag{44}\\
-i \lambda_{n}^{(3)} & =\frac{1}{2 \sqrt{\gamma_{2}}}\left[\log \frac{1-\alpha_{2}^{\prime \prime}}{1+\alpha_{2}^{\prime \prime}}+2 n \pi i\right]+O\left(\frac{1}{n}\right), \tag{45}\\
-i \lambda_{n}^{(4)} & =\frac{1}{2 \sqrt{\gamma_{1}}}\left[\log \frac{1-\beta_{2}^{\prime \prime}}{1+\beta_{2}^{\prime \prime}}+2 n \pi i\right]+O\left(\frac{1}{n}\right), \quad n= \pm 1,2,3, \ldots \tag{46}
\end{align*}
$$

where

$$
\alpha_{i}^{\prime \prime}=\frac{1}{\sqrt{\gamma_{2}}} \alpha_{i}^{\prime}, \quad \beta_{i}^{\prime \prime}=\frac{1}{\sqrt{\gamma_{1}} \gamma_{2}} \beta_{i}^{\prime}, \quad i=1,2
$$

www.intechopen.com

We note that \log represents the complex \log arithm, $\log z=\ln |z|+i \arg z$. We note also the important fact that the Van der Waals force between the two tubes does not appear in the first-order approximation.

4. The legendre-tau spectral method

We compare the asymptotic results of the Theorem with a numerical approximation of the spectrum using the Legendre-tau spectral method (Gottlieb et al., 1984). This entails transforming problem (1)-(12) to one on the interval $-1 \leq x \leq 1$ by letting $x \rightarrow \frac{2}{L} x-1$. Assuming there will be no confusion, we keep the original variables $x, w_{i}, \phi_{i}, i=1,2$, and the resulting system is

$$
\begin{align*}
& \omega^{2} w_{1}(x)=\frac{2 \widehat{k}}{L} \phi_{1}^{\prime}(x)-\frac{4 \widehat{k}}{L^{2}} w_{1}^{\prime \prime}(x)+C_{1}\left[w_{2}(x)-w_{1}(x)\right] \tag{47}\\
& \omega^{2} \phi_{1}(x)=-\frac{4 E}{\sigma L^{2}} \phi_{1}^{\prime \prime}(x)+\widetilde{k} \phi_{1}(x)-\frac{2 \widetilde{k}}{L} w_{1}^{\prime}(x) \tag{48}\\
& \omega^{2} w_{2}(x)=\frac{2 \widehat{k}}{L} \phi_{2}^{\prime}(x)-\frac{4 \widehat{k}}{L^{2}} w_{2}^{\prime \prime}(x)-C_{2}\left[w_{2}(x)-w_{1}(x)\right] \tag{49}\\
& \omega^{2} \phi_{2}(x)=-\frac{4 E}{\sigma L^{2}} \phi_{2}^{\prime \prime}(x)+\widehat{k} \phi_{2}(x)-\frac{2 \widehat{k}}{L} w_{2}^{\prime}(x), \quad-1 \leq x \leq 1, \tag{50}\\
& \frac{2}{L} w_{1}^{\prime}(-1)-\phi_{1}(-1)=0 \tag{51}\\
& \phi_{1}^{\prime}(-1)=0 \tag{52}\\
& \frac{2}{L} w_{2}^{\prime}(1)-\phi_{2}(-1)=0 \tag{53}\\
& \phi_{2}^{\prime}(-1)=0 \tag{54}\\
& \widetilde{k} \phi_{1}(1)-\frac{2 \widehat{k}}{L} w_{1}^{\prime}(1)=-i \omega \alpha_{1} w_{1}(1) \tag{55}\\
& \frac{\partial E}{\sigma L} \phi_{1}^{\prime}(1)=i \omega \beta_{1} \phi_{1}(1) \tag{56}\\
& \widetilde{k} \phi_{2}(1)-\frac{2 \widetilde{k}}{L} w_{2}^{\prime}(1)=-i \omega \alpha_{2} w_{2}(1) \tag{57}\\
& \frac{\partial E}{\sigma L} \phi_{2}^{\prime}(1)=i \omega \beta_{2} \phi_{2}(1) . \tag{58}
\end{align*}
$$

We let

$$
\begin{array}{ll}
w_{1}(x)=\sum_{n=0}^{N} a_{n} P_{n}(x), & \phi_{1}(x)=\sum_{n=0}^{N} b_{n} P_{n}(x), \\
w_{2}(x)=\sum_{n=0}^{N} c_{n} P_{n}(x), & \phi_{2}(x)=\sum_{n=0}^{N} d_{n} P_{n}(x),
\end{array}
$$

where P_{n} is the Legendre polynomial of degree n.
We then compare coefficients of x^{n}, for $n=0,1, \ldots, N-2$, in each of the equations resulting from (47)-(50) and, including the 8 equations resulting from boundary conditions (51)-(58),
the result is a system of $4 N+4$ equations in the $4 N+4$ unknowns $a_{n}, b_{n}, c_{n}, d_{n}, n=0,1, \ldots, N$, and the parameter ω. We may rewrite the system in the form

$$
\begin{equation*}
\left(\omega^{2} A+\omega B+C\right)\left(a_{0}, \ldots, a_{N}, b_{0}, \ldots, b_{N}, c_{0}, \ldots, c_{N}, d_{0}, \ldots, d_{N}\right)^{T}=0 \tag{59}
\end{equation*}
$$

where A, B and C are $(4 N+4) \times(4 N+4)$ matrices. Then, the vibration spectrum consists of those numbers $-i \omega$, where ω is a latent value of (59), i.e., where ω satisfies

$$
\begin{equation*}
\operatorname{det}\left(\omega^{2} A+\omega B+C\right)=0 \tag{60}
\end{equation*}
$$

It is easy to show that ω satisfies (60) if and only if ω is an eigenvalue of the $(8 N+8) \times(8 N+$ 8) matrix

$$
\left[\begin{array}{cc}
-A^{-1} B-A^{-1} C \\
I & 0
\end{array}\right]
$$

where I is the $(4 N+4) \times(4 N+4)$ identity matrix and 0 the $(4 N+4) \times(4 N+4) 0$-matrix. In practice, A is often singular-indeed, that is the case here. We remedy the situation by letting

$$
\omega=\frac{\zeta-1}{\zeta+1}
$$

yielding the equation

$$
\operatorname{det}\left(\zeta^{2} X+\zeta Y+Z\right)
$$

where X, Y, Z, of course, are $(4 N+4) \times(4 N+4)$ matrices X is nonsingular, so we may proceed by finding the eigenvalues of

$$
\left[\begin{array}{cc}
-X^{-1} Y & -X^{-1} Z \\
I & 0
\end{array}\right]
$$

and transforming back.

5. Comparison of numerical and asymptotic results

Assumptions (29) imply that $k_{1}=k_{2}$ and $A_{1} / I_{1}=A_{2} / I_{2}$. While, as mentioned above, this means that we are not looking at a double-walled tube, these assumptions have the advantage of allowing us better to see the effect that the damping parameters and Van der Waals force have on the imaginary parts-i.e., the actual "frequency" parts-of the eigenfrequencies, as we shall see below.
Form our physical and geometrical parameters, we choose the carbon nanotube data given in (Wang et al., 2006). Thus, we have $E=1 \mathrm{TPa}, G=.4 \mathrm{TPa}, A=2.3090706 \mathrm{~nm}^{2}, I=.459649366$ nm^{4} and $\rho=2.3 \mathrm{~g} / \mathrm{cm}^{3}$, and with a Van der Waals constant of $C=.06943$ TPa. Further, from our previous work, we have seen that, as the value of the slenderness ratio L / d increases, one must go further out along the spectrum in order to find agreement with the asymptotic results. Thus we choose $L=2.5 \mathrm{~nm}$, resulting in $L / d=2.85714286$.
The dimensionless parameters then become

$$
\begin{aligned}
& \gamma_{1}=.03185 \\
& \gamma_{2}=.0652925 \\
& C^{\prime}=.5729492131 .
\end{aligned}
$$

For the damping constants, there is nothing in the literature to guide our choices. However, we can see that, if each $\alpha_{i}^{\prime \prime}<1$ and each $\beta_{i}^{\prime \prime}<1$ in (43)-(46), the asymptotic behavior of the imaginary parts of the eigenfrequencies will behave as though both right ends are free; similarly, if the arguments in the logs all are negative, the behavior will be as if both right ends are clamped. (Of course, there are many more possibilities; however, "clamped" and "free" are the most common types, so, due to space limitations, we restrict ourselves to these two cases. Also, we mention that the critical cases $\alpha^{\prime \prime}=1$ and $\beta^{\prime \prime}=1$ are studied in (Coleman \& Schaffer, preprint), for the single Timoshenko beam.) Further, our choices are guided by the wish to see clearly the separation of the spectrum into branches.
To study the case where the right ends are free-like, we choose our dimensionless damping parameters to be

$$
\begin{equation*}
\alpha_{1}^{\prime}=.2, \quad \beta_{1}^{\prime}=.01, \quad \alpha_{2}^{\prime}=.1, \quad \beta_{2}^{\prime}=.001 \tag{61}
\end{equation*}
$$

For clamped-like, we choose:

$$
\begin{equation*}
\alpha_{1}^{\prime}=.3, \quad \beta_{1}^{\prime}=.013, \quad \alpha_{2}^{\prime}=2, \quad \beta_{2}^{\prime}=.02 \tag{62}
\end{equation*}
$$

For all of our numerical examples, we have performed computations at $N=180,200$ and 220 Legendre polynomials, and we see that all results have converged to at least 10 decimal places.

1) For our first example, we consider the case with damping parameters given by (61) and with no Van der Waals force. This will give us a baseline for later examples, and will allow us to see how the spectrum separates into four branches. The results can be seen in Tables 1A and 1B, where we actually separate the frequencies into their four branches. First, however, we must note that the branching is an asymptotic phenomenon, thus one needs to go out along the spectrum before it can be seen. As mentioned earlier, for larger values of L / d, one must go very far out before one sees the branching starting to occur. Here, we begin to see the branching and agreement with the asymptotic results pretty clearly after about the 4th or 5th eigenfrequency of each branch. For the first few, however, it may not even make sense to assign them to a branch; thus, while we do so by making our best guess, we mark them with * to denote the fact that this assignment is problematic.

Table 1A, then, lists the first 40 eigenfrequencies, and the 50th, 60th, 70th, 80th, 90th and 100th eigenfrequencies, of each α-branch. The final column lists the asymptotic approximations for the imaginary parts, and the line at the bottom gives the asymptotic approximations for the real parts. Table 1B does the same, but for the β-branches.
As mentioned, in both tables the frequencies seem clearly to have split into branches, based on the real parts, well before the 10th frequency. By the 100th frequency in each branch, we have at least a three-decimal place match between the numerical and asymptotic real parts, and a four-decimal place match between the numerical and asymptotic imaginary parts.
One item of note: we see that the first frequency of the α-branch predicted by the asymptotic results does not appear. As we shall see, it appears that this frequency may have been "damped out" by the boundary damping.
2) For Example 2, we use the damping parameters given in (62), and Tables 2 A and 2 B are analogous to Tables 1A and 1B, respectively. Here, it is not clear how to deal with the first few entries in each table. However, they separate into branches very quickly. In Table 2A we see that, by the 100th frequency, we have at least a three-decimal place match between the numerical and asymptotic real parts, and a three-decimal- place match between the numerical and asymptotic imaginary parts. In Table 2B, by the 100th frequency we see a four-decimal place match between the numerical and asymptotic frequencies. Meanwhile, for
the β_{2} branch, the numerical and asymptotic real parts match to three decimal places. For the β_{1} branch, the match is not as good (two decimal places), though they still clearly seem to be converging.
For the remaining examples we introduce the Van der Waals force. Specifically, we wish to see what happens to the spectrum as the Van der Waals constant increases from 0 to about twice the value of the physically realistic value of $C^{\prime}=.5729492131$. Thus, we consider what happens for the values

$$
C^{\prime}=0, \quad .25, \quad .5, \quad .75 \text { and } 1 .
$$

3) For Examples 3 and 4, we look at two cases without boundary damping. Example 3 considers the case where the right ends are free, that is, for which

$$
\alpha_{1}^{\prime}=\beta_{1}^{\prime}=\alpha_{2}^{\prime}=\beta_{2}^{\prime}=0
$$

while Example 4 considers the right ends to be clamped, i.e.,

$$
\alpha_{1}^{\prime}=\beta_{1}^{\prime}=\alpha_{2}^{\prime}=\beta_{2}^{\prime}=\infty .
$$

We note that, in Examples 3 and 4, all numerical real parts are of absolute value $<1.0 E-10$. The results for Example 3 can be found in Tables 3A and 3B. In Table 3A, we list the imaginary parts of the first 40 frequencies. The first column represents the double α - and β-branches, identical for $C^{\prime}=0$. Introducing $C^{\prime}>0$ leads to the splitting of these pairs. What is striking is that, for each pair of frequencies, one decreases as the value of C^{\prime} increases, while the other is unaffected. (Indeed, it turns out that each of the even-numbered frequencies is unchanged to 13 decimal places!) Secondly, as we go out along the spectrum, the first member of each pair is less affected by the Van der Waals force, so that, when we get to the 39th-40th pair, they agree to three decimal places. (We look more closely at this phenomenon in Table 3B.)
Further, in comparing these results with those of Example 1, we see that the first predicted frequencies, missing in Table 1A, do appear here. Thus, as mentioned, it appears that the first pair was damped out via the boundary damping in Example 1, and that only one of these seems to be damped out by the inclusion of the Van der Waals force. Further, by comparing the first column of Table 3A with the results of Example 1, it is clear that the damping also affects the imaginary or "frequency" parts of the eigenfrequencies.
In Table 3B, we list the 49th-50th, 99th-100th, 149th-150th, 199th-200th, 249th-250th, 299th-300th, 349th-350th and 399th-400th eigenfrequencies, both numerical and asymptotic, for the case $C^{\prime}=1$ (i.e., corresponding to the last column in Table 3A). We see still closer agreement between the entries in each pair, and very close agreement with the asymptotics, as well. (Note that we list the branch for each eigenfrequency.) (Of course, the numbering here is very different from the numbering in Examples 1 and 2; e.g., the 40th entry in Table 3A corresponds to the 12th entry in Table 1A.)
4) The results of Example 4 are given in Tables 4A and 4B, in the same format as Tables 3A and 3B, respectively. In Table 4A, we see that the matching between the members of each pair is quite similar to that occurring in Table 3A. And again here, we see in Table 4B still closer agreement in each pair, and with the asymptotic results.
5) Example 5 is combination of Examples 1 and 3, and Example 6 is a combination of Examples 2 and 4 . Example 5 looks at the damped system with the free-like parameters in (61), for the Van der Waals constant with values $C^{\prime}=0, .5$ and 1 . The results are given in Tables 5A and 5B. In Table 5A, we proceed as in Table 3A, by listing the first 40 eigenfrequencies, although here we consider only the three values of C^{\prime}. We see here that, for each pair, both
imaginary parts are affected by the Van der Waals force. However, we still see the closer matching of each pair as we go out along the spectrum. Meanwhile the real parts (damping rates) also are affected by the Van der Waals force, although there does not seem to be a noticeable pattern in that, in some cases it increases, while for others it decreases; in particular, there seems to be no branch-related pattern. Table 5B, then, is analogous to Table 3B, again using only the Van der Waals constant $C^{\prime}=1$. For the imaginary parts, the results are quite similar to those given in Table 3B. Meanwhile, the effect of the van der Waals on the real parts is diminished, as well, with the exception of the β_{2}-branch. However, this must be due to the fact that the β_{2} damping rates are an order of magnitude smaller than the other damping rates.
6) In Table 6A, we proceed as in Table 4A, by listing the first 40 eigenfrequencies, but again only considering the three values of C^{\prime}. We see again that, for each pair, both imaginary parts are affected by the Van der Waals force. Again we see the closer matching of each pair as we go out along the spectrum. Indeed, the last few pairs match more closely than the undamped pairs in Table 4A. The real parts behave quite the same as in Table 5A. Table 6B, then, is analogous to Table 4B, once more using only the Van der Waals constant $C^{\prime}=1$. Again, the imaginary parts behave quite similarly to those in Table 4B, and the real parts behave quite similarly to those in Table 5B.
In closing, we should mention that, although the results in (Shubov \& Rojas-Arenaza, 2010b) show that the system is nonconservative, we have been unable to find any unstable eigenfrequencies in our numerical investigations.

| 24. | \|-4.903| | 287.988 | \|-. 6383 | 288.060 | 288.926 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 25. | -4.937 | 300.421 | -. 5490 | 300.399 | 301.220 |
| 26. | -4.933 | 312.795 | -. 5165 | 312.766 | 313.515 |
| 27. | -4.926 | 325.094 | -. 5131 | 325.126 | 325.810 |
| 28. | -4.937 | 337.458 | -. 5304 | 337.478 | 338.104 |
| 29. | -4.923 | 349.829 | -. 5784 | 349.809 | 350.399 |
| 30. | -4.439 | 361.815 | -. 6217 | 362.065 | 362.694 |
| 31. | -4.929 | 374.314 | -. 5671 | 374.329 | 374.989 |
| 32. | -4.939 | 386.676 | -. 5232 | 386.661 | 387.283 |
| 33. | -4.929 | 399.021 | -. 5095 | 399.000 | 399.578 |
| 34. | -4.937 | 411.318 | -. 5110 | 411.335 | 411.873 |
| 35. | -4.937 | 423.655 | -. 5277 | 423.665 | 424.167 |
| 36. | -4.916 | 436.013 | -. 5653 | 435.973 | 436.462 |
| 37. | -4.870 | 448.131 | -. 5756 | 448.231 | 448.757 |
| 38. | -4.937 | 460.525 | -. 5344 | 460.523 | 461.052 |
| 39. | -4.940 | 472.857 | -. 5122 | 472.846 | 473.347 |
| 40. | -4.914 | 485.173 | -. 5068 | 485.171 | 485.641 |
| 50. | -4.791 | 608.231 | -. 5448 | 608.213 | 608.588 |
| 60. | -4.929 | 731.223 | -. 5045 | 731.223 | 731.535 |
| 70. | -4.869 | 854.207 | -. 5240 | 854.214 | 854.482 |
| 80. | -4.935 | 977.194 | -. 5038 | 977.195 | 977.429 |
| 90. | -4.940 | 1100.15 | -. 5155 | 1100.17 | 1100.38 |
| 100. | -4.938 | 1223.14 | -. 5034 | 1223.14 | 1223.32 |
| Asym. Re: -4.941 -. 5027 | | | | | |

Table 1A. Numerical eigenfrequencies 1-40, 50, 60, 70, 80, 90 and 100 for the α_{1} and α_{2} branches from Example 1. The asymptotic imaginary parts are given in the last column, while the asymptotic real parts appear at the bottom.

| | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 18. | -7.995 | 309.592 | -3.715 | 309.577 | 308.059 |
| 19. | -8.018 | 327.064 | -3.725 | 327.096 | 325.662 |
| 20. | -7.990 | 344.566 | -3.728 | 344.549 | 343.265 |
| 21. | -7.957 | 362.152 | -4.213 | 362.406 | 360.869 |
| 22. | -8.015 | 379.737 | -3.726 | 379.758 | 378.472 |
| 23. | -8.057 | 397.260 | -3.730 | 397.244 | 396.075 |
| 24. | -8.060 | 414.783 | -3.723 | 414.796 | 413.679 |
| 25. | -8.032 | 432.332 | -3.743 | 432.293 | 431.282 |
| 26. | -8.027 | 449.937 | -3.790 | 450.040 | 448.885 |
| 27. | -8.068 | 467.510 | -3.726 | 467.512 | 466.489 |
| 28. | -8.087 | 485.056 | -3.749 | 485.055 | 484.092 |
| 29. | -8.081 | 502.606 | -3.727 | 502.609 | 501.695 |
| 30. | -8.058 | 520.184 | -3.772 | 520.119 | 519.299 |
| 31. | -8.069 | 537.788 | -3.740 | 537.822 | 536.902 |
| 32. | -8.095 | 555.359 | -3.728 | 555.355 | 554.505 |
| 33. | -8.102 | 572.920 | -3.732 | 572.931 | 572.109 |
| 34. | -8.091 | 590.488 | -3.731 | 590.482 | 589.712 |
| 35. | -8.077 | 608.084 | -3.875 | 608.067 | 607.315 |
| 36. | -8.095 | 625.681 | -3.732 | 625.690 | 624.919 |
| 37. | -8.110 | 643.255 | -3.732 | 643.248 | 642.522 |
| 38. | -8.110 | 660.826 | -3.730 | 660.831 | 660.125 |
| 39. | -8.098 | 678.408 | -3.738 | 678.391 | 677.729 |
| 40. | -8.094 | 696.011 | -3.760 | 696.054 | 695.332 |
| 50. | -8.119 | 871.910 | -3.733 | 871.914 | 871.365 |
| 60. | -8.130 | 1047.85 | -3.732 | 1047.85 | 1047.40 |
| 70. | -8.134 | 1223.82 | -3.735 | 1223.82 | 1223.43 |
| 80. | -8.135 | 1399.80 | -3.733 | 1399.80 | 1399.47 |
| 90. | -8.138 | 1575.80 | -3.734 | 1575.80 | 1575.50 |
| 100. | -8.141 | 1751.80 | -3.734 | 1751.80 | 1751.53 |
| Asym. Re: -8.143 | | -3.734 | | | |

Table 1B. Numerical eigenfrequencies $1-40,50,60,70,80,90$ and 100 for the β_{1} and β_{2} branches from Example 1. The asymptotic imaginary parts are given in the last column, while the asymptotic real parts appear at the bottom.

		Nu	ca		Asymptotic (Im
	α_{1} Branch		α_{2}	ranch	
	Re	Im	Re	Im	
1.					12.2947
2.*	-2.961	9.93687	-1.610	12.4325	24.5894
3.	-3.190	29.3701	-1.397	31.1896	36.8841
4.	-4.064	46.0071	-1.634	45.0854	49.1788
5.	-4.495	57.8442	-1.657	58.5989	61.4735
6.	-4.053	71.8202	-1.621	71.7962	73.7682
7.	-4.142	85.2854	-1.523	84.8430	86.0630
8.	-4.567	98.6461	-1.323	98.0245	98.3577
9.	-5.318	105.571	-1.169	106.236	110.652
10.	-4.540	119.808	-1.533	120.191	122.947
11.	-4.216	133.109	-1.633	133.237	135.242

Table 2A. Numerical eigenfrequencies 1-40, 50, 60, 70, 80,90 and 100 for the α_{1} and α_{2} branches from Example 2. The asymptotic imaginary parts are given in the last column, while the asymptotic real parts appear at the botfom.

	α_{1} Branch		α_{2} Branch				
	Re	Im	Re	Im			
0.*	\|-2.767	20.7386	- -3306	\|20.7810			
1.*	-3.365	32.4318	-. 3818	31.1907	17.6033		
2.*	-4.405	43.3261	-. 4055	44.5802	35.2067		
3.	-4.889	59.8085	-. 4281	59.3359	52.8100		
4.	-5.844	74.6045	-. 5117	74.9216	70.4134		

[^1]

Table 2B. Numerical eigenfrequencies $1-40,50,60,70,80,90$ and 100 for the β_{1} and β_{2} branches from Example 2. The asymptotic imaginary parts are given in the last column, while the asymptotic real parts appear at the bottom.

		22.			
	22.186791607	22.			
	26.977	26			
	26.	26.97	26.	26	
	36.	36.3	36.2	36.2	
	36.	36.3	36.3	36.385895938	
	39.	39.2	39.	39.179434389	
	39	39.3	39.3	39.34602002	39.3
	50.	50.805	50.7635	50.7	50.6
	50.	50.	50.8	50.8	
	52			52.713137027	
	52.	52	52	52.832231307	
	64	64.7	64	64.668361902	
	83.3			83.35	
	90.953				
	90,				
	99.2193057	99.204551012			
	99.2		99.2	99.219305787	
	104	104	104	104.28976275	
	104	104	104	104.36226852	
		113		113	
		113	113	113	
	119	119	119.	119.	
	119	119.2590	119.	119	
	126	126.959069	126.932	126.90494972	
	126.9860	126.98609	126.986092	126.98	
	135		135		
	139	139.71595073	139.71595073	139.71595073	

Table 3A. The first 40 imaginary parts of the numerical eigenfrequencies from Example 3, computed for five different values of the Van der Waals constant C^{\prime}. The "real-life" value of the constant is approximately .57 .

Numerical Asymptotic
49. ||177.211 ||178.283 (α-branch)

Table 3B. Numerical and asymptotic eigenfrequencies (imaginary parts) 49, 50, 99, 100, 149, 150, 199, 200, 249, 250, 299, 300, 349, 350, 399, 400 from Example 3, computed for the Van der Waals constant $C^{\prime}=1$.

	$C^{\prime}=0$	$C^{\prime}=.25$	$C^{\prime}=.5$	$C^{\prime}=.75$	$C^{\prime}=1$
1.	12.98454240	12.82401972	12.66021095	12.49299083	12.32222077
2.	12.98454240	12.98454240	12.98454240	12.98454240	12.98454240
3.	20.80444376	20.73055727	20.65705225	20.58390602	20.51109394
4.	20.80444376	20.80444376	20.80444376	20.80444376	20.80444376
5.	31.18843099	31.12463266	31.06111752	30.99788409	30.93493102
6.	31.18843099	31.18843099	31.18843099	31.18843099	31.18843099
7.	31.24700816	31.18715530	31.12710108	31.06685140	31.00640685
8.	31.24700816	31.24700816	31.24700816	31.24700816	31.24700816
9.	44.57678921	44.53928646	44.50196213	44.46481864	44.42785126
10.	44.57678921	44.57678921	44.57678921	44.57678921	44.57678921
11.	45.09876440	45.04148608	44.98405651	44.92647256	44.86873484
12.	45.09876440	45.09876440	45.09876440	45.09876440	45.09876440
13.	58.59976143	58.54891895	58.49801214	58.44703446	58.39599137
14.	58.59976143	58.59976143	58.59976143	58.59976143	58.59976143
15.	59.33988894	59.31872578	59.29763244	59.27660934	59.25566107
16.	59.33988894	59.33988894	59.33988894	59.33988894	59.33988894
17.	71.76457338	71.72043968	71.67628715	71.63210155	71.58790511
18.	71.76457338	71.76457338	71.76457338	71.76457338	71.76457338
19.	74.95903748	74.94532704	74.93161035	74.91790464	74.90420214

[^2]| 20. | 74.95903748 | 74.95903748 | 74.95903748 | 74.95903748 | 74.95903748 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 21. | 84.79872934 | 84.76134601 | 84.72397393 | 84.68660688 | 84.64925063 |
| 22. | 84.79872934 | 84.79872934 | 84.79872934 | 84.79872934 | 84.79872934 |
| 23. | 90.88275651 | 90.86960300 | 90.85639777 | 90.84314155 | 90.82983509 |
| 24. | 90.88275651 | 90.88275651 | 90.88275651 | 90.88275651 | 90.88275651 |
| 25. | 97.98924692 | 97.96005606 | 97.93091660 | 97.90181859 | 97.87277054 |
| 26. | 97.98924692 | 97.98924692 | 97.98924692 | 97.98924692 | 97.98924692 |
| 27. | 106.2587082 | 106.2388530 | 106.2189144 | 106.1988926 | 106.1787763 |
| 28. | 106.2587082 | 106.2587082 | 106.2587082 | 106.2587082 | 106.2587082 |
| 29. | 111.9946283 | 111.9779469 | 111.9613540 | 111.9448287 | 111.9283915 |
| 30. | 111.9946283 | 111.9946283 | 111.9946283 | 111.9946283 | 111.9946283 |
| 31. | 120.2222931 | 120.1964306 | 120.1705341 | 120.1445952 | 120.1186307 |
| 32. | 120.2222931 | 120.2222931 | 120.2222930 | 120.2222931 | 120.2222931 |
| 33. | 127.5643741 | 127.5578845 | 127.5514182 | 127.5449753 | 127.5385763 |
| 34. | 127.5643741 | 127.5643741 | 127.5643741 | 127.5643741 | 127.5643741 |
| 35. | 133.2540877 | 133.2279431 | 133.2017948 | 133.1756314 | 133.1494527 |
| 36. | 133.2540877 | 133.2540877 | 133.2540878 | 133.2540877 | 133.2540877 |
| 37. | 144.1489244 | 144.1458534 | 144.1427760 | 144.1397215 | 144.1366607 |
| 38. | 144.1489244 | 144.1489244 | 144.1489244 | 144.1489244 | 144.1489244 |
| 39. | 145.9551025 | 145.9304056 | 145.9056787 | 145.8809675 | 145.8562415 |
| 40. | 145.9551025 | 145.9551025 | 145.9551025 | 145.9551025 | 145.9551025 |

Table 4A. The first 40 imaginary parts of the numerical eigenfrequencies from Example 4, computed for five different values of the Van der Waals constant C^{\prime}.

www.intechopen.com

Table 4B. Numerical and asymptotic eigenfrequencies (imaginary parts) 49, 50, 99, 100, 149, 150, 199, 200, 249, 250, 299, 300, 349, 350, 399, 400 from Example 4, computed for the Van der Waals constant $C^{\prime}=1$.

	$C^{\prime}=0$		$C^{\prime}=.5$		$C^{\prime}=1$	
				Im		
	-2.746	9.	-2	9.	.	8.8273
4	-. 6783	9.930366988	4	9.678929479	76	9.477841762
5.		21				
6.	-. 9628	21	-. 9720	21	5	21.54041229
7.	-1.321	26.	-1.312	16	8	08
8.					-2.343	
9	-3.537	35.	-3	35	-3.569	35.40700136
	-3.172	36.55704093	-	36	-3.190	72
	1.490	38			-1.504	
12	-3.658	39.8	-3	39.76185775	-3.665	39.71104768
	-4.007	50.27733227	-	50.23454838	4.048	50
	-5.139	51.	-5.143		-5.148	
	-. 9151	51.9	-. 9182	51.87409462	5	51
	-3.823	53.22422671	-3.821	53.18663028	-3.816	53
	-4.613	64.3	-4.		-4	000
	. 7899	65.10483274	-. 7935	65	-. 7986	
		67.04799021	-6.082	67	-	32
	-3.538	67.87701409	-3.5	67	-3.53	67.
		77.6	-4.762		-4	77.54197597
		78.0510982	-. 8968		-. 9026	77.96449011
	-6.339	83.3	-6.335		-6	83
	3.6	83.71862800	-3.	83	-3.	83.
		90.6	-	5	-4.703	90.53866701
	-1.224		-1		-1	90.71182474
		99.7	-		-4.	99.67839224
		100.4640803		100.4692419	-	
			-		-1	
		103.889502		103	-4	103
		11	-	11	-4.7	7
	-1.357	11	-1.3	11	-1.3	
		118.5	-6.	11	-6.	118.5418301
	-3.738	11	-3.7		-3.7	118.9408092
		127.0161580	-. 7	12	-. 7825	126.9598517
		127.122	-4.906	127.0951053	-4.9	127.0679252
		135.5114464	-3.64	135.5080511	-3.6	5046704
		135.5399041	-7.388	135.5375232	-7.39	135.5351432
		139.670631	-. 588	139.6447863	-. 58	1
	4.9	139.79883	-4.910	139.7733	-4.912	139.7478086

Table 5A. The first 40 numerical eigenfrequencies from Example 5, computed for three different values of the Van der Waals constant C.

	Numerical			Asymptotic	
		Re	Im	Re	Im
	49.	-4.902	177.162	-4.941	178.283 (α_{1}-branch)
	50.	-. 6921	177.198	-. 5027	178.283 (α_{2}-branch)
	99.	-7.957	362.152	-8.143	360.869 (β_{2}-branch)
	100.	-4.195	362.404	-3.734	360.869 (β_{1}-branch)
	149.	-8.069	537.788	-8.143	536.902 (β_{2}-branch)
	150.	-3.740	537.822	-3.734	536.902 (β_{1}-branch)
	199.	-. 5069	718.904	-. 5027	719.240 (α_{2}-branch)
	200.	-4.941	718.909	-4.941	719.240 (α_{1}-branch)
	249.	-4.940	903.399	-4.941	903.661 (α_{1}-branch)
	250.	-. 5046	903.403	-. 5027	903.661 (α_{2}-branch)
	299.	-3.734	1083.03	-3.734	1082.61 (β_{1}-branch)
	300.	-8.127	1083.03	-8.143	1082.61 (β_{2}-branch)
	349.	-. 5123	1260.02	-. 5027	1260.21 (α_{2}-branch)
	350.	-4.923	1260.04	-4.941	1260.21 (α_{1}-branch)
	399.	-. 5053	1444.46	-. 5027	1444.62 (α_{2}-branch)
	400.	-4.940	1444.46	-4.941	1444.62 (α_{1}-branch)

Table 5B. Numerical and asymptotic eigenfrequencies (imaginary parts) 49, 50, 99, 100, 149, 150, 199, 200, 249, 250, 299, 300, 349, 350, 399, 400 from Example 5, computed for the Van der Waals constant $C^{\prime}=1$.

	$C^{\prime}=0$		$C^{\prime}=.5$		$C^{\prime}=1$	
1	2961	9.	-3.079	9.	-3.169	9.64472742
2.		12.43254005	-1.618	12.28811944	-1.632	12.14607344
3	-2.767	20.7386132	4	20	5	50
4	. 3306	20	- 3395		5	59
5		29	-	29.32574131	-3.182	29.28091887
6	-1	31	-. 3840	31.12726000	-. 3882	31.0
7	-. 3818	31	-		-1.	31.06625299
8		32.	-3.3	32.36004659	-3.3	
9.	-4.405	43	-4	43.28601387	-4	43.24625757
	-. 4055	44	-. 4	7	-. 4	44.50537030
	-1.634	45.08538379	-1.63	45.02792865	-1.63	44.9
	-4.064	46.00707085	-4.068	45.95274391	-4.070	45.89830745
	-4.495		-	57.81269810	-4.461	57.78159556
	-1.657	58.5988987	-1.656	58.54816779	-1.659	58.
	-. 4281	59.33578065	-. 4286	59.31422388	-. 4295	59.29277982
	-4.889	59.80848155	-4.905	59.76734039	-4.920	59.72601
17.	-1.62	71.79615374	-1.620	71.752095	-1.6	71.70774465

www.intechopen.com

$18 . \mid$	-4.053	71.82019141				
19.	-5.844	74.60448514	-4.045	-51.7829	74.58483733	-4.037
20.	-.5117	74.92157699	-.5133	74.90763370	-.5152	74.565132634
21.	-1.523	84.84297209	-1.522	84.80549984	-1.522	84.76785280
22.	-4.142	85.28536486	-4.141	85.25105512	-4.140	85.21691580
23.	-5.926	90.15112979				
24.	-.7273	90.84264675	-5.923	90.13610573	-5.920	90.12104814
25.	-1.323	98.02449900	-1.320	90.82960542	-.7331	90.81651834
26.	-4.567	98.64607511	-4.570	98.61744170	-1.319	97.96567545
27.	-5.318	105.5709742	-5.311	105.5523351	-5.304	98.58888833
28.	-1.169	106.2355904	-1.173	106.2156779	-1.177	106.19566428
29.	-.8981	112.0084405	-.8948	111.9918049	-.8917	111.9752688
30.	-5.396	112.5178851	-5.403	112.4994593	-5.409	112.4810878
31.	-4.540	119.8083113	-4.535	119.7838877	-4.530	119.7594125
32.	-1.533	120.1912992	-1.535	120.1654629	-1.536	120.1395677
33.	-.5491	127.5842376	-.5480	127.5777146	-.5471	127.5712440
34.	-6.281	127.7796866	-6.285	127.7714673	-6.288	127.7632923
35.	-4.216	133.1088121	-4.214	133.0838601	-4.211	133.0588793
36.	-1.633	133.2370084	-1.634	133.2109568	-1.635	133.1848771
37.	-6.594	144.0977330	-6.594	144.0939736	-6.594	144.0902605
38.	-.4656	144.1532932	-.4655	144.1501251	-.4654	144.1469825
39.	-1.647	145.9530993	-1.647	145.9284497	-1.648	145.9037766
$40 .\| \|-4.218$	145.9995218	-4.218	145.9750728	-4.217	145.9505817	

Table 6A. The first 40 numerical eigenfrequencies from Example 6, computed for three different values of the Van der Waals constant C^{\prime}.

[^3]Table 6B. Numerical and asymptotic eigenfrequencies (imaginary parts) 49, 50, 99, 100, 149, 150, 199, 200, 249, 250, 299, 300, 349, 350, 399, 400 from Example 6, computed for the Van der Waals constant $C^{\prime}=1$.

6. References

Coleman, M.P. \& Schaffer, L. (2010). Asymptotic analysis of the vibration spectrum of coupled Timoshenko beams with a dissipative joint, Eur. J. Mech. A Solids, Vol. 29, No. 4, 629-636.
Coleman, M.P. \& Schaffer, L. The single Timoshenko beam with general boundary damping, an asymptotic and numerical study, preprint.
Gibson, R.F.; Ayorinde, E.O. \& Wen, Y.-F. (2007). Vibrations of carbon nanotubes and their composites: A review, Comp. Sci. Tech., Vol. 67, 1-27.
Gottlieb, D.; Hussaini, M.Y. \& Orszag, S.A. (1984). Theory and applications of spectral methods, Spectral methods for partial differential equations, pp. 1-54, Hampton, VA, 1982, SIAM, Philadelphia, PA.
Jakobson, B.I.; Brabec, C.J. \& Berhold, J. (1996). Nanomechanics of carbon nanotubes: Instabilities beyond linear response, Phys. Rev. Lett., Vol. 76, No. 14, 2511-2514.
Jamieson, V. (2000). Carbon nanotubes roll on, Phys. World, Vol. 13, No. 6, 29-30.
Mahan, G.D. (2002). Oscillations of a thin hollow cylinder: Carbon nanotubes, Phys. Rev. B, Vol. 65, No. 23, 235402.1-235402.7.
Pantano, A.; Boyce, M.C. \& Parks, D.M. (2003). Nonlinear structural mechanics based modeling of carbon nanotube deformation, Phys. Rev. Lett., Vol. 91, No. 14, 145504.1-145504.4.

Pantano, A.; Boyce, M.C. \& Parks, D.M. (2004). Mechanics of deformation of single and multi-wall carbon nanotubes, J. Mech. Phys. Solids, Vol. 52, No. 4, 789-821.
Qian, D.; Wagner, G.J.; Liu, W.K.; Yu, M.-F. \& Ruoff, R.S. (2002). Mechanics of carbon nanotubes, Appl. Mech. Rev., Vol. 55, No. 6, 495-533.
Ru, C.Q. (2000). Effect of Van der Waals forces on axial buckling of a double-walled carbon nanotube, J. Appl. Phys., Vol. 87, 1712-1715.
Ru, C.Q. (2001). Degraded axial buckling strain of multiwalled carbon nanotubes due to interlayer slips, J. Appl. Phys., Vol. 89, No. 6, 3426-3433.
Shubov, M.A. \& Rojas-Arenaza, M. (2010a). Vibrational frequency distribution for nonconservative model of double-walled carbon nanotube, Appl. Math. Comput., Vol. 217, No. 3, 1246-1252.
Shubov, M.A. \& Rojas-Arenaza, M. (2010b). Mathematical analysis of carbon nanotube model, J. Comput. Appl. Math., Vol. 234, No. 6, 1631-1636.

Shubov, M.A. \& Rojas-Arenaza, M. (2010c). Asymptotic distribution of eigenvalues of dynamics generator governing vibrations of double-walled carbon nanotube model, Asymptotic Anal., Vol. 68, No. 1-2, 89-124.
Traill-Nash, R.W. \& Collar, A.R. (1953). The effects of shear flexibility and rotatory inertia on the bending vibrations of beams, Quart. J. Mech. Appl. Math., Vol. 6, 186-222.
Wang, C.M.; Tan, V.B.C. \& Zhang, Y.Y. (2006). Timoshenko beam model for vibration analysis of multi-walled carbon nanotubes, J. Sound Vibrations, Vol. 294, 1060-1072.

Wang, C.Y.; Ru, C.Q. \& Mioduchowski, A. (2004). Applicability and limitations of simplified elastic shell equations for carbon nanotubes, J. Appl. Mech., Vol. 71, 622-631.
Wang, C.Y.; Ru, C.Q. \& Mioduchowski, A. (2005). Free vibrations of multiwall carbon nanotubes, J. Appl. Phys., Vol. 97, 114323.1-114323.10.
Wang, Q. (2005). Wave propagation in carbon nanotubes via nonlocal continuum mechanics, J. Appl. Phys., Vol. 98, 124301.

Xu, K.Y.; Guo, X.N. \& Ru, C.Q. (2006). Vibration of a double-walled carbon nanotube aroused by nonlinear intertube Van der Waals forces, J. Appl. Phys., Vol. 99, 064303.1-064303.7.
Yoon, J.; Ru, C.Q. \& Mioduchowski, A. (2003). Vibration of an embedded multiwall carbon nanotube, Comp. Sci. Tech., Vol. 63, 1533-1542.

Electronic Properties of Carbon Nanotubes

Edited by Prof．Jose Mauricio Marulanda

ISBN 978－953－307－499－3
Hard cover， 680 pages
Publisher InTech
Published online 27，July， 2011
Published in print edition July， 2011

Carbon nanotubes（CNTs），discovered in 1991，have been a subject of intensive research for a wide range of applications．These one－dimensional（1D）graphene sheets rolled into a tubular form have been the target of many researchers around the world．This book concentrates on the semiconductor physics of carbon nanotubes，it brings unique insight into the phenomena encountered in the electronic structure when operating with carbon nanotubes．This book also presents to reader useful information on the fabrication and applications of these outstanding materials．The main objective of this book is to give in－depth understanding of the physics and electronic structure of carbon nanotubes．Readers of this book should have a strong background on physical electronics and semiconductor device physics．This book first discusses fabrication techniques followed by an analysis on the physical properties of carbon nanotubes，including density of states and electronic structures．Ultimately，the book pursues a significant amount of work in the industry applications of carbon nanotubes．

How to reference

In order to correctly reference this scholarly work，feel free to copy and paste the following：
Matthew Coleman and Marianna Shubov（2011）．A Numerical Study of the Vibrational Spectrum for a Double－ Walled Carbon Nanotube Model，Electronic Properties of Carbon Nanotubes，Prof．Jose Mauricio Marulanda （Ed．），ISBN：978－953－307－499－3，InTech，Available from：http：／／www．intechopen．com／books／electronic－ properties－of－carbon－nanotubes／a－numerical－study－of－the－vibrational－spectrum－for－a－double－walled－carbon－ nanotube－model

INTECH
 open science｜open minds

InTech Europe

University Campus STeP Ri
Slavka Krautzeka 83／A
51000 Rijeka，Croatia
Phone：＋385（51） 770447
Fax：＋385（51） 686166
www．intechopen．com

InTech China
Unit 405，Office Block，Hotel Equatorial Shanghai
No．65，Yan An Road（West），Shanghai，200040，China
中国上海市延安西路65号上海国际贵都大饭店办公楼405单元
Phone：＋86－21－62489820
Fax：＋86－21－62489821
© 2011 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike-3.0 License, which permits use, distribution and reproduction for non-commercial purposes, provided the original is properly cited and derivative works building on this content are distributed under the same license.

[^0]: ${ }^{*}$ Corresponding author: Marianna A. Shubov, Department of Mathematics \& Statistics, University of New Hampshire, Durham

[^1]: www.intechopen.com

[^2]: www.intechopen.com

[^3]: www.intechopen.com

