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Nagoya 
Japan 

1. Introduction 

The benefits of using carbon nanotubes (CNTs) as probes for scanning probe microscopy 
(SPM) have been recognized for many years.1 Since the initial report on the fabrication and 
use of CNT SPM probes, many accounts of the fabrication of CNT SPM probes, and 
demonstrations of the superior performance of these probes have been published. 
Significant progress has been made since the initial studies by Dai et al.,1, 2 although a 
method for fabricating CNT SPM probes that fully exploits the desirable properties of the 
CNT and is truly reproducible and cost-effective remains elusive. In the present work, we 
detail the specific properties of CNTs that make them appropriate for various SPM methods, 
and review methods for the fabrication of CNT SPM probes. Our review of fabrications 
methods includes a review of methods in the literature, as well as recent, previously 
unpublished methods developed in our laboratory. The goal of this work is to provide a 
concise and up-to-date guide to aid researchers in the further development of CNT SPM 
probes. 
SPM now encompasses several tens of distinct techniques, and is arguably the most widely 
used method to obtain real-space information on surfaces and solid-fluid interfaces; in the 
past several years SPM has been applied even to fluid-fluid interfaces, such as imaging 
living cells in buffer solution.3 The basic block diagram of a general SPM instrument is 
presented in Fig. 1. In all variants of SPM, a probe is brought close to the surface or interface 
of interest, and rastered across the surface/interface while one or more interactions between 
the probe and the surface/interface is transduced and recorded. In many, but not all cases 
one of the transduced interactions is used in a feedback loop to maintain a constant distance 
between the probe and the surface/interface. Scanning tunneling microscopy (STM), the 
first SPM method reported,4 transduces the quantum mechanical tunnel current from a 
sharp metal probe biased relative to a sample. Since the introduction of STM the list of SPM 
methods has grown dramatically. A non-exhaustive list of commonly used SPM methods 
includes several varieties of atomic force microscopy (AFM), which map surface/interface 
morphology by transducing the short-range van der Waals and capillary forces between the 
surface/interface and probe,5-8 magnetic force microscopy (MFM), which maps the stray 
magnetic field above a surface/interface by transducing the force on a magnetic probe due 
to a magnetic or current-carrying sample,9-11 electrostatic force microscopy (EFM), which 
maps the electrostatic field above a surface/interface by transducing the force on a 
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conductive probe biased with a DC voltage relative to the sample,12, 13 and Kelvin force 
microscopy (KFM), which maps the contact potential by transducing the AC component of 
the capacitive force on a conductive probe biased with both AC and DC components relative 
to the sample.14, 15 The demands on the probe vary widely from method to method; 
however, as we will describe here, for many of these methods, carbon nanotubes make an 
excellent probe material. 
 

 

Fig. 1. Block diagram of a generic SPM instrument. Servo electronics are frequently, but not 
always used to maintain a constant sample-probe distance. 

Just as “SPM” describes a family of related microcopy methods rather than a single method, 

“CNT” describes a family of related nanostructures rather than a specific nanostructure; 

CNTs vary widely in number of walls and diameter. Single-wall CNTs (SWNTs) and 

individual walls of multi-wall CNTs (MWCNTs) also differ in helicity – the manner in 

which the graphene lattice is wrapped to form the cylindrical CNT wall. The electronic and 

mechanical properties of a CNT depend, sometimes strongly, on these geometric 

attributes.16 CNTs with a certain diameter and number of walls can be grown by choosing 

an appropriate growth method from the myriad of published CNT growth methods.17 With 

modern purification methods, even SWNTs of a specific helicity can be obtained.18 Further, 

catalytic chemical vapor deposition (CVD) growth methods can be used to make CNTs 

encapsulating metal particles and nanowires,19-21 and methods of plating the exterior of 

CNTs with metals and electrically insulating layers have also been published;22, 23 these 

metal/CNT and insulator/CNT hybrid structures naturally have different electronic, 

mechanical and magnetic properties. Developers of CNT SPM probes therefore have a great 

deal of control over the properties of the CNTs used in probe manufacture. In an effort to 

guide CNT SPM probe developers to the optimal CNT variety for their specific SPM 

application, the following three sections relate CNT attributes to 
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electronic/magnetic/mechanical properties, and further relate those properties to the 

design requirements of probes for various varieties of SPM. 

2. The benefits of CNTs for SPM applications 

2.1 Geometric considerations and probe convolution 

It was recognized many years ago that the shape of CNTs is almost ideal for use as a SPM 
probe. Generally, the goal of SPM is to map some property of a surface/interface in real 
space; however, the image acquired by SPM is not a map of that property of the sample, but 
rather a convolution of the properties of the sample and the SPM probe. This is illustrated 
with an idealized contact-mode AFM experiment in Fig. 2: as the pyramidal probe of Fig. 
2(a) is rastered over the rectangular protrusion, it traces a path that is sloped at the angle of 
the pyramidal probe, rather than vertical like the actual profile of the protrusion. The SPM 
“image” reflects both the shape of the surface and the shape of the probe. As is illustrated in 
Fig. 2(b), the pseudo-one-dimensional nature of CNTs can minimize erroneous features in 
the SPM image due to probe convolution. 
 

 

Fig. 2. Idealized example of tip convolution: a standard SPM probe (a) and a CNT SPM 
probe (b) going over the same square surface feature. Dashed line indicates the path of the 
probe as it is rastered over the surface. This path is recorded as the SPM image. 

In SPM methods relying on long-range forces (e.g. MFM, EFM, etc.), probe convolution is 
more complicated and in many cases can lead to significantly greater difficulty in 
interpreting the resulting SPM image. Here, we use MFM as an exemplar to demonstrate the 
potential of CNT probes for SPM methods relying on long-range forces. 
To a first approximation, the magnetic interaction energy of a probe with a magnetization 
Mprobe(r) at the point r with the magnetic field induced by the sample, Hsample(r) can be 
expressed as 

  
 

( )sample probeprobe volume
E dV  H r M r , (1) 

where the integral is taken over the volume of the probe. As in AFM, the probe is mounted 
on a cantilever driven at a frequency near its resonant frequency. The force gradient due to 
the magnetic interaction (i.e. the second z derivative of interaction energy) weakens or 
enhances the restoring force of the cantilever. The resulting shift in resonance frequency is 
detected as a shift in the relative phases of the driving force and the motion of the cantilever. 
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In practice the cantilever is typically kept a few tens of nanometers above the surface during 
MFM phase mapping to prevent interference of the stronger but shorter-range van der 
Waals and capillary forces. 
Several factors complicate analysis of these MFM phase maps: first, magnetic field decay 

above the sample depends on the lateral wavelength of the magnetization field of the 

sample. More rigorously, a sample with a magnetization field  

 0sin(2 / )x lM M , (2) 

where x is in the plane of the sample surface, will induce a magnetic field that decays 

exponentially away from the surface with the characteristic decay length l. Viz, 

 2
sample exp( / )z l H . (3) 

If Eq. 2 is considered to be a Fourier component of an arbitrary magnetization field, it is 
clear from Eq. 3 that lateral variations in the magnetic field above the sample are effectively 
a low-pass-filtered version of lateral variations in the magnetization field since smaller-
wavelength components of the magnetic field decay more rapidly away from the surface. 
A second complicating factor can be seen from Eq. 1: the phase shift mapped in MFM does 
not arise from a de facto surface-surface interaction as it does in AFM, but rather the 
interaction between the stray magnetic field and the entire volume of the magnetic material 
of the probe; the shape of the entire probe, rather than just the probe apex, contributes to the 
convolution. To illustrate, we compare a typical commercial MFM probe, which is made by 
depositing a few-nanometer layer of magnetic material over an approximately pyramidal 
silicon probe, as shown in Fig. 3(a), with a CNT-encapsulated magnetic nanoparticle MFM  
 

 

Fig. 3. Cartoon of a (a) standard MFM probe composed of a layer magnetic material over a 
pyramidal, non-magnetic probe, and (b) a CNT MFM probe composed of a magnetic 
nanoparticle encased in the tip of a CNT interacting with the stray magnetic field induced 
by a magnetic sample. Note that the CNT SPM probe has a larger fraction of its magnetic 
material closer to the sample surface, where the stray magnetic field is a more faithful 
representation of the samples magnetization field. 
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probe, like those recently reported by Tanaka et al. (fabrication method discussed below).24 

The magnetic catalyst particle used to grow these CNT probes is in the tip of the CNT and 

has a characteristic “carrot”-shape as illustrated in Fig. 3(b). The amount of magnetic 

material in a probe between in a differentially thin slice between z and z+dz increases 

monotonically with increasing z (i.e. increasing distance from the sample surface) from the 

tip of the probe for the standard probe. For the CNT probe, this value increases rapidly in 

the first few nanometers from the tip, but then decreases with increasing z, going to zero at 

tens to a few hundreds of nanometers from the CNT tip. Since this differentially thin slice of 

the probe between z and z+dz interacts with the sample-induced magnetic field at z, and the 

low pass filtering effect of the sample-induced magnetic field increases with increasing z, it 

is clear that less material at larger z is preferential for high-resolution MFM imaging. Unlike 

AFM where a minimal lateral dimension of the probe is desirable, in MFM both a minimum 

lateral and vertical dimension are desirable. Since a finite volume of magnetic material is 

needed in the probe, one must in general balance the criteria of low lateral and low vertical 

dimension. In light of this analysis, due largely to its small effective vertical dimension, CNT 

MFM probes are preferable to standard MFM probes. Indeed, we have found that even 

fairly wide CNT MFM probes (tube radius as large as 60 nm) provide significantly higher 

resolution MFM images than significantly sharper (tip radius of curvature of approximately 

15 nm) standard MFM probes.24, 25 While MFM is the only example of its kind provided here 

CNT SPM probes have been proposed for EFM and other SPM methods relying on long-

range forces based on similar geometric arguments. 

2.2 Mechanical considerations 

The mechanical properties of CNTs have been celebrated for many years and have been the 

subject of hundreds of experimental and theoretical investigations, as reviewed most 

recently by Wang et al,26 and Shokrieh et al.27 As is often cited, the Young’s modulus and 

tensile strength of CNTs are five and 120 times greater, respectively, than those of 304 

stainless steel. Although these simple numbers indicate that CNTs are in general 

mechanically robust, the mechanical properties of CNTs depend on their diameter, number 

of walls, and aspect ratio. To understand how the mechanical properties of CNTs are 

beneficial in SPM applications as well as to select the optimal CNT length, diameter, and 

number of walls for a given SPM method, it is important to consider the forces applied to 

the SPM probe during operation. 

Tip “crashes” are a common problem in almost all forms of SPM; mistakes made in 

approaching the probe to the sample, environmental vibrations large enough to transmit 

through the instrument’s vibration isolation systems, or rastering the probe across a surface 

feature too steep for the servo circuit to avoid, or too large for the servo actuators to 

overcome can all result in a probe-sample collision that applies extremely large transient 

stresses to the probe apex breaking brittle probe materials or plastically deforming metal 

probe materials. While fracture and plastic deformations of CNTs have been observed in 

experimental28-30 and theoretical31, 32 investigations, the strains leading to fracture or plastic 

deformation are unlikely to be encountered in even the most violent tip crash. Unlike more 

common probe materials, both SWNTs and MWCNTs can be deformed to a remarkable 

extent, and regain their original shape when the stress is relieved.33-38 In our experience, 

CNT probe destruction during tip crash is generally the result of failure of the CNT/probe 
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junction, rather than failure of the CNT itself. To minimize stress on the CNT/probe 

junction, the thinnest and longest and therefore most compliant CNT compatible with the 

particular SPM application should be used. As described above, long, thin CNTs also 

minimize tip convolution for most SPM methods. 

In noncontact (NC)- and TappingMode™ (TM)-AFM, and most methods based on NC- and 
TM-AFM (e.g. EFM, MFM, KFM, etc.), the forces applied to the probe under normal 
operation are extremely small. Thus, thin, high-aspect-ratio CNTs can be used for probes. In 
practice, above a certain aspect ratio the resolution is found to decrease with increasing CNT 
length,39 an effect that most authors attribute to thermally excited vibrations in the CNT;39, 40 
however, the extremely high elastic modulus of CNTs results in a very low susceptibility to 
thermal vibrations, and excellent resolution has been reported for CNT SPM probes with 
aspect ratios of more than 50. Interestingly, Carbon Nanotube SPM Probes commercially 
available from NanoSensors™ use 1.2- to 2.4-nanometer-diamter SWNTs or DWNTs 
extending 50 to 750 nm beyond the end of the probe handle, the shortest and widest of 
which still have an aspect ratio comparable to the slenderest CNT AFM probes reported in 
the literature. 
CM-AFM places substantially stricter requirements on the mechanical properties of the 

probe. Since the probe stays in contact with the surface as it is rastered, lateral as well as 

normal forces are applied to the probe. Continuous contact also results in much faster wear 

of the probe tip, especially when imaging high elastic modulus materials. Wear is expected 

to be a problem for any probe material; however, since CNTs have the highest elastic 

modulus of any known material they should be least susceptible to wear. Further, the 

pseudo-two-dimensional nature of the graphitic sheets that comprise the CNT surfaces 

generally present no asperities even on the atomic scale, making them even less susceptible 

to wear. 

While the slenderness of CNTs is expected to provide reduced tip convolution in CM-AFM 

as it does in other methods, it is also expected to result in a more flexible probe – a source of 

concern because of the non-vanishing lateral forces applied to the probe tip during CM-

AFM. However, based on scanning anodic oxidation experiments, Dai et al. reported that 

flexure of the CNT is problematic only at scanning rates significantly faster than those 

generally used in CM-AFM, even for very slender CNT AFM probes,2 again due to the 

CNT’s extremely high elastic modulus. While there is significant controversy regarding the 

bending rigidity of MWCNTs,34 recent theoretical studies suggest that for the same outer 

diameter, a greater number of walls does indeed increase bending stiffness. Further, unlike 

single-, and few-wall CNTs, which soften at relatively low strains due to large-scale 

buckling, more dense CNTs (i.e. CNTs with a greater number of walls), do not soften 

significantly at modest strains because the inner tubes resist buckling. We expect that by 

selecting denser MWCNTs, or CNT growth methods that favor denser MWCNTs, even 

slenderer CNT CM-AFM probes (or alternatively, faster scan rates) than those reported by 

Dai et al. can be realized. 

CNT probes also have great potential for SPM-based nanoindentation. As in other scanning 

probe methods, the large aspect ratio gives CNT nanoindentation probes access to deep 

narrow recesses. Reproducible indentation measurements from the bottom of pits in the 

surface of a commercial polycarbonate DVD were reported by Akita and co-workers.41, 42 

Further, the extremely high elastic modulus of CNTs makes them ideal for indentation 

applications. As in the case of CM-AFM, dense MWCNTs are expected to provide the best 
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performance, since the presence of inner tubes reduces the compressive compliance, and 

increases flexural stiffness, thereby increasing the load necessary for Euler or shell buckling 

of the CNT.  

Perhaps the most compelling benefit of using CNTs as nanoindentation probes, however, 

stems from the atomic-scale near-perfection of their tips. Traditional nanoindentation probes 

are made by mechanically grinding synthetic diamond. The grinding process yields a tip 

that is rough and irregular on the few-angstrom to few-nanometer scale. For extremely 

shallow indents, morphological irregularities result in a significant uncertainty in the 

projected area of the probe-sample contact area, complicating or even precluding 

quantitative analysis of the nanoindentation data. The smooth, hemispherical morphology 

of CNT tips, in conjunction with their high elastic modulus, is expected to reduce these 

uncertainties, possibly allowing quantitative determination of mechanical properties from 

few nanometer, or even sub-nanometer indents. The ability to probe mechanical properties 

to the sub-nanometer length scale would be of great benefit to the study of the tribological 

properties of industrially important thin films, such as gate insulators in VLSI circuits, and 

ultrathin diamond-like carbon films used in hard drives. 

 

 

Fig. 4. SEM image of a single-CNT MFM probe fabricated using an ion-shadowed MPECVD 
fabrication method. 

2.3 Electronic considerations 

The electronic properties of CNTs generally make them a good probe material for SPM 
methods that require a conductive probe. CNTs are capable of carrying tremendous current 
densities.16 Several examples of CNT probes used successfully in EFM, scanning anodic 
oxidation lithography2 and nanoscale surface conductivity measurements.22, 43 While it is 
well known that most synthetic methods produce ~50% semiconducting, and further that 
even metallic CNTs generally have a very sparse density of states (DOS) near the (vacuum) 
Fermi level, empirically it is found that CNT SPM probes function very well for STM.1, 22, 44, 
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45 The excellent performance of CNT SPM probes is somewhat confounding since materials 
with a sparse DOS near the Fermi level generally make poor SPM probes due to the small 
number of states available for electrons to tunnel out of and into. While further study is 
warranted, the absence of this problem in the case of CNT STM probes maybe attributed to a 
larger local DOS (LDOS) at the CNT tip due to broken bonds or the presence of the defects 
that are necessary to form the closed CNT tip.46 In some cases, residual metal catalyst 
particles at the probe tip may also be responsible for broadening the LDOS near the probe 
tip.43 

3. CNT SPM probe fabrication methods 

Mounting a CNT – a definitively nanometer-scale object – on a millimeter-scale SPM probe 

(hereafter called the probe handle), is a non-trivial challenge. Approaches to this problem 

generally fall into one of two categories: direct attachment (DA), in which a previously 

grown CNT is attached to the tip of a SPM probe, and catalyst deposition / CVD methods 

(CDCVD), in which catalyst is deposited on a SPM probe and the CNTs are subsequently 

grown by CVD. Both categories have benefits and drawbacks. Modern DA methods are 

highly reproducible and offer good control of CNT position, angle, and length, but are 

tremendously time consuming. CDCVD methods are generally less reproducible, but much 

faster and less expensive. In the following, we describe the existing variations of DA 

methods, followed by a description of the existing methods of CDCVD methods. Each of 

these sections is organized roughly in order of increasing technical complexity, rather than 

chronologically. For completeness, we note that CNT SPM probe fabrication by 

magnetopheretic,47 and dielectropheretic48 attraction of solvated CNTs to the apex of the 

probe handle immersed in the CNT solution have also been reported; however, these 

methods have not been explored to the extent that CDCVD and DA methods have, being the 

subject of a single publication each. We thus, opt to direct interested readers to the pertinent 

references rather than describing them at length here. 

3.1 Probe fabrication by DA methods 

The first, and simplest DA CNT SPM probe fabrication method is that reported by Dai et al. 

in their seminal 1998 Science paper.1 In this method, bundles of arc-discharge-grown CNTs 

are secured to the probe handle with an acrylic adhesive. While the adhesion between the 

bundles and the probe handle has not, to our knowledge, been studied in detail, some 

authors suggest that sputtering Cr onto the CNT SPM probe strengthens the CNT bundle / 

probe handle junction.49 Optical microscopy is used to align the CNT bundles with probe 

handle during fabrication. Although the authors attest that in most cases one or two CNTs 

extends down below the rest of the bundle, this method does not produce single CNT 

probes.1, 2, 39, 49 In a similar approach, which does purportedly frequently yield single-CNT 

SPM probes, the probe handle is coated with a metal film to increase its conductivity, biased 

at -5 V ~-25 V relative to the CNT boule, and translated toward the CNT boule under the 

view of an optical microscope until a flash is observed.50 While the physics of this 

fabrication method was left largely unexplored, the authors suggest that electrostatic 

attraction is responsible for attracting the CNTs to the apex of the probe handle. The arc 

discharge evidenced by the flash is believed to follow the attached CNT burning through 

due to Joule heating at a defect within the CNT or at a CNT-CNT junction. This burning 
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serves to sever the probe CNT from the boule, leaving, in some cases, an isolated CNT on 

the probe apex. 

Alignment of CNTs with probe handle using microtranslators mounted in an scanning 

electron microscope (SEM) chamber, as first reported by Akita et al.,51, 52 is a greater 

technical challenge relative to the method of Dai et al.,1 and is indeed more time consuming, 

but the results are significantly more consistent and reproducible. In the original report by 

Akita et al., CNTs were first dispersed in a solvent, and aligned perpendicular to the edge of 

a blade by dielectrophoresis. This provided a sparse array of highly aligned CNTs. The 

CNT-decorated blade and the probe handle were then mounted on separate translators 

inside the SEM chamber. The probe handle was aligned with, and then brought into contact 

with a CNT. Although the van der Waals force between the CNT and the probe handle is 

typically strong enough to hold the CNT in place, amorphous carbon is often deposited over 

the CNT/probe handle contact via electron-stimulated deposition by scanning the SEM’s 

electron beam over a very small area around the junction. This method for amorphous 

carbon deposition requires a hydrocarbon background pressure of a few microtorr. 

Hydrocarbon contamination from a diffusion pump provides sufficient carbon feedstock, 

but carbon-containing molecules may have to be intentionally leaked into the chamber for 

the case of low-pressure turbo-molecular pump (TMP)-pumped chambers. The final step is 

generally to cut the CNT of the newly fabricated CNT SPM probe free of the blade by 

stopping the electron beam over the CNT.53 In a variant of this method used to make MFM 

probes, however, the probe is brought within one micrometer of the base of a CNT, and the 

CNT dislodged from the substrate and attached to the probe handle by applying a DC 

potential to the probe handle.54 This obviates the need for cutting of the CNT – an important 

consideration in the fabrication of MFM probes since the magnetic particle resides in the tip 

of the CNT. In spite of their inherent cost and complexity, SEM-based DA methods are 

currently the most reliable, reproducible and versatile method of CNT fabrication. In 

addition to AFM probes,51-53, 55 and MFM probes,54 nanoindenter probes,35, 41, 42 four-point 

surface conductivity probes,22 and STM probes45 have all been fabricated by various SEM-

based DA methods. 

3.2 Probe fabrication by CDCVD methods 

Surprisingly, the simplest CDCVD CNT SPM probe fabrication method – simply depositing 

a layer of catalytically active metal on the probe handle and exposing to CvD conditions – 

was among the last reported CDCVD methods.24, 56, 57 In the first report of simple CDCVD 

fabrication by Wongwiriyapan et al., the authors deposited 0.5 nm~2 nm Fe films atop 5 

nm~10 nm Al buffer layers on W STM tips, and grew CNTs using thermal CVD with a CH4 

carbon source. A significant drawback to thermal CVD is that the resulting CNTs are 

randomly oriented. Our group opted instead for microwave plasma enhanced CVD 

(MPECVD).24, 43, 57, 58 In our MPECVD apparatus, a 200 V bias is applied between the sample 

holder and a second electrode held ~10 cm above the sample holder (sample holder 

negative). The narrow velocity distribution of the ions that induce the CNT growth ensure 

that the CNTs grow toward the upper electrode with an angular distribution of 

approximately three degrees.59 Using MPECVD with a 15-nm Co catalyst films deposited on 

commercial AFM cantilevers, Tanaka et al. fabricated high-resolution MFM probes.24 

Sakamoto et al. fabricated SPM probes decorated with Pd nanowire/MWCNT 
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heterostructures using MPECVD with a thin Pd catalyst film deposited on AFM cantilevers. 

In both of the previously mentioned reports, the probe handle and the lower face of the 

cantilever were covered with an array of CNTs. Methods for tip-selective employing 

MPECVD will be described below. 

Efforts to place the catalyst, and thus the subsequent CNTs, selectively at the tip of the probe 
handle by exploiting the electric field enhancement at the sharply curved tip were first 
reported by Hafner et al,40 and Cheung et al.60 This method used dielectropherisis to attract 
Fe or FeMo impregnated alumina particles to the near-tip area of the probe handle, and 
subsequent thermal CVD with an ethylene feedstock for CNT growth. The resulting few-
nanometere-diameter CNTs grew along the probe handle surface due to the strong van der 
Waals attraction, until they reached the probe apex. Since the energy to bend the CNT 
around the sharp tip of the probe handle exceeded the energy of the van der Waals 
attraction, the CNTs tended to extend out from the tip of the probe handle. Due to the non-
oriented growth of thermal CVD, however, the length distribution of the CNT SPM probes 
was quite large, necessitating trimming. Tung, et al. exploited the enhanced electric field 
around the apex of a W STM tip to selectively electroplate Co catalyst near the apex.58 
MPECVD growth yielded CNTs highly aligned along the long axis of the probe handle. Due 
to the controllable growth direction of the CNTs, CNT length can be controlled by adjusting 
growth time, and no trimming is necessary. The drawback of Tung’s method (and all 
MPECVD-based methods) for some SPM applications is that MPECVD-grown CNTs tend to 
exhibit large diameters (15 nm~100 nm depending on catalyst size and chemical 
composition), compared to CNTs grown by thermal CVD. 
A number of other methods for selectively depositing catalyst near the probe handle apex, 

and forcing the CNTs to grow in the desired direction during CVD have been reported. 

Charles Lieber’s group at Harvard University developed and refined a method commonly 

known as pore growth wherein electrochemical etching was used to make pores in the tip of 

a Si AFM probe parallel to the long axis of the probe handle. Catalyst deposited in the pores 

yielded CNTs that were forced to grow along the pore direction during CVD growth.39, 61, 62 

For SSRM applications, we recently presented a method for the fabrication of nano-brushes 

of coaxial Pd nanowire/MWCNT heterostructures using a custom-fabricated area-selective 

electroplating cell to deposit Pd catalyst  on the top ~1 μm of a commercial Si AFM probe, 

and the ion-induced alignment properties of MPECVD to force the Pd/MWCNTs to grow 

parallel with the probe handle long axis.43 More recently, we have developed a tip-selective 

variation on the method of Tanaka et al. described above. In this method, a FeNi alloy 

catalyst is deposited only on the forward face of a commercial Si AFM probe. The following 

MPECVD grows highly aligned, FeNi-nanoparticle-containing CNTs. While catalyst is 

deposited over a few square microns of the probe handle surface, the catalyst film at the 

probe handle apex blocks ions coming out of the plasma, preventing them from striking 

portions of the catalyst film away from the apex. This ion shadowing effect can be used to 

grow a single CNT at the probe handle apex with ~70% reproducibility. The alignment and 

length of the CNT at the probe handle apex can be controlled purely by growth conditions. 

A representative probe of this type is shown in Fig. 3. 

Because of the scalability of CDCVD methods a number of authors have attempted to 
develop mass-production CDCVD CNT SPM probe fabrication methods. Yenilmez et al. 
reported a method in which a wafer of silicon AFM probes was spin coated with a few-
micron layer of photoresist leaving only the pyramidal probe tips above the resist layer.63 
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Thereafter, a suspension of FeMo-impregnated alumina particles was spin coated on the 
wafer, the photoresist removed, and CNTs grown using thermal CVD with a methane 
carbon source. Unfortunately, this wafer-scale method produces CNTs that extend 
1μm~10μm beyond the end of the probe handle, necessitating that every CNT SPM probe be 
individually shortened by electrical discharge.1 

4. Summary and conclusions 

Due to their simple shape, high aspect ratio, exceptional mechanical and electronic 

properties CNTs have for many years been an extremely tempting material for scanning 

probe microscopists. Although the inherent complexities and uncertainties of CNT SPM 

probe fabrication have thus far precluded the sort of uniform wafer-scale production that 

would lead to affordable and readily available commercial CNT SPM probes, the 15 years 

since Dai et al.’s seminal paper, has seen the development of a wide array of serial, but 

extremely effective CNT SPM probe fabrication methods, and the application of these 

probes to wide array of SPM methods and a wide array of samples. In the preceding text, we 

have attempted to provide a one-stop guide to this body of work, in the hope of assisting 

future developers in their efforts to exploit the unique properties of CNTs in still more 

varieties of SPM. We expect that the coming years will see the variety of CNT SPM probes 

and the range of applications of CNT SPM probes expand even further. 
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