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1. Introduction 

The rapid development of nanoscience and nanotechnology provides lots of new 
opportunities for nonlinear optics. A growing number of nanomaterials have been shown to 
possess remarkable nonlinear optical (NLO) properties, which promotes the design and 
fabrication of nano and nano-scale optoelectronic and photonic devices (Xia et al. 2003; 
Avouris et al. 2008; Hasan et al. 2009; Bonaccorso et al. 2010; Loh et al. 2010; Coleman et al. 
2011). The wonderful carbon allotropes discovered in recent decades are the most 
representative products of nanotechnology: from 3D carbon nanoparticles (graphite), to 0D 
fullerenes, to 1D carbon nanotubes (CNTs), and then to 2D graphenes discovered most 
recently. Interestingly, all of these nano-carbons exhibit diverse NLO properties. For 
instance, carbon black suspensions show strong thermally-induced nonlinear scattering 
(NLS) effect and hence optical limiting (OL) for intense ns laser pulses (Mansour et al. 1992); 
fullerenes show large third-order optical nonlinearity and reverse saturable absorption 
(RSA) at certain wavelength band (Tutt et al. 1992); CNTs show ultrafast second- and third-
order nonlinearities and saturable absorption (SA) in the near infrared (NIR) region (Hasan 
et al. 2009); and graphenes show ultrafast carrier relaxation time and ultra-broad-band 
resonate NLO response (Bonaccorso et al. 2010). 
Optical limiting is an important NLO phenomenon, which can be utilized to protect delicate 

optical instruments, especially the human eye, from intense laser beams (Tutt et al. 1993). As 

shown in Fig. 1, ideally an optical limiter should strongly attenuate intense, potentially 

dangerous laser beams, while exhibiting high transmittance for low intensity ambient light. 

Generally speaking, there are two main mechanisms for passive OL: nonlinear absorption 

(NLA) and NLS. The former can be further divided into multi-photon absorption (MPA), 

RSA and free-carrier absorption (FCA). Up to date, numerous inorganic and organic 

materials, such as phthalocyanines (O'Flaherty et al. 2003; de la Torre et al. 2004), porphyrins 
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(Blau et al. 1985; Senge et al. 2007), organic dyes (He et al. 1995; He et al. 2008), metal 

nanoclusters (Sun et al. 1999; Wang et al. 2009), quantum dots (He et al. 2007), etc. have been 

found to possess OL response. Carbon-related nanomaterials are actually a main branch in 

the field of OL materials (Chen et al. 2007; Wang et al. 2009). It has been confirmed that 

fullerene shows RSA induced OL, and nanotubes and graphene show NLS induced limiting. 

However, the most important point is that the advantage of these carbon nanomaterials 

manifests themselves in tailorable chemical properties by binding functional materials, e.g., 

polymers, organic molecules and metal nanoparticles, forming versatile OL composites 

(Chen et al. 2007; Wang et al. 2009; Bottari et al. 2010). 
The large surface energy of nanotubes imposes restrictions on the formation of individual 
nanotubes in most inorganic and organic solvents. For solubilized nanotubes, one can 
employ polymers or organic molecules to functionalize, covalently or noncovalently, the 
surface of nanotubes. In the same manner, pristine single- or few-layer graphene is also 
difficult to exist stably in many organic solvents. It is thus very significant to design and 
synthesize nanotube- and graphene-based solution-processed organic/polymeric materials, 
which is a key step for the development of viable nano-carbon OL devices (Chen et al. 2007; 
Wang et al. 2009). 
 

 

Fig. 1. The response of an ideal optical limiter. 

2. Mechanisms 

2.1 Nonlinear scattering (NLS) 
Thermally induced NLS may be the most common nonlinear phenomenon for various 
nanomaterial systems, such as nanotubes, nanorods, nanowires, nanosheets, nanoribbons, 
nanospheres, nanodots etc. (Wang et al. 2009). An effective scattering process can disperse 
the highly intense beam into a larger spatial dimension and hence reduce the intensity of the 
direct incident beam. According to Mie scattering theory, the nanoscale particles alone 
cannot scatter a light beam effectively. The effective scattering arises from the formation of 
scattering centres with size of the order of the wavelength of the incident laser beam. The 
formation of scattering centres, initiating from nanoparticles, has three possible origins. 
The induced scattering centres consist of two origins: the formation and growth of solvent 
bubbles, which is due to the thermal energy transfer from the nanotubes to the solvent; and 
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the formation and expansion of carbon microplasmas, which is due to the ionization of 
nanotubes. The former takes place at the lower incident energy fluence, while the latter 
takes place at higher fluences. Belousova et al. developed a theoretical model to explain the 
OL of carbon nanoparticles (Belousova et al. 2003; Belousova et al. 2004). In this model, the 
whole limiting process is described theoretically by three steps: the dynamics of the 
formation and expansion of solvent vapour bubbles; the Mie scattering of the expanding 
bubbles; and the nonlinear propagation through the scattering medium. Although the 
objects of modeling are quasi-spherical carbon nanoparticles, the Mie theory-based 
prediction works qualitatively for nanotubes and is helpful for understanding bubble 
growth dynamics and thus the OL process in CNT suspensions. As an example, Fig. 2a 
shows the variations of absorption and scattering cross sections as radius of gas bubbles in 
carbon nanoparticle suspensions, and Fig. 2b illustrates the inside pressure, expansion rate 
and radius of a gas bubble as functions of illumination time (Belousova et al. 2004). 
Moreover, Belousova’s simulation indicates that the scattering cross section increases 
significantly with the increasing size of vapor bubbles, meanwhile the absorption cross 
section decreases until it is negligible when the bubbles grow, effectively limiting the 
incident power. 
 

 

Fig. 2. Variations of (1) absorption and (2) scattering cross sections as radius of gas bubbles 
in carbon nanoparticle suspensions (a), and the inside pressure (1), expansion rate (2) and 
radius (3) of a gas bubble as functions of illumination time (b) (Belousova et al. 2004). 

2.2 Reverse saturable absorption (RSA) 
The process of RSA involves multi-step, excited state absorption (ESA) from the singlet 

ground state to the first excited triplet state via the first excited singlet state. The most 

representative materials include phthalocyanines, porphyrins, fullerenes, etc. A general five-

level model, as shown in Fig. 3, has been considered to simulate the RSA process in the 

phthalocyanine system (O'Flaherty et al. 2003; O'Flaherty et al. 2004). The vibrational levels 

of the electronic states are ignored. Generally, for this five-level system after initial 

excitation, the first excited singlet state S1 is populated, from here the electrons may be 

subsequently excited into S2 within the pulse width of the laser. Once in S2, they rapidly 

relax to S1 again. From S1, the population may undergo an intersystem crossing to the first 

excited triplet T1 with a time constant τisc and thereafter undergo excitations and relaxations 

to and from T2. Thus, the population is exchanged cyclically between S1 and T1, as the 
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lifetime of T1 (τph) is very long in comparison to τisc. With further simplify matters, it was 

assumed that relaxation out of states S2 and T2 is very rapid so that the population of these 

two levels may be neglected. Furthermore, stimulated emission from S1 is excluded due to 

the small fluorescence quantum yield. 

 

 

Fig. 3. Illustration of a five-level RSA process. Si represents singlet levels, and Ti represents 
triplet levels. Solid arrows imply an excitation resulting from photon absorption and dashed 
arrows represent relaxations. 

The extinction of incident beam is governed by the propagation equation  

 ∂I/∂z=-ǂNLI=-(σ0N1+σsN2+σTN3)I (1) 

where the nonlinear absorption coefficient ǂNL is composed of the ground state absorption 
σ0N1, the first excited singlet state absorption σsN2 and the first excited triplet state 
absorption σTN3. N and σ refer to the population and absorption cross section of specific 
energy levels. Under the steady state approximation ǂNL can be derived in the form, 

 ǂNL(F,Fsat,κ)=ǂL(1+F/Fsat)-1(1+κF/Fsat) (2) 

where ǂL is the linear absorption coefficient, κ is the ratio of excited state cross section (σex) 

to ground state cross section (σ0), κ=σex/σ0≈σT/σ0, F represents the energy density and Fsat is 
the energy density at which the ground state absorption saturates (O'Flaherty et al. 2003; 
O'Flaherty et al. 2004). This model reproduces the RSA effects and highlights the crucial role 
that the ESA plays in the overall absorption coefficient. Considering this expression for the 

nonlinear absorption coefficient, one can state that higher κ values combined with lower Fsat 
values define more efficient OL ability. 

2.3 Multi-photon absorption (MPA) 
A multi-photon process is one which occurs through the simultaneous absorption of two or 
more photons via virtual states in a medium, as shown in Fig. 4. Many metals, 
semiconductor nanomaterials, quantum dots, organic chromophores and conjugated 
polymers possess multi-photon absorption induced OL effects (He et al. 2008). For two-
photon absorption (TPA), the process can be described by a propagation equation with 
“Beer-Lambert” format  

 ∂I/∂z=-(ǂ+ǃI)I (3) 
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where ǂ in unit of m-1 is the linear absorption coefficient and ǃ in unit of m/W is the TPA 
coefficient. Provided that the linear absorption is very small at lower intensity, we obtain the 
solution for the transmission intensity 

 I(L)=I0/(1+I0ǃL). (4) 

It is clearly seen from the solution that the transmission intensity decreases as the incident 
intensity increases, resulting in OL phenomenon. The ability of TPA induced OL is strongly 
dependent on the TPA coefficient, the incident intensity, as well as the propagation length L. 
The TPA coefficient is related to the TPA cross section, a function of the exciting 
wavelength. The OL of TPA materials is more effective for shorter incident pulses, since the 
intensity of shorter pulses (ps or fs) is much higher than that of longer pulses (ns). The three-
photon absorption process exhibits very similar characteristics. 
 

 

Fig. 4. Multi-photon absorption process. 

In addition, it is worth discussing the difference of RSA and TPA processes under high 
intensity approximation. For RSA process, the nonlinear transmittance originates completely 
from the non-saturable ESA at very high intensities, hence tends to converge to a minimum 
transmittance TRSA, which had been observed by Blau et al. in tetraphenylporphyrins in 1985 
(Blau et al. 1985). The authors deduced analytically the expression for the minimum 
transmittance TRSA, given by  

 TRSA=T0κ (5) 

where κ=σex/σ0 is the ratio of excited state cross section (σex) to ground state cross section 
(σ0). Obviously, the minimum transmission for RSA is a non-zero quantity, which is 
dependent on κ, as well as the low intensity linear transmittance T0. For TPA process, the 
transmitted intensity I(L) approaches a constant 1/ǃL at very high intensity I0→+∞, and 
hence the final transmittance TTPA=I(L)/I0 can reach to zero, resulting in a complete optical 
limitation. On the contrary, the RSA process theoretically cannot realize the complete 
limiting operation. Such difference between RSA and TPA is important for designing 
practical optical limiters. 

2.4 Free-carrier absorption (FCA) 
In semiconductors, carriers can be generated by one-photon or two-photon exciting. As 
shown in Fig. 5, these electron/hole pairs, by absorbing additional photons, can be excited 
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to states higher/lower in the conduction/valence band. The process is named ‘free-carrier 
absorption’, which is similar to ESA in molecular system (Boggess et al. 1986). It should be 
pointed out that there are four possible processes in a FCA medium – linear absorption, 
TPA, one-photon induced FCA and two-photon induced FCA. For the simplest case, the 
linearly excited one-photon induced FCA in Fig. 5 can be described by the propagation 
equation 
 

 

Fig. 5. Free-carrier absorption in semiconductor. 

 ∂I/∂z=-(ǂ+σFCAN)I, (6) 

where σFCA is the FCA cross section. With the carrier density N given by ∂N/∂t=ǂI/hǎ, one 

can get an approximate solution for the propagation equation 

 T=T0/[1+(1-T0)(F0σFCA/4hǎ)], (7) 

where T0 is the linear transmission. When the peak incident fluence F0 increases, the total 

transmission T decreases, resulting in an OL effect. For the most complicated case, all four 

processes take place in a FCA medium, then we have (Boggess et al. 1986; Tutt et al. 1993) 

 ∂I/∂z=-(ǂ+ǃI2+σFCAN)I (8) 

and 

 ∂N/∂t=ǂI/hǎ+ǃI2/2hǎ. (9) 

A range of semiconductor nanoparticles, metal nanocomposites and quantum dotes exhibit 

FCA-induced OL effects. The FCA-induced NLO response is independent on the incident 

pulse duration, provided that the duration is shorter than the diffusion and recombination 

processes of free carriers. FCA is also insensitive to the particle size and geometry. It can 

work in both solid state films and suspensions, covering broad temporal and wavelength 

ranges. In many nanomaterials, FCA can coexist with NLS and TPA since the generation of 

free carriers can arise from a TPA process. 

www.intechopen.com



 
Nonlinear Optical Properties of Graphene and Carbon Nanotube Composites 

 

403 

3. Graphene composites 

Doubts about the stability of 2D crystals were finally dispelled by the discovery of graphene, 
a hexagonally symmetric, covalently bonded 2D carbon monolayer (Novoselov et al. 2004; 
Novoselov et al. 2005; Geim et al. 2007). Possessing excellent electronic properties, graphene 
provides a route to study fundamental quantum phenomena, such as the quantum hall 
effect in condensed-matter materials (Geim et al. 2007). Up to 105 cm2/V·s mobility of charge 
carriers, which behave asmassless Dirac fermions in graphene, motivates the development 
of graphene-based electronic devices, challenging traditional silicon-based electronics (Geim 
et al. 2007). 
In addition to the outstanding electronic, mechanical and thermal properties, graphene has 
been discovered to possess unique optical and photonic properties, which are summarized 
as follows. 
1. The Dirac electrons in graphene have a linear dispersion between energy and 

momentum near the Dirac point, resulting in a continuously resonate optical response 
in a broadband spectral region from the visible to the near infrared (> 2.5 Ǎm) (Geim et 
al. 2007). 

2. Monolayer graphene shows wavelength independent linear optical absorption. For any 
low intensity light wave, the absorbance rigorously follows π·ǂ≈2.3% per layer, where ǂ 
is the fine-structure constant. As a result, the absorbance of multilayer graphene is 
proportional to the number of layers (Nair et al. 2008). 

3. Graphene possesses ultrafast carrier dynamics due to the ultrafast carrier-carrier 
scattering and carrier-phonon scattering. Under the fs pulse excitation, the intraband 
equilibrium time is as short as ~100 fs and the intreband relaxation time is on a ps 
timescale (Dawlaty et al. 2008). 

4. Graphene has significant NLO properties. Depending on the different experimental 
conditions, graphene and graphene oxide show NLS (Wang et al. 2009), ESA, TPA (Liu 
et al. 2009) or saturable absorption (SA) (Bao et al. 2009; Sun et al. 2010). Four-wave 
mixing experiment confirmed that the effective nonlinear susceptibility |χ(3)| is as large 
as 10-7 esu in graphene flakes (Hendry et al. 2010). The second harmonic generation was 
also observed from a multi-layer graphene film (Dean et al. 2009). 

5. Graphene oxide (GO) is a 2D network of mixed sp2 and sp3 carbon bondings. The 
isolated nanoscale sp2 domains in the sp3 matrix leads to a bandgap in GO. The width 
of the bandgap can be controlled by the size, shape and fraction of the sp2 clusters, 
achieving a tunable photoluminescence and electroluminescence (Eda et al. 2010; Loh et 
al. 2010). 

Before 2008, the study of photonic and optoelectronic properties of graphene have remained 

theoretical. With the help of development of the low-cost, high-yield method for mass 

production of graphene, the experimental study of NLO properties of graphene and 

graphene derivatives has developed very rapidly since 2009. Hereinafter, we introduce the 

NLO properties of graphene and its functionalized derivatives. 

3.1 Graphene and graphene oxide 
In contrast to micromechanical cleavage (Novoselov et al. 2005) and epitaxial growth (de 
Heer et al. 2007), a recently developed liquid-phase exfoliation technique provides a low-
cost, high-yield method for mass production of unoxidized, defect-free graphene 
(Hernandez et al. 2008; Lotya et al. 2009). In this method, the sieved graphite powder was 
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dispersed in a range of organic solvents. After the low power sonication treatment and 
subsequent mild centrifugation to remove macroscopic aggregates, the homogeneous dark 
dispersions were obtained. All dispersions were stable against sedimentation and with only 
minimal aggregation occurring over a period of weeks. Experimental and theoretical 
analyses reveal that the surface energies of the selected solvents, e.g., N-methyl-2-
pyrrolidone (NMP), N,N-dimethylacetamide (DMA), g-butyrolactone (GBL) etc., match very 
well that of graphite (~70–80 mJ m-2), resulting in a minimal energy cost of overcoming the 
van der Waals forces between two graphene sheets, hence the effective exfoliation to 
graphene single or few layers (Bergin et al. 2008; Coleman 2009). 
 

 

Fig. 6. TEM image, Raman spectra (a) and broadband OL (b) of the graphene dispersions. 
Limiting threshold and scattered intensity as functions of surface tension of solvents (c). 
Radius of the bubbles as a function of surface tension of solvents(d) (Wang et al. 2009). 

Figure 6(a) show the TEM image and the Raman spectrum of graphene flakes prepared in Ǆ-
butyrolactone by the liquid-phase exfoliation technique. In addition to the clear TEM graph 
of the single-layer graphene flakes, the invisible D peak, as well as the clear G line and 
characterized 2D band, in the Raman spectrum witness the existence of defect-free 
monolayer and few-layer graphenes. We recently demonstrated that the liquid-phase 
exfoliated graphene dispersions exhibit broadband OL for ns pulses at 532 and 1064 nm, as 
shown in Fig. 6(b) (Wang et al. 2009). NLS, originating from the thermally induced solvent 
bubbles and microplasmas, is responsible for this nonlinear behaviour. The surface tension 
of the solvents has a strong influence on the OL performance of the graphene dispersions. 
As shown in Fig. 6(c), it is clear seen that the lower the surface tension, the smaller the 
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limiting threshold and the larger the scattered intensity. We established a simple model to 
estimate the radius of the gas bubbles as a function of the surface tension of the dispersant. 
The result in Fig. 6(d) reveals that the lower surface tension results in the larger bubble size, 
hence more effective scattering and OL. In addition, the graphene flakes exhibit a similar OL 
response to that of C60 and SWNTs. 
Zhou et al. prepared a stable graphene solution by reducing GO using a simple and clean 
hydrothermal dehydration method, which can effectively remove oxygen-containing groups 
in GO and restore the aromatic rings (Zhou et al. 2009). The NLO properties of the reduced 
GO were measured by adsorbing the graphene on the end of an optical fiber, which guides a 
1560 nm cw or 5 ns pulses laser beam for irradiation. The graphene exhibits a tunable NLA 
as well as OL response for the NIR light by changing the preparation conditions, i.e., 
temperature and pressure, and hence the oxygen functional groups and structural defects in 
graphene, which was confirmed by XPS, NMR and Raman spectroscopy. 
The NLO properties of GO were studied by Liu et al. (Liu et al. 2009). Synthesized using the 
modified Hummers method, the GO was dispersed in DMF for the linear optical and NLO 
characterizations. UV-Vis spectrum of the GO dispersions shows an absorption peak at 268 
nm, followed by a monotonously decreasing towards long wavelength region. Individual 
GO sheets were observed in AFM graph. The pulse open aperture Z-scan study verified that 
the RSA and TPA are mainly responsible for the NLO response of the GO solutions under ns 
and ps pulses at 532 nm, respectively. However, the contribution from NLS was not 
reported in Liu’s paper. Feng et al. investigated the NLO and OL properties of a range of 
graphene derivatives, namely, graphene nanosheets, GO nanosheets, graphene nanoribbons 
and GO nanoribbons (Feng et al. 2010). Broadband NLO responses at 532 and 1064 nm were 
demonstrated in these graphene derivatives. Whereas the four derivatives exhibit different 
OL behavior, the NLS dominates the NLO response at 1064 nm while both the NLS and 
NLA contribute at 532 nm. Overall, the reduced graphenes possess better OL performance 
than the corresponding GO precursors due to the increased conjugation and crystallinity. 
The similar phenomenon was observed by Zhao et al., who found that the limiting response 
of graphene nanosheets is better than that of the GO nanosheets owing to the extended π 
conjugation in graphene (Zhao et al. 2010). In addition to the solvent dependent limiting 
properties studied, broadband limiting effect was realized as well using graphene 
nanosheets, which exhibit promising limiting at 532, 730, 800 and 1300 nm. 
As with CNTs, the demonstration of graphene for OL renders graphene and related 
materials as a new class of nanomaterial for photonic and optoelectronic nanodevices 
(Bonaccorso et al. 2010). In the same way that nanotubes serve not only as nonlinear scatters 
but also as host material for functional counterparts, which we introduce below, this unique 
2D nanomaterial could be a promising host for an optical limiter as well as for other 
photonic devices. Benefiting from the rich oxygen-containing groups, such as carboxyl and 
carbonyl groups on the edge and hydroxyl and epoxy groups on the basal plane, GO sheets 
can be decorated readily with a range of functional organic and inorganic materials by 
covalent or noncovalent combination, forming diverse nanohybrids with certain function 
(Loh et al. 2010). 

3.2 Organic molecule functionalized graphene composites 
For the NLO and OL applications, Xu et al. synthesized the first graphene hybrid by 
functionalizing with a metal-free porphyrin - TPP-NH2. As shown in Fig. 7, the soluble 
graphene nanohybrid exhibits an improved OL performance compared with C60, GO, TPP-
NH2 and the mixture of the TPP-NH2 and GO (Xu et al. 2009). A more detailed NLO study 
reveals that the combination of multiple nonlinear mechanisms, i.e. RSA, TPA, NLS, as well 
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as photo-induced electron transfer results in the superior OL performance of the nanohybrid 
(Liu et al. 2009). The similar accumulation effect resulting in improved OL was confirmed in 
oligothiophene-graphene (Liu et al. 2009; Zhang et al. 2009) and fullerene-graphene (Liu et 
al. 2009; Zhang et al. 2009) nanohybrid systems as well. Very recently, the NLO properties of 
covalently linked graphene-metal porphyrins composite materials, namely, graphene-zinc 
porphyrin and graphene-copper porphyrins, were reported by Krishna et al. (Krishna et al. 
2011). Effective combination of the different OL mechanisms, say, NLA, TPA, NLS and 
energy transfer in the graphene-porphyrin composites results in the improved OL effect for 
ns pulses at 532 nm. In the hybrid system, the existence of NLS, arising from the graphene 
moiety, can largely increase the damage threshold of the nano-composites. An energy 
transfer model based on the graphene-porphyrin hybrids was developed and verified that 
the energy transfer from porphyrin to graphene enhances the TPA of the system. 
The role of energy transfer in the graphene based NLO materials was investigated by 
Mamidala et al., who blended the electron acceptor GO with positively charged porphyrin 
and negatively charged porphyrin, respectively (Mamidala et al. 2010). The NLO response 
of the positively charged porphyrin-GO system is much larger than that of the negatively 
charged porphyrin-GO system, confirming the important role of the energy transfer in such 
donor-acceptor complexes. While NLS dominates the OL effect, the energy transfer 
facilitates the deactivation of the hybrids, resulting in energy dissipation via the non-
radiative decay and hence the effective heat accumulation in the hybrids or heat transfer 
from GO to the adjacent solvent. More pronounced energy transfer effect was seen in the 
porphyrin-Au nanoparticle complex, probably due to the better electron accepting ability of 
Au in comparison with the GO. 
The analogous energy/electron transfer enhanced NLS was observed from a GO-dye ionic 

complex (PNP+GO-) (Balapanuru et al. 2010). Compared with the pristine GO and the dye 

PNPB, the charge-transfer composite exhibits much larger light scattering signal as well as 

nonlinear transmission and OL for ns pulses at both 532 and 1064 nm. The organic dye can 

effectively absorb the incident laser energy and transfer to the GO, resulting in the 

ionization of the GO or further transfer to solvent, forming microplasmas or vapor bubbles 

for NLS. From the above works, it should be pointed out that the energy transfer effect may 

inspire deeply the design and synthesis of the new OL hybrid materials. 

 

 

Fig. 7. The structure of the TPP-NH2 functionalized GO (a) and the NLO response of the 
TPP-NH2-GO compared with C60, GO, TPP-NH2 and the mixture of the TPP-NH2 and GO 
(b) (Xu et al. 2009). 
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Very recently, we synthesized a soluble GO covalently functionalized with zinc 
phthalocyanine (PcZn), by an amidation reaction (Zhu et al. 2011). As shown in Fig. 8(a), the 
formation of an amido bond between PcZn and GO was confirmed by X-ray photoelectron 
and Fourier transform infrared spectroscopy. Fig. 8(b) presents the OL behavior of the GO-
PcZn, GO and PcZn. It can be clearly seen that at the same level of linear transmission, GO-
PcZn dispersions present much better OL performance than both GO and PcZn. As a result 
of the covalent link between GO and PcZn, The enhanced OL response at 532 nm can be 
attributed to the effective combination of the different NLO mechanisms, i.e., RSA of PcZn, 
and NLS and TPA of GO. It is likely that the significant scattering signal from the pure PcZn 
solution results from the formation of PcZn nanoparticles, as reported in []. Although PcZn 
did not make any significant contribution to the OL at 1064 nm [], it is surprising that the 
GO-PcZn dispersions have much greater OL response than GO. Coincidently, as shown in 
Fig. 8(b), the scattered curve from the GO-PcZn dispersions is steeper than that from GO as 
well. Whereas the origin of such large improvement of the OL at 1064 nm is not clear yet, it 
is possible that the energy transfer plays some role for the enhanced OL. After all, the GO-
PcZn hybrid material has much better broadband NLO and OL performance than the GO 
alone. 
 

 

Fig. 8. The structure of the GO-PcZn composite (a) and the OL response of the GO-PcZn (b) 
(Zhu et al. 2011). 

3.3 Polymer functionalized graphene composites 
As mentioned above, graphene is insoluble in many organic solvents. To obtain solution-

processed graphene polymer composites, the thermally-reduced graphene oxides (RGOs) 

were functionalized with poly(N-vinylcarbazole) (PVK) through generation of anions along 

the PVK backbone by using sodium hydride, followed by subsequent nucleophilic addition 

of these anionic species into the π-conjugated structure of the RGO platelets (Li et al. 2011). 

The structure of the RGO-PVK is depicted in Fig. 9(a). The wt% of RGO in the resulting 

polymer was estimated as 11.21%. Sonicated for 10 min in THF, the RGO-PVK dispersions 

are stable for at least one month (see Fig. 9(b)). Typical open aperture Z-scan results are 

depicted in Figs. 9(c) and 9(d). In contrast to PVK, which does not show any OL effect, the 

resulting hybrid material RGO-PVK displayed very good broadband NLO and OL 

responses at 532 and 1064 nm due to the effective combination of different NLO 

mechanisms, say, NLS and TPA. 
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Midya et al. synthesized a polymer functionalized RGO composite. The polymer used to 
covalently link with RGO is based on fluorene-thiophene-benzothiadazole as a donor-
spacer-acceptor triad (Midya et al. 2010). With the good solubility in a range of common 
used organic solvents, the composite solution exhibits excellent OL performance for 532 nm 
ns pulses. With the help of the donor-acceptor electron transfer structure, the polymer-RGO 
hybrids show more effective NLS and hence OL than that of carbon nanotubes, RGO, or the 
polymer alone. However, the TPA from the polymer triads of the hybrids cannot be ruled 
out. 
Aiming to the solid state NLO devices, Zhao et al. studied the OL response of graphene and 
GO nanosheets in a polymer gel matrix polyvinyl alcohol (PVA) (Zhao et al. 2010). The 
graphene-PVA composites exhibit a transparent and solid-like structure and possess 
remarkable OL effect for ns pulses at 532 nm. Operated at 10 Hz pulses, the graphene-PVA 
matrix emerge bleaching and degradation of the limiting performance after the first a few 
shots. This issue can be fixed by melting the PVA at 60-80 oC to rehomogenize the graphene 
in gel. 
 

 

Fig. 9. The structure (a) and the solubility (b) of the RGO-PVK composite. The NLO 
responses of the RGO-PVK at 532 nm (c) and 1064 nm (d) (Li et al. 2011). 

3.4 Nanostructure functionalized graphene composites 
The linking of inorganic nanostructures on graphene nanosheets can result in the breakage 
of the electronic and molecular structures and the extended π conjugation of the graphene, 
and hence lower the device performance. Recently, Feng et al. developed a facile approach 
to preserve the lossless formation of graphene composite, in which the graphene was 
decorated with CdS quantum dots (QDs) by using benzyl mercaptan (BM) as the interlinker 
(see Fig. 10(a)) (Feng et al. 2010). TEM image reveals that the ~3 nm diameter CdS QDs are 
distributed uniformly on the surface of graphene nanosheets. As shown in Fig. 10(b), the 
CdS-graphene composite possesses outstanding broadband OL properties, mainly due to 
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NLS and FCA, for 532 and 1064 nm ns pulses. However, the energy transfer from the QDs to 
graphene cannot be ruled out. In addition, a Fe3O4 nanoparticles functionalized GO 
composite for OL was reported by Zhang et al. (Zhang et al. 2010). 
 

 

Fig. 10. The structure (a) and broadband OL (b) of the CdS-graphene composite (Feng et al. 
2010). 

4. Carbon nanotube composites 

As 1D nanostructured materials, CNTs have attractive mechanical, electrical, and thermal 
properties, which have found many potential applications in the field of nanoscience and 
nanotechnology. In the past decade, CNTs have been extensively studied as an OL material 
(Chen et al. 2007; Wang et al. 2009). It is appealing that the nanotubes combine the advantages 
of the other two allotropes - carbon black has broadband OL and the fullerene acts as a 
favourable counterpart for functional materials. CNTs exhibit a significant OL effect covering a 
broad wavelength range from the visible to the NIR. Most importantly, the tailorable chemical 
properties of CNTs promote the synthesis of versatile nanotube composites by binding 
functional materials, e.g. metal nanoparticles, organic molecules and polymers. 

4.1 Carbon nanotubes 
Following the investigation of carbon black suspensions for OL, people started to realize 
that the CNT could be a new class of carbon nanomaterial for OL in 1998. Sun et al. and 
Chen et al. reported for the first time the OL property of nanotube suspensions (Sun et al. 
1998; Chen et al. 1999). The broadband OL response was demonstrated using ns laser pulses 
and NLS was proposed as the primary mechanism for OL. In addition, the wavelength, 
solvent and bundle size effects were considered in their works. Vivien et al. studied 
systematically the OL performance, dynamics and mechanism of CNT suspensions by 
employing a series of experimental methods, e.g. Z-scan, the time-resolved pump-probe 
technique, white light emission measurement, the nonlinear transmittance experiment and 
the shadowgraphic imaging technique (Vivien et al. 1999; Vivien et al. 2000; Vivien et al. 
2002; Vivien et al. 2002). Solvent bubble growth and the phase transition of CNTs at a range 
of incident fluences were observed, which confirmed that NLS, arising from solvent bubble 
and carbon vapour bubble formation, dominates the NLO properties of CNT suspensions. 
The impact of the incident beam wavelength and pulse duration on the OL performance has 
been studied as well. As described in subsection 2.1, one can simulate the growth dynamics 
of these bubbles in suspensions. 
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CNTs tend to aggregate into large bundles due to the high surface energy, which is a serious 
obstacle when it comes to real-life applications. People have found that CNTs can exist 
stably as individual nanotubes or small bundles in a range of amide solvents for reasonable 
periods of time. A typical example is the demonstration of large-scale debundling of single-
walled nanotubes (SWNTs) by diluting nanotube dispersions with the solvent Nmethyl-2-
pyrrolidinone (NMP) (Giordani et al. 2006). Experimental and theoretical analyses reveal 
that the surface energies of NMP and some other solvents, i.e. N,N-dimethylacetamide 
(DMA) and N,N-dimethylformamide (DMF) match very well with that of the nanotube. 
This results in a minimal energy cost to overcome the van der Waals forces between two 
nanotubes, and hence the effective debundling (Coleman 2009). 
In recent years, we carried out a series of fundamental research on the OL mechanism, 
performance and its influence factor of the SWNT dispersions. The NLO properties of 
individual nanotubes were investigated in NMP, where the population of individual 
nanotubes was observed to increase as the concentration is decreased, with up to ~70% of all 
dispersed objects being individual nanotubes at a concentration of 4.0×10-3 mg ml-1 (Wang et 
al. 2008). AFM measurements reveal that the root-mean-square diameter of nanotubes 
decreases to less than 2 nm at 8.0×10-3 mg ml-1 before saturating at this level. Figure 11(a) 
shows the linear and NLO coefficients, deduced by open aperture Z-scan, as functions of the 
concentration of the SWNT dispersions in NMP. As the concentration of SWNTs is 
increased, the nonlinear extinction and OL effects improve significantly, while the limiting 
thresholds decrease gradually. Even with smaller sizes, the individual nanotubes still 
exhibit superior OL performance for 532 nm ns pulses than phthalocyanine nanoparticles 
and Mo6S4.5I4.5 nanowires. The inset of Fig. 11(a) shows the difference between NLS-
dominated nanotubes and RSA-dominated phthalocyanines. The nonlinear transmission of 
the SWNT dispersions has a distinct discontinuity, corresponding to a limiting threshold. 
The transmission is roughly constant when the energy fluence is below the threshold. When 
the incident fluence exceeds the threshold, the transmission decreases significantly. The 
limiting threshold implies that the nanotubes transfer enough heat energy to the 
surrounding solvent to cause the solvent to vaporize and grow to the critical size, in order to 
effectively scatter the incident beam. In contrast, the transmission of the phthalocyanines 
decreases with increasing incident energy. There is no evidence of the limiting threshold for 
phthalocyanines in the figure. Moreover, improved OL performance was found from the 
same nanotubes in DMF (Wang et al. 2008). As shown in Fig. 11(b), the DMF dispersions 
show superior nonlinear extinction effects and lower limiting thresholds. The static light 
scattering results in the inset of Fig. 11(b) proved that the DMF dispersions have the larger 
average bundle size, which in combination with the lower boiling point and surface tension 
of DMF, results in the superior optical limiting performance. 
On the other hand, we showed that the OL performances of SWNT dispersions in NMP 
were enhanced significantly by blending a range of organic solvents or by increasing the 
temperature of the dispersions up to 100 oC (see Fig. 11(c) and 11(d)). While both nanotube 
bundle size and various solvent parameters have an influence on the OL responses, we 
verified experimentally that the surface tension of the solvent plays a more important role 
than the viscosity or boiling point; the appropriate solvent properties contribute to the NLS 
dominated OL phenomenon more than the bundle size (Wang et al. 2010). As the 
appropriate thermodynamic properties of the solvents are much more important for 
improving the OL performance, the solvent parameters were controlled by either changing 
the temperature of the dispersions or blending a secondary solvent (Wang et al. 2010). While 
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Fig. 11. The linear and NLO coefficients of the individual nanotube dispersions in NMP (a) 
(Wang et al. 2008). The OL of the nanotubes in different solvents (b) (Wang et al. 2008). The 
OL of the nanotube dispersions as a function of temperature (c) (Wang et al. 2010). 
Nonlinear extinction coefficient of the nanotube dispersions as a function of surface tension, 
boiling point and viscosity of the binary solvent mixtures (d) (Wang et al. 2010). 

 

Effects on optical limiting Optical limiting response 

Structure of 
CNTs 

SWNT, MWNT SWNT ≈ MWNT 

Bundle diameter The larger > The smaller 

Length The longer ≥ The shorter 

Aspect ratio The larger > The smaller 

Number density The denser > The sparser 

Physical 
properties of 
dispersant 

Boiling point The higher < The lower 

Surface tension The larger < The smaller 

Viscosity The higher < The lower 

Laser source Wavelength The longer < The shorter 

Pulse duration The longer > The shorter 

Repetition rate The higher < The lower 

Table 1. Summary of the factors that influence the OL responses of CNT dispersions. The 
signs of inequality indicate the contrast of OL responses. 
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the OL performance can be varied freely by increasing or decreasing the temperature from 
room temperature to 100 oC, the reduction of temperature below the freezing point of NMP 
and then down as far as -80 °C has little influence on the limiting performance. As a result of 
adding a small amount of organic solvent into the NMP dispersions, the NLO responses 
were enhanced significantly due to the reduction of surface tension and other parameters, as 
shown in Fig. 11(d). By contrast, the addition of water leads to a decrease in the optical 
limiting response. Nanotube dispersions in water/surfactant exhibit a similar limiting 
performance to the nanotubes in NMP. Our results reveal that the OL performance of the 
nanotube dispersions can be engineered by adjusting the solvent properties. Because the 
CNT dispersions are typical of the thermally induced light scattering dominated OL 
materials, we believe the conclusions fit not only the nanotubes but also other nanomaterials 
with the similar limiting mechanism. 

4.2 Organic molecule functionalized nanotube composites 
Most of the OL studies on pristine nanotubes concentrate on the physical mechanism and its 
influencing factors as summarized in Table 1. Although pristine nanotubes possess broadband 
limiting effects, the nanotubes alone could not satisfy all requirements for laser protection. The 
development of complex CNT composites is expected to enable practical OL devices. Whereas 
a lot of organic dyes exhibit NLA at certain wavelength bands, the optical limiting effect in 
nanotubes covers a broad wavelength range from the visible to the NIR. Nonlinear absorbers, 
i.e. phthalocyanines, have a quick response time in the ps regime, while nanotubes generally 
respond at best in the ns regime. Merging the complementary temporal and spatial nonlinear 
characteristics of NLA compounds and nanotubes has resulted in the development of 
nonlinear absorber-CNT hybrids by covalent or noncovalent link. 
A TPA chromophore, Stilbene-3, and a SWNT mixture was prepared by Izard et al. (Izard et 

al. 2004). The cumulative OL effect was observed when the two moieties have comparable 

OL responses. If one moiety dominates, the whole limiting performance is close to that of 

the moiety. The composites, which exhibit both NLS and TPA, are expected to work in a 

broad temporal and spectral range. Webster et al. blended a RSA dye, 1,10,3,3,30,30-

hexamethylindotricarbocyanine iodide (HITCI), with functionalized nitrogen-doped multi-

walled nanotubes (MWNTs) to enhance the nonlinear transmittance of the whole system 

(Webster et al. 2005). The blended composite exhibits an improvement in the OL 

performance in comparison with the two individual materials. At the low intensity regime, 

the nonlinear response is dominated by the RSA dye HITCI before the NLS becomes 

significant. After the onset of NLS at the high intensity regime, nanotubes dominate the 

optical limiting. Blau and co-workers demonstrated the superior optical limiting effect from 

a noncovalently linked tetraphenylporphyrin–nanotube composite (Ni Mhuircheartaigh et 

al. 2006). The transmission electron microscope (TEM) image in Fig. 12(a) shows clearly the 

adhesion of porphyrin molecules to the outside of double-walled nanotubes by van der 

Waals interaction. The photo-induced electron transfer effects from covalently or 

noncovalently linked RSA dye-nanotube composites have been widely studied, which may 

help to improve the NLO response of such complex material systems. Recently, we reported 

the linear and NLO properties of a range of phthalocyanine-nanotube blends (see the inset 

of Fig. 12(b)) (Wang et al. 2008). The addition of nanotubes did not change the linear UV-

visible absorption characteristics of phthalocyanines but resulted in significant fluorescence 

quenching. Due to the solvent effect, the phthalocyanine-nanotube composites in DMF 
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exhibit a larger nonlinear response than those in NMP. As shown in Fig. 12(b), the blends 

enhanced the OL performance in the higher energy density region when compared to the 

phthalocyanine solutions. In agreement with Webster et al.’s result, phthalocyanines 

influenced the OL effect in the lower energy density region, while the nanotubes played a 

more critical role in the attenuation of incident laser light in the higher energy density 

region. Overall, the OL behavior of the composites was increased with further addition of 

nanotubes. 

Apart from the noncovalently-linked dye-nanotube composites, de la Torre et al. described 

the synthesis and characteristics of covalently functionalized single-walled nanotubes with 

metallophthalocyanines (de la Torre et al. 2003). Liu et al. synthesized covalently linked 

porphyrin-SWNT composites (Liu et al. 2008). The structures of the porphyrin-

functionalized nanotubes are illustrated Fig. 12(c). Compared with C60, individual 

nanotubes and porphyrins, the composite solutions show outstanding optical limiting 

responses for ns laser pulses at 532 nm. The authors attributed the superior performance to 

the effective combination of the NLO mechanism and the photo-induced electron transfer 

between porphyrins and nanotubes. 

 

 

Fig. 12. TEM image showing the adhesion of organic porphyrin molecules to the outside of 
DWNT (a) (Ni Mhuircheartaigh et al. 2006). The nonlinear extinction coefficient as a 
function of on-focus intensity for various phthalocyanine–nanotube composites in DMF (b) 
(Wang et al. 2008). The structures of the porphyrin-SWNT (c) (Liu et al. 2008), PcH2-MWNT 
(d) (He et al. 2009) and DWNT-C60 (e) (Liao et al. 2010). 

Chen and his coworkers synthesized an unsymmetrically substituted metal-free 
phthalocyanine-covalently functionalized MWNT (PcH2-MWNT) hybrid composite, in 
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which the wt % of MWNTs in the resulting product was found to be 35% (He et al. 2009). 
The molecular structure is given in Fig. 12(d). A considerably quenching of the fluorescence 
intensity was found in the photoluminescence spectrum of PcH2-MWNTs. This observation 
suggests a quenching of the singlet excited PcH2 by the covalently linked MWNTs. This 
material exhibits strong scattering at higher intensities, which evidently comes from the 
MWNT counterpart. The nonlinear response of PcH2 is due to RSA, while that of PcH2-
MWNTs is due to both RSA and NLS, which could be two conflicted mechanisms for OL, 
giving rise to suppression of the whole nonlinear response of PcH2-MWNTs. 
Liao et al. synthesized a double-walled nanotube-fullerene (DWNT-C60) hybrid by 
covalently linking DWNT and C60 by amination reaction with polyethylenimine (see Fig. 
12(e)) (Liao et al. 2010). The nanohybrid can be dispersed in poly(m-phenylenevinylene-co-
2,5-dioctoxy-p-phenylenevinylene) (PmPV) toluene solutions via 20 min sonication 
treatment. Both the hybrid dispersions and the polymer composites exhibit promising 
limiting effect, while the former works better due to the solvent effect discussed above. 
When dispersed in PmPV or chlorobenzene, the nanohybrid is expected to merge 
complementary temporal and spatial NLO characteristics of fullerene and CNTs, resulting 
in an enhanced OL. The OL performance of the DWNT-C60 hybrids is superior to those of 
C60 and SWNTs at the same level of transmission (~80%). Whereas NLS is an evident 
mechanism, RSA from C60 moieties has significant contribution. Photo-induced charge 
transfer between the DWNT and C60 moieties may also play an important role on the 
enhanced OL. 

4.3 Polymer functionalized nanotube composites 
As we mentioned above, nanotubes tend to aggregate into large bundles in most inorganic 
and organic solvents because of their relatively high surface energy, which is a serious 
obstacle when it comes to real-life applications. It is thus of great interest to design and 
prepare soluble nanotubes, which allows the easy manufacture of large-area thin film 
optoelectronic devices by spin coating or screen-printing technologies. Covalently or 
noncovalently functionalizing the surface of nanotubes by polymers is a simple and low-
cost method to produce soluble nanotube and graphene composites. 
A breakthrough in exploring the noncovalent interaction of the nanotube and polymer was 
made by Curran et al. who adopted a conjugated polymer, PmPV (see Fig. 13(a)), to disperse 
and purify the nanotubes, resulting in property modified nanocomposites (Curran et al. 
1998). The coiled polymer conformation allows it to surround the layers of the nanotubes, 
permitting sufficiently close intermolecular proximity for π-π interaction to occur. The 
PmPV has a bright yellow color while the PmPV-nanotube composite possesses a deep 
green color, implying the strong interaction between the polymer chains and the nanotubes. 
As shown in Fig. 13(b), a clear wrapping effect of individual nanotubes by the PmPV matrix 
was observed by TEM. PmPV is an appropriate polymer to disperse CNTs while retaining 
the superior optical response from the nanotubes. O’Flaherty et al. prepared two kinds of 
polymer-nanotube composite by dispersing nanotubes into PmPV and poly(9,9-di-n-
octylfluorenyl-2,7’-diyl) (PFO), respectively (O'Flaherty et al. 2003; O'Flaherty et al. 2003). 
Both of these composite systems showed an excellent OL effect on ns laser pulses at 532 nm. 
The strong back and front scattered light signals, with characteristics of Mie scattering, 
indicate evidence of the NLS origin of OL. 
For soluble nanotube polymer composites, the preparation procedure usually involves 
mixing nanotube dispersions with solutions of the polymer and then evaporating the 
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solvents in a controlled way. The solution mixing approach is limited to polymers that freely 
dissolve in common solvents. An alternative method for producing a homogeneous 
dispersion of nanotubes is to incorporate nanotubes into thermoplastic polymers at the 
temperature higher than the melting point of these polymers or, to in situ polymerize the 
suitable monomers, such as styrene, aniline, phenylacetylene, and other monomers in the 
presence of nanotubes. Hereinafter, we introduce several covalently functionalized 
nanotube polymer composites for optical limiting. 
 

 

Fig. 13. The molecular structure of PmPV (a) and TEM image of nanotubes in PmPV (b) 
(Curran et al. 1998). The structure (c) and TEM image (d) of the MWNT-PVK hybrid (Zhang 
et al. 2010). 

A series of poly(N-vinylcarbazole)-grafted MWNT (MWNT-PVK) hybrid materials were 
synthesized in the presence of S-1-Dodecyl-S’-(ǂ, ǂ’-dimethyl-ǂ’’-acetic acid) 
trithiocarbonate (DDAT)-covalently functionalized MWNTs (MWNT-DDAT) as reversible 
addition-fragmentation chain transfer (RAFT) agent (Zhang et al. 2010). In that work, we 
used a new RAFT agent, DDAT-covalently functionalized MWNTs, first, and then grafted 
the PVK chains onto the surface of MWNTs to produce the soluble MWNT-PVK hybrid 
materials by RAFT polymerization, as shown in Fig. 13(c). High-resolution TEM graphs 
reveal that the MWNTs were coated by a layer of organic species whose thickness depends 

www.intechopen.com



 
Carbon Nanotubes - Synthesis, Characterization, Applications 

 

416 

on the molecular size and the quantity covalently attached onto the surface of MWNTs. The 
average diameter of MWNT-COOH is about 14 nm, while that of MWNT-PVK increases to 
23-25 nm, as shown in Fig. 13(d). Incorporation of the PVK moieties onto the nanotube 
surface can considerably improve the solubility and processability of the nanotubes. For all 
MWNT-PVK hybrid materials, they are soluble in some common organic solvents such as 
toluene, THF, chloroform, DMF and others. At the same level of linear transmission, the 
MWNT-PVK with 79.2% PVK moieties in the material structure possesses best optical 
limiting performance for the ns pulses at 532 nm in comparison with the other MWNT-PVK 
composites, MWNTs and C60. Light scattering, originating from the thermal-induced 
microplasmas and/or microbubbles, is responsible for the optical limiting. Subsequently, a 
new PVK-covalently grafted SWNT (SWNT-PVK) hybrid material was synthesized via an in 
situ anionic polymerization reaction of N-vinylcarbazole and the negatively charged SWNTs 
(Li et al. 2011). Same as the MWNT-PVK, appearance of the PVK moieties onto the surface of 
nanotubes significantly improves the solubility and processability of the SWNTs. At the 
same level of linear transmission, the SWNT-PVK dispersions show better optical limiting 
performance than the pristine SWNT dispersions. Micro-plasma and/or micro-bubble 
induced NLS is considered as the main mechanism for the OL. 
In addition to the non-conjugated polymer, i.e., PVK, we also adopt conjugated polymer to 
functionalized covalently nanotubes. A new conjugated polymer PCBF with pendent amino 
groups in the polymer side chains was synthesized by the Suzuki coupling reaction (Niu et 
al. 2011). Then, this polymer was used to react with MWNTs with surface-bonded acryl 
chloride moieties to give a soluble donor-acceptor type MWNT-PCBF hybrid material, in 
which PCBF was chosen as electron donor, whereas the MWNT itself may serve as the 
electron acceptor. The TEM graph implies that the average thickness of PCBF covalently 
grafted onto the MWNTs is around 10.4 nm. After the low power sonication treatment, the 
MWNT-PCBF in tetrahydrofuran (THF) is stable for at least one month at a concentration as 
high as 5 g/L. It can be clearly seen that MWNT-PCBF exhibited excellent optical limiting 
performance. The MWNT-PCBF manifests the remarkable broadband OL with a comparable 
limiting performance for both 532 and 1064 nm pulses. The strong scattering signals indicate 
that the thermally induced NLS is responsible for the OL. 

4.4 Nanostructure functionalized nanotube composites 
The optical properties of CNTs can be modified by coating functional composites. Chin et al. 

successfully improved the transmission of nanotubes in the near UV region by coating 

silicon carbide or silicon nitride on the surface (Chin et al. 2004). The high transmission 

nanotube composites incorporated with good OL performances are appropriate for the 

development of laser protection devices. The same authors further employed polycrystalline 

Au or Ag nanoparticles as coatings deposited on the outside of multi-walled nanotubes 

(Chin et al. 2005). Broadband OL effects for ns pulses at 532 nm and 1064 nm were 

demonstrated in the functionalized nanotube composites. Enhanced limiting performance 

for 532 nm pulses was observed from the composites when compared with pristine 

nanotubes. The surface plasmon absorption (SPA) of Au and Ag coatings at 532 nm is 

attributed to the enhancement of the NLS as well as the optical limiting effect in the 

nanotube composites. However, polycrystalline Ni- and Ti-coated nanotubes did not show 

significant improvement for optical limiting since Ni and Ti nanoparticles do not exhibit 

SPA around 532 nm. Moreover, it should be mentioned that the CNT and carbon 
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nanoparticle mixtures were studied as a class of optical limiting nanomaterial as well 

(O'Flaherty et al. 2003). 

Recently, Zhan and her coworkers synthesized a MWNT composite by functionalizing the 
sidewalls of nanotubes with CdS QDs using a two-step approach, with in situ polymerized 
thiophene as interlinker (Feng et al. 2010). TEM, XRD and TGA analyses verified that the 
thiophene coating formed on the surface of the MWCNTs by means of π electron interactions 
and the subsequent coupling of CdS QDs. As a consequence of interparticle coupling and the 
low percentage of CdS in the MWNT-PTh-CdS, the absorption of CdS becomes weaker and 
broader. Strong PL quenching of the CdS was observed after bonding to the nanotubes due to 
electron/energy transfer from the excited CdS QDs to the nanotubes. The MWNT-PTh-CdS 
exhibit a remarkable OL enhancement in comparison with the pristine MWNTs, especially at 
1064 nm, owing to the presence of CdS QDs linked by conducting PTh to the MWCNTs and 
the subsequent electron/energy transfer facilitated NLS. 
The same authors further prepared a series of functionalized MWNT composites by coating 
different conducting, semiconducting, and insulating materials, i.e., crystalline Au 
nanoparticles, TiO2 nanoclusters, and amorphous SiO2 nanoshells, on the sidewalls of the 
nanotubes (Zheng et al. 2010). The synthesis employed a combination of self-assembly and 
sol-gel technique. The structures and the TEM images of the three composites are illustrated 
in Fig. 14. The composites with Au-, TiO2-, and SiO2-coatings exhibit respectively the 
superior, equivalent, and inferior OL performance in comparison with the pristine 
nanotubes. As discussed above, the distinct OL response is likely due to the different 
electron/energy transfer strength, which largely influences the NLS process. In the three 
coatings, the conducting Au nanoparticles show the most effective electron transfer to the 
metallic nanotubes, resulting in the best NLS and OL. 
 

 

Fig. 14. The structures and TEM images of MWNTs functionalized with crystalline Au 
nanoparticles (a), TiO2 nanoclusters (b) and amorphous SiO2 nanoshells (c) (Zheng et al. 
2010). 

5. Summary and remarks 

1. It is seen from the literature statistics in Fig. 15 using the ISI Web of Science that the 
development of OL keeps vigorously in recent decade. Especially, the involvement of 
nanotube and graphene invigorates this tendency. As we mentioned above, the 
excellent chemical activity of graphene and nanotubes provides a broad platform for 
various functional counterparts, forming multi-component, multi-functional hybrid 
composites with wider spatial and temporal responses for OL. 
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2. The derivatives of graphene and nanotube represent a key branch in the field of OL. In 
most of such nanohybrids, it is being attached importance to the electron/energy 
transfer from functional moiety to graphene or nanotube, which is considered playing 
an influential role on improving OL performance. 

3. While the chemical synthesis and characterization of the OL materials develops rapidly, 
the corresponding NLO testing technique and theoretical analysis seems have reached a 
plateau. Merely a few papers report new measurement method or theoretical modelling 
for the OL materials (Belousova et al. 2003; Belousova et al. 2004; Venkatram et al. 2005; 
Gu et al. 2008; Rayfield et al. 2010). It is short of the NLO theory specific to the multi-
component, multi-mechanism nanohybrids, which is probably the bottleneck restricts a 
ultimately improvement of the OL performance. The research of OL briefly consists of 
materials, mechanisms, the design of OL device. Aiming to industry capable OL 
devices, a balanced development of the three aspects is undoubtedly urgent. 

 

 

Fig. 15. A literature statistics using the ISI Web of Science restricted to the most plausible 
candidates for OL, namely, CNTs, graphene, C60, phthalocyanines and porphyrins, shows an 
increasing trend in publications on CNTs, graphene, and their derivatives compared with 
other materials. Only original articles were included, review articles were excluded. 
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