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1. Introduction 

For years there is a substantial interest on impact of disorder on condensed matter structural 
properties (Imry & Ma, 1975) (Bellini, Buscaglia, & Chiccoli, 2000) (Cleaver, Kralj, Sluckin, & 
Allen, 1996). Pioneering studies have been carried out in magnetic materials (Imry & Ma, 
1975). In such system it has been shown that even relatively weak random perturbations 
could give rise to substantial degree of disorder. The main reason behind this extreme 
susceptibility is the existence of the Goldstone mode in the continuum field describing the 
orienational ordering of the system. This fluctuation mode appears unavoidably due to 
continuous symmetry breaking nature of the phase transition via which a lower symmetry 
magnetic phase was reached. For example, the Imry Ma theorem (Imry & Ma, 1975), one of 
the pillars of the statistical mechanics of disorder, claims, that even arbitrary weak random 
field type disorder could destroy long range ordering of the unperturbed phase and replace 
it with a short range order (SRO). Note that this theorem is still disputable because some 
studies claim that instead of SRO a quasi long order could be established (Cleaver, Kralj, 
Sluckin, & Allen, 1996). 
During last decades several studies on disorder have been carried out in different liquid 
crystal phases (LC) (Oxford University, 1996), which are typical soft matter representatives. 
These phases owe their softness to continuous symmetry breaking phase transitions via 
which these phases are reached on lowering the symmetry. In these systems disorder has 
been typically introduced either by confining soft materials to various porous matrices (e.g., 
aerogels (Bellini, Clark, & Muzny, 1992), Russian glasses (Aliev & Breganov, 1989), Vycor 
glass (Jin & Finotello, 2001), Control Pore Glasses (Kralj, et al., 2007) or by mixing them with 
different particles (Bellini, Radzihovsky, Toner, & Clark, 2001) (Hourri, Bose, & Thoen, 2001) 
of nm (nanoparticles) or micrometer (colloids) dimensions. It has been shown that the 
impact of disorder could be dominant in some measured quantities. In particular the 
validity of Imry-Ma theorem in LC-aerosil mixtures was proven (Bellini, Buscaglia, & 
Chiccoli, 2000).  
In our contribution we show that binary mixtures of LC and rod-like nanoparticles (NPs) 
could also exhibit random field-type behavior if concentration p of NPs is in adequate 
regime. Consequently, such systems could be potentially exploited as memory devices. The 
plan of the contribution is as follows. In Sec. II we present the semi-microscopic model used 
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to study structural properties of LCs perturbed by NPs. We express the interaction potential, 
simulation method and measured quantities. In Sec. III the results of our simulations are 
presented. We calculate percolation characteristics of systems of our interest. Then we first 
study examples where LC is perturbed by quenched random field-type interactions. We 
analyze behavior i) in the absence of an external ordering field B, ii) in presence of B, and iii) 
B induced memory effects. Afterwards we demonstrate conditions for which LC-NP 
mixtures effectively behave like a random field-type system. 

2. Model 

2.1 Interaction potential 

We consider a bicomponent mixture of liquid crystals (LCs) and anisotropic nanoparticles 

(NPs). A lattice-spin type model (Lebwohl & Lasher, 1972) (Romano, 2002) (Bradač, Kralj, 

Svetec, & Zumer, 2003) is used where the lattice points form a three dimensional cubic 

lattice with the lattice constant 0a . The number of sites equals N3, where we typically set 

N = 80. The NPs are randomly distributed within the lattice with probability p (For p = 1 all 

the sites are occupied by NPs). 

Local orientation of a LC molecule or a nanoparticle at a site ir
if

 is given by unit vectors is
if

 

and im
iif

, respectively. We henceforth refer to these quantities as nematic and NP spins. We 

take into account the head-to-tail invariance of LC molecules (De Gennes & Prost, 1993), i.e., 

the states ± is
if

 are equivalent. It is tempting to identify the quantity is
if

 with the local nematic 

director which appears in continuum theories. We allow NPs to be ferromagnetic or 

ferroelectric. In these cases im
iif

points along the corresponding dipole orientation. Also other 

sources of NP anisotropy are encompassed within the model. For example, im
iif

might 

simulate a local topological dipole consisting of pair defect-antidefect. 
The interaction energy W of the system is given by (Lebwohl & Lasher, 1972) (Romano, 
2002) (Bradač, Kralj, Svetec, & Zumer, 2003) 

( ) ( )2 2 2 2( ) ( ) ( )LC NP
i j i j ij i j B i B i Bij ij

ij ij ij i i

W J s s J m m w s m B s e Bm eχ= − ⋅ − ⋅ − ⋅ − ⋅ − ⋅∑ ∑ ∑ ∑ ∑
if iif iif iiif if iiif if iif iif iif

 (1) 

The constants ( )LC
ijJ , ( )NP

ijJ , and ijw  describe pairwise coupling strengths LC-LC, NP-NP, 

and LC-NP, respectively. The last two terms take into account a presence of homogeneous 

external electric or magnetic field BB Be=
if iif

, where Be
iif

 is a unit vector; the B2 term acts on 

nematic spins while linear B term acts on magnetic spins. 

Only first neighbor interactions are considered. Therefore ( )LC
ijJ , ( )NP

ijJ , and ijw are different 

from zero only if i and j denote neighbouring molecules. The Lebwohl Lasher-type term 

describes interaction among LC molecules, where ( ) 0LC
ijJ J= > . Therefore, a pair of LC 

molecules tend to orient either parallel or antiparallel. The coupling between neighboring 

NPs is determined with ( ) 0NP
NPijJ J= >  which enforces parallel orientation. On the contrary, 

neighboring LC-NP pairs tend to be aligned perpendicularly by the interaction strength 

wij = w < 0. 
We also consider the case when the anisotropic particles act as a random field. For this 

purpose we use the interaction potential (Bellini, Buscaglia, & Chiccoli, 2000) (Romano, 

2002). 
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( ) ( ) 2 2 2 2( ) ( ) ( )RAN LC
ij i j i i i i B

ij i i

W J s s w s e B s e= − ⋅ − ⋅ − ⋅∑ ∑ ∑
if if if if if iif

 (2) 

The first LC-LC ordering term is already described above. In the second term the quantity wi  

plays the role of a local quenched field. LC molecules are occupying all the lattice sites and 

only a fraction p of them experiences the quenched random field. These ”occupied” sites are 

chosen randomly. In the cases wi = w > 0 or w < 0 the random field tends to align LC 

molecules along ie
if

 or perpendicular to it, respectively. The direction of the unit vector ie
if

 is 

chosen randomly and is distributed uniformly on the surface of a sphere. 

In all subsequent work, distances are scaled with respect to 0a  and interaction energies are 

measured with respect to J (i.e., J = 1). 

2.2 Simulation method 

Each site is enumerated with three indices: p, q, r, where 1 p N≤ ≤ , 1 q N≤ ≤ , 1 r N≤ ≤ . 

The equilibrium director configuration is obtained by minimizing the total interaction 
energy with respect to all the directors by taking into account the normalization condition 

2

1pqrn =
f

. The resulting potential to be mimimized reads * *pqr
pqr

W W=∑ , where 

 
2

* ( 1)pqrpqr pqr pqrW n Wλ= − +
f

, (3) 

and pqrλ  are Lagrange multipliers. We minimize the potential *W and obtain the following 

set of 3N  equations which are solved numerically. We give here the corresponding 

equations just for the free energy given in Eq. (2). 

 
2

' ' '

' ' '

( , ) ( , ) ( , ) 0pqr p q r pqr pqr pqr Bpqr
p q r

g n n w g n e B g n e+ + =∑
if f f if f f if f f

, (4) 

where the vector function g
if

 is defined as 

 1 2 1 2 2 1 2 1( , ) ( ) ( )g v v v v v v v v⎡ ⎤= ⋅ − ⋅⎣ ⎦
if f f f f f f f f

.  (5) 

The system of Eq. (4) is solved by relaxation method which has been proved fast and 
reliable. We used periodic boundary conditions for spins at the cell boundaries, for instance, 
the “right” neighbor of the spin with indices (N, q, r) is the spin with indices (1, q, r), and 
similarly in other boundaries. 

2.3 Calculated parameters 

In simulations we either originate from randomly distributed orientations of directors, or 

from homogeneously aligned samples along a symmetry breaking direction. In the latter 

case the directors are initially homogeneously aligned along xe
iif

. We henceforth refer to 

these cases as the i) random and ii) homogeneous case, respectively. The i) random case can be 

experimentally realized by quenching the system from the isotropic phase to the ordered 

phase without an external field (i.e., B = 0). This can be achieved either via a sudden 
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decrease of temperature or sudden increase of pressure. ii) The homogeneous case can be 

realized by applying first a strong homogeneous external field B
if

 along a symmetry 

breaking direction. After a complete alignment is achieved the field is switched off. 
In order to diminish the influence of statistical variations we carry out several simulations 

(typically Nrep  ~  10) for a given set of parameters (i.e., w, p and a chosen initial condition). 

From obtained configurations of directors we calculate the orientational correlation function 

G(r). It measures orientational correlation of directors as a function of their mutual 

separation r. We define it as (Cvetko, Ambrozic, & Kralj, 2009) 

 
( )21

( ) 3 1
2

i jG r s s= ⋅ −
if if

 (6) 

The brackets ...  denote the average over all lattice sites that are separated for a distance r. 

If the directors are completely correlated (i.e. homogeneously aligned along a symmetry 

breaking direction) it follows G(r) = 1. On the other hand G(r) = 0 reflects completely 

uncorrelated directors. Since each director is parallel with itself, it holds G(0) = 1. The 

correlation function is a decreasing function of the distance r. We performed several tests to 

verify the isotropic character of G(r) , i.e.  ( ) ( )G r G r=
f

. 
In order to obtain structural details from a calculated G(r) dependence we fit it with the 
ansatz (Cvetko, Ambrozic, & Kralj, 2009) 

 ( ) ( ) ( )/
1

m
r

G r s e s
ξ−= − +  (7) 

where the ξ, m, and s are adjustable parameters. In simulations distances are scaled with 

respect to a0 (the nearest neighbour distance). The quantity ξ estimates the average domain 

length (the coherence length) of the system. Over this length the nematic spins are relatively 

well correlated. The distribution width of ξ values is measured by m. Dominance of a single 

coherence length in the system is signalled by m = 1. A magnitude and system size 

dependence of s reveals the degree of ordering within the system. The case s = 0 indicates 

the short range order (SRO). A finite value of s reveals either the long range order (LRO) or 

quasi long range order (QLRO). To distinguish between these two cases a finite size analysis 

s(N) must be carried out. If s(N) saturates at a finite value the system exhibits LRO. If s(N) 

dependence exhibits algebraic dependence on N the system possesses QLRO (Cvetko, 

Ambrozic, & Kralj, 2009). 

Note that the external ordering field (B) and NPs could introduce additional characteristic 

scales into the system. The relative strength of elastic and external ordering field 

contribution is measured by the external field extrapolation length (De Gennes & Prost, 

1993) ~B J Bξ . In the case of ordered LC-substrate interfaces the relative importance of 

surface anchoring term is measured by the surface extrapolation length (De Gennes & Prost, 

1993) ~ed J w . The external ordering field is expected to override the surface anchoring 

tendency in the limit 1>>e B
d ξ . However, if LC-substrate interfaces introduce a disorder 

into the system, then instead of de the so called Imry-Ma scale IMξ  characterizes the ordering 

of the system. It expresses the relative importance of the elastic ordering and local surface 

term. It roughly holds (Imri & Ma, 1975): 
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2

4d
IM diswξ −∝

 (8) 

where disw w∝  measures the disorder strength. Parameter d in the exponent of Eq. (8) 

denotes the dimensionality of physical system: in our case d  =  3, thus 2
IM diswξ −∝ . 

3. Results 

3.1 Percolation 

One expects that systems might show qualitatively different behaviour above and below the 

percolation threshold  p = pc of impurities. For this reason we first analyze the percolation 

behaviour of 3D systems for typical cell dimensions implemented in our simulations. 

On increasing the concentration p of impurities a percolation threshold is reached at p = pc. 

This is well manifested in the P(p) dependence shown in Fig. 1, where P stands for the 

probability that there exists a connected path of impurity sites between the bottom and 

upper (or left and right) side of the simulation cell. In the thermodynamic limit N →∞ the 

P(p) dependence displays a phase transition type of behaviour, where P plays the role of 

order parameter, i.e., P(p > pc) = 1 and P(p < pc) = 0. For a finite simulation cell a 

pretransitional tail appears below pc, and at p ~ 0.30 the P(p) steepness decreases with 

decreasing N. In simulations we use large enough values of N, so that finite size effects are 

negligible. 

 

0,0 0,2 0,4 0,6 0,8 1,0

0,0

0,2

0,4

0,6

0,8

1,0

P

p
 

Fig. 1. The percolation probability P as a function of p and system size N3. For a finite value 

of N the percolation threshold (p = pc) is defined as the point where P = 0.5. We obtain  

pc ~ 0.3 roughly irrespective of the system size. (∆) N = 60; (○) N = 80. 
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3.2 Structural properties in absence of external fields 

We first consider the case where LC is perturbed by random field. Therefore LC 
configurations are solved by minimizing potential given by Eq. (2). 
In Fig. 2 we plot typical correlation functions for the random and homogeneous initial 

conditions. One sees that in the random case correlations vanish for r ξ4  (i.e., s = 0) which 

is characteristic for SRO. On the contrary G(r) dependencies obtained from homogeneous 
initial condition yield s > 0. 
 

0 15 30 45 60 75 90
0,0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1,0

G

r/a
0  

Fig. 2. G(r) for p > pc and p < pc for the homogeneous and random case, B = 0, w = 3, pc ~ 0.3, 

N = 80. (�) p = 0.2, homogeneous; (▲) p = 0.7, homogeneous; (○) p = 0.2, random; (∆) p = 0.7, 

random. 

More structural details as p is varied for a relatively weak anchoring (w = 3) are given in Fig. 

3. By fitting simulation results with Eq. (7) we obtained ξ(p), m(p) and s(p) dependences that 

are shown in Fig. 3. One of the key results is that values of ξ strongly depend on the history 

of systems for a weak enough anchoring strength w. A typical domain size is larger if one 

originates from the homogeneous initial configuration. We obtained a scaling relation 

between ξ and p, which is again history dependent. We obtain 0.92 0.03pξ − ±∝  for the 

homogeneous case and 0.95 0.02pξ − ±∝  for the random case. 

Information on distribution of domain coherence lengths about their mean value ξ is given 
in Fig. 3b where we plot m(p). For the homogeneous case we obtain m ~ 0.95, and for the 
random case m ~ 1.17. A larger value of m for the random case signals broader distribution of 
domain coherence length values in comparison with the homogeneous case. Our simulations 
do not reveal any systematic changes in m as p is varied. Note that values of m are strongly 
scattered because structural details of G(r) are relatively weakly m-dependent.  

In Fig. 3c we plot s(p). In the random case we obtain s = 0 for any p. Therefore, if one starts 

from isotropically distributed orientations of is
if

, then final configurations exhibit SRO. In 
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the homogeneous case s gradually decreases with p, but remains finite for the chosen 

anchoring strength (w = 3).  

 

0,0 0,2 0,4 0,6 0,8

2

4

6
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20

22

ξ/a
0

p

(a)

0,0 0,2 0,4 0,6 0,8
0,6

0,7

0,8

0,9

1,0

1,1

1,2

1,3

1,4

1,5

m

p
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0,0 0,2 0,4 0,6 0,8

0,0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

s

p

(c)

 

Fig. 3. Structural characteristics as p is varied for B = 0 and w = 3. a) ξ(p), b) m(p), c) s(p).  
(▲) homogeneous, (∆) random. Lines denote the fits to power law. 

For two concentrations we carried out finite size analysis, which is shown in Fig. 4. One sees 

that s(N) dependencies saturate at a finite value of s, which is a signature of long-range 

order. We carry out simulations up to values N = 140. 
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60 80 100 120 140
0,30

0,35

0,40

0,45

0,50

0,55

s

N
 

Fig. 4. Finite size analysis s(N) for p < pc and p > pc for the homogeneous case; B = 0, w = 3,  
(∆) p = 0.2; (○) p = 0.7. Lines denote average values of s.  

We now examine the ξ(w) dependence. The Imry-Ma (Imry & Ma, 1975) theorem makes a 

specific prediction that this obeys the universal scaling law in Eq. (8): 2wξ −∝  holds for 

d = 3. We have analyzed results for p = 0.3, p = 0.5, and p = 0.7, using both random and 

homogeneous initial configurations and we fitted results with  

 0w γξ ξ ξ−
∞= +

 (9) 

We expect that even in the strong anchoring limit, the finite size of the simulation cells will 

induce a non-zero coherence length. The fit with Eq. (9) shows Imry-Ma behavior at low w 

only for cases where we originate from random initial configurations. The fitting parameters 

for some calculations are summarized in Table 1. 

 
 

Initial condition p γ 
0
ξ ∞ξ

r (random) 0.3 2.11±0.33 62±17 1.38±0.57 

r (random) 0.5 1.97±0.19 37±4 0.35±0.32 

r (random) 0.7 2.20±0.32 36±7 0.00±0.36 

h (homogeneus) 0.3 3.29±0.23 297±60 0.90±0.28 

h (homogeneus) 0.5 3.29±0.13 159±14 0.80±0.15 

h (homogeneus) 0.7 3.15±0.26 99±18 0.50±0.22 

Table 1. Values of fitting parameters defined by Eq. (9) for representative simulation runs. 
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 p=0.7, random

 

Fig. 5. ξ(w) variations for different initial configurations for N = 80. Imry-Ma theorem is 
obeyed only for the random initial configuration. 

3.3 External field effect 

We next include external field B and still consider system described by interactional 

potential given by Eq. (2). A typical G(r)dependence is shown in Fig. 6 where we see the 

impact of B. We plot G(r) for both homogeneous and random initial configuration in the 

presence of external field and without it. For B = 0 it holds ξ(hom) > ξ(ran) , where superscripts 

(hom) and (ran) denote correlation lengths in samples with homogeneous and random initial 

configurations, respectively. The reasons behind this are stronger elastic frustrations in the 

latter case (denotation random samples). Furthermore, ξ(ran) roughly obeys the Imry-Ma 

scaling for low enough external fields (i.e. ξ(ran) <  < ξB 
 where ~B J Bξ ), suggesting 

ξ(ran) ~ ξIM. The presence of B becomes apparent when ξB  <  ξIM, which is shown in Fig. 6. 
In Fig. 6 we see that the presence of external field can enforce a finite value of s also in 
random samples.  

In Fig. 7 we plot ξ as a function of 1/B for both homogeneous and random samples. For strong 

enough magnetic fields one expects ~ 1B Bξ ξ ∝ . On the other hand for a weak enough B 

the value of ξ is dominantly influenced by the disorder strength. Indeed, we observe a 

crossover behavior in ξ(B) dependence on varying B. The crossover between two 

qualitatively different regimes roughly takes place at the crossover field Bc. We define it as 

the field below which the difference between ξ(ran) and ξ(hom) is apparent. Below Bc the 

w 
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disordered regime takes place, where ξ exhibits weak dependence on B, i.e. ξ ~ ξIM. Above Bc 

the ordered regime exists, where ~ 1B Bξ ξ ∝ . Therefore, for cB B>  it holds ξ(ran) ~ ξ(hom) ~ ξB 

and in the random regime one observes ξ(hom)  > ξ(ran) ~ ξIM. 
 

 

Fig. 6. The orientational correlation function as a function of separation r between LC 

molecules. In random samples G(r) vanishes for large enough values of r for B = 0 while in 

homogeneus samples it could saturate at a finite plateau (if p or w are low enough). For B > 0 a 

finite plateau can be observed also in random samples. Parameters: p = 0.3, w = 2.5. 

The corresponding s(B) dependence is shown in Fig. 8. As expected s monotonously 
increases on increasing B, because the external field tends to increase the degree of ordering. 
Note that in random samples s(B = 0) = 0 and the presence of B gives rise to s > 0.  
In Fig. 9 we show m(B) dependence. For weak enough fields (B <  < Bc) one typically 

observes m(ran) > m(hom) ≈ 1. Therefore, in random samples we have larger dispersion of ξ 
values than in homogeneous samples. With the increasing external field both m(ran) and m(hom) 

asymptotically approach the value m = 1. In the latter case the distribution of ξ vales is 

sharply centered at  ξ ~ ξB. 

The crossover field Bc as a function of p is shown in Fig. 10. Indicated lines roughly separate 

ergodic (B > Bc) and nonergodic regimes (B < Bc). With increasing p one the degree of 

frustration within the system increases. Consequently larger values of B are needed to erase 

disorders induced memory effects.  
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Fig. 7. Correlation length ξ  as a function of 1/B for homogeneous and random samples for three 
different concentrations of impurities. The ξ(B) dependence displays a crossover between the 
disordered and ordered regime. The disordered regimes extends at (B > Bc), where ξ(hom)  > ξ(ran). In 
the ordered regime (B < Bc) one observes ξ(ran) ~ ξ(hom) ~ ξB. Parameters: w = 2.5, N = 100. 
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Fig. 8. The s(B) dependence for homogeneous and random samples for two different p. For 
s(B = 0) we obtain s(ran)  = 0. In the disordered regime it holds s(hom) >  s(ran) and s(hom)  ~  s(ran)  in 
the ordered regime. Parameters: w = 2.5, N = 100. 
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Fig. 9. The m(B) dependence for homogeneous and random samples for two different p. In the 

disordered regime it holds m(ran) > m(hom) ≈ 1. In the ordered regime we obtain m(ran) ~ m(hom)  
which asymptotically approach one on increasing B. Parameters: w = 2.5, N = 100. 

 

0,0 0,2 0,4 0,6 0,8
0,1

0,2

0,3

0,4

B
c
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Fig. 10. The crossover field Bc on varying p. Indicated dotted curve rougly separates ergodic 

(B > Bc) and nonergodic regimes (B < Bc). With increasing p one the degree of frustration 

within the system increases. Consequently larger values of B are needed to erase disorders 

induced memory effects. The points are calculated and the dotted line serves as a guide for 

the eye. Parameters: w = 2.5, N = 100. 
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3.4 Memory effects 

We further analyze how one could manipulate the domain-type ordering with external 

magnetic or electric ordering field. For this purpose we originate from the random initial 

configuration. We then apply an external field of strength B and calculate configuration 

for different concentrations of impurities. Then we switch off the field and calculate again 

the configuration, to which we henceforth refer as the switch-off configuration. The 

corresponding calculated s and ξ behaviour is shown in Fig. 11 and Fig. 12. Dashed lines 

mark values of observables in the presence of field of strength B, while full lines mark 

values after the field was switched off. From Fig. 11 we see that the presence of external 

field develops QLRO or LRO (we have not carried time consuming finite size analysis to 

distinguish between the two cases). This range of ordering remained as the field was 

switched off, although the correlation strength is reduced. Note that above the threshold 

field strength the degree of ordering in the switch-off configuration is saturated, i.e., 

becomes independent of B. 

The corresponding changes in ξ are shown in Fig. 12. With increasing B the ξ values for 

samples with different p decrease and converge to the same value, which is equal to the 

external field coherence length. In the switched-off configuration the average domain 

coherence length increases and again for a large enough value of B saturates at a fixed 

value.  
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Fig. 11. s(B) for w = 4, N = 60; random case. Dashed curves: configurations are calculated in 

the presence of external field B. Full curves: configurations are calculated after the field was 

switched off. 
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Fig. 12. ξ(B) for w = 4, N = 60; random case. Dashed curves: configurations are calculated in 
the presence of external field B. Full curves: configurations are calculated after the field was 
switched off. 

4. Mixtures 

We next consider a mixture of LCs and NPs. The presence of NPs enforces to LC a certain 
amount of disorder. Our expectation is that if one quenches the system from the isotropic 
phase the established domain pattern could be stabilized by NPs. In the following we show 
that there indeed exists a regime where a binary mixture behaves like LC system perturbed 
by a random field-type perturbation. 
We calculate the LC correlation by minimizing Eq. (1). In simulations mixtures are quenched 
from the isotropic phase. The LC correlation function is calculated from Eq. (6) from which 
we extract ξ and s by using Eq. (7). Typical results are shown in Fig. 13 where we plot ξ(p) 
and s(p). A strong presence of disorder is observed for concentrations roughly between 
p = 0.1 till percolation threshold. This is indicated by s(p) ~ 0, which signals presence of short 
range order. For p > pc the s(p) becomes again apparently larger than zero. 

5. Conclusions 

We study structural properties of nematic LC phase which is perturbed by presence of 
anisotropic NPs. Simulations are performed at the semi-microscopic level, where 
orientational ordering of LCs and NPs is described by vector fields taking into account 
head-to-tail invariance. Such modeling approximately describes entities exhibiting 
cylindrical symmetry. We focused on orientational ordering of LC molecules as a function of 
concentration p of NPs or random sites, interaction strength w between LC molecules and 
perturbing agents and external ordering field strength B.  
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Fig. 13. Structural characteristics for the mixture. One sees that the random field regime 
extends roughly between p = pRF ~ 0.1 and p = pc ~ 0.3. a) ξ(p) and b) s(p) dependence. The 
other interaction constants are set to 1. 

We determined percolation properties of NPs, which exhibit the percolation threshold 
pc ~ 0.3 in three dimensions. Then we first studied cases, where impact of NPs could be 
mimicked by a random field type interaction. Studies for B = 0 showed that the Imry-Ma 
type behavior is expected only in the case, where ensembles were quenched from the 
isotropic phase. In this case a short range ordering is realized. Studies in presence of an 
external ordering field B followed. We estimated boundaries separating ergodic and 
nonergodic regimes. We explored memory effects by exposing LCs to different strengths of 
B and then switching it off. We determined regimes where memory effects are apparent and 
are roughly proportional to values of B. Finally we demonstrated under which conditions 
structural behavior in mixtures of NPs and LCs could be mimicked by random-field type 
models. The findings of our investigations might be useful in order to design soft matter 
based memory devices in mixtures of LCs and appropriate NPs. 
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