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1. Introduction 

The linearity is one of the more difficult challenges of receiver in ultra wideband (UWB) 
communication systems (Green & Roy, 2003). When testing UWB receivers, one should 
use UWB signals as nonlinear signal distortion caused by a device dependant on the 
waveform of a signal. 
The investigation of nonlinear distortions of UWB signals run across considerable 
difficulties. They are caused by a continuous spectrum of UWB signals. In this case, it is 
impossible to observe harmonics or intermodulation products. 
In addition, application of UWB signals practically has no alternative in subsurface radars. 
However, such radars remain linear today. It can be explained by the same reason as stated 
above (difficulties in observing nonlinear transformation products). The same situation can 
be observed in reflectometry of wire transmission lines. 
Lately Agilent Technologies Company has been using X-parameters (Verspecht, 1996; 
Verspecht & Root, 2006) in Advanced Design System (ADS) and PNA-X measuring devices. 
It is assumed that object characteristics depend only on the first harmonic of test signal and 
dc bias. Therefore, X-parameters are adequate only when narrow-band test signals are used. 
The methods described, which allow using the UWB test signals, have some failings. 
There is a method, which allows identifying parameters of nonlinear object model by 
means of testing the object by pulse signal with level sweep (Sobhy et al., 1996). However, 
such model includes recursive (or nonrecursive) filter and the order of this filter is 
prespecified. Therefore, if complexity of the object transfer function is not limited, the 
method is not suitable. 
The equivalent gain concept (Arnstein, 1979; Arnstein et al., 1992; Chen et al., 1996) implies 
finding the difference between the object response and the test signal. In this case it is 
required that the effective width of the test-signal spectrum should be inside the horizontal 
segment of the frequency response of the object under test. Otherwise, it is necessary to 
compensate linear distortions of the test signal produced by the object. In practice, this 
compensation can be accomplished only for time-independent linear distortions with simple 
frequency dependence. 
The problem of observing nonlinear transformation products of UWB signals can be solved 
by using the test signal with local null (or nulls) of spectrum (E. Semyonov, 2002, 2004; 
Lipshitz et al., 2002) or by means of rejection of narrow frequency band in the test-signal 

www.intechopen.com



 
 Ultra Wideband Communications: Novel Trends – System, Architecture and Implementation 

 

4 

spectrum (Snezko & Werner, 1997). In this case, it is possible to observe only nonlinear 
transformation products adjacent to nulls. 
In the given work, we consider some examples and peculiarities of practical use of our 

method, which allows observing nonlinear transformation products of UWB signal against 

the background of a continuous spectrum of a test signal. The advantages of methods 

proposed (including experimental results) in comparison with the analysis of harmonics and 

intermodulation products are shown. 

2. Method of nonlinear objects testing using ultra wideband signals 

The essence of our method (E. Semyonov, 2005; E. Semyonov & A. Semyonov, 2007) is the 
following. The object linearly transforms signals if 

 u(t) = h(t)  x(t), (1) 

where h(t) is the impulse response of the object and the equality sign indicates the identity 

for x(t). 

When investigating nonlinearity transformation of narrowband signals, usually there are 

points or intervals of observed frequency band for which 

 
(ω) 0

(ω) 0

X

U

 
 

, (2) 

where X(ω) and U(ω) are the spectra of the test signal and the object response, respectively. 

In this case there is no necessity to place emphasis on identity (1) for x(t). Indeed, if (2) holds 

at least for some ω, then it is clear that transformation of signal by an object is nonlinear, 

even if we take into consideration just one test impact. 

Ultra wideband signals have usually a continuous spectrum. Here we can establish the 

nonlinearity of signals transformation using several test impact. The equality (1) should be 

held for all impacts (i.e., it should be identical for х(t)), otherwise the transformation of 

signals is nonlinear. Thus, at least two test signals with different waveforms and/or 

amplitudes are required. 

The receiver is assumed to have two (reference and measurement) channels that process, 

respectively, the test signals generated at the generator output and the object responses. 

Here there is no need to use test signals with prescribed waveforms. (In particular, 

nonlinear signal distortions in the generator are acceptable.) This circumstance enables us to 

investigate, for example, the nonlinearity of signal transformation in communications 

systems using the fragments of real signals transmitted in these systems (including signals 

with nonoverlapping spectra). Test signals can be realizations of a random process. 

Nonlinearity characteristic is defined by the following relationship 

 
 21

1 1
2

[ ( )]
( ) [ ( )] [ ( )]

{ [ ( )]}
u

u x
x

F S u t
t S u t F S x t

F S x t
   
    

 
, (3) 

where F is the Fourier transform; F−1 is the inverse Fourier transform; Su is the nonlinear 

operator of the measurement channel that changes the time function of the object response 

at the input of the receiver’s measurement channel to the time function at the output of 
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this channel; Sx is the nonlinear operator of the reference channel; u1(t) and u2(t) are the 

object responses to signals x1(t) and x2(t), respectively; and the asterisk designates 

convolution. 

When an object transforms signals linearly, and the receiver’s channels are linear, ǆ*(t) ≡ 0. If 
ǆ*(t) ≠ 0 at least for some values of time t, signals transformation by the object is nonlinear. 
The method of nonlinear time domain reflectometry is known (Bryant, 2007), in which the 

series of test signals are used as well. However, only “changing the one or more pulse 

transmission parameter values” (such as dc bias and amplitude) is considered. The 

waveform of test signal remains invariable. In some cases, such restriction in a choice of test 

signals is inappropriate. The maximum amplitude of a nonlinear echo is usually observed at 

the maximum difference between amplitudes of test signals. Thus, small amplitude of the 

second test signal is desirable, but without energy decrease of that signal. Therefore, the 

waveform of the second test signal should differ from the waveform of the first. In addition, 

under this method (Bryant, 2007) only echo signals are registered. (The test signals 

generated at the generator output are not registered.) In this case, small nonlinearity of the 

generator should be ensured. 

3. Modelling nonlinear distortion of ultra wideband signals.  
Virtual nonlinear impulse network analyzer 

It is important to predict nonlinear distortions of signals in UWB communication and radar 
systems at design stage. 
The task of investigation of nonlinear signals distortions should not be confused with the 

tasks of investigation of nonlinear objects characteristics, synthesis of nonlinear objects 

models and identifications of parameters of these models. Even if we have such models, we 

still know nothing about nonlinearity of transformation of concrete signals made by an 

object. Having a nonlinear model of an object, it is possible to compute its response to quite 

arbitrary (including UWB) signals. However, in this case it is not clear, whether the 

transformation of signal’s waveform is caused by linear or nonlinear distortions. In fact, the 

investigation of nonlinear signals distortions should answer this question. Such 

investigation can be carried out for the experimentally registered signals or for signals 

calculated at a modeling stage. 

Separately we note the following. Modeling nonlinear objects responses is invariably 

associated with using nonlinear models of these objects. However, the nonlinear 

distortions of signals can be selected by linear means. Moreover, a use of linear means of 

selection of nonlinear distortions is preferable because such means do not introduce 

additional nonlinear distortions to object response. As an example, we will mention the 

measurement of total harmonic distortion by the rejection of the first harmonic with linear 

band-stop filter. 

If nonlinearity characteristic (3) is obtained in computer-aided design (CAD) systems as a 

result of modeling, then there are some peculiarities. First, we can choose the linear receiver 

for which Sx, u(x) = x. In this case, the nonlinearity characteristic (3) is expressed as 

 
 
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Secondly, the object responses are computed also by CAD system (using SPICE or harmonic 
balance simulator). Let's express it by the formula u(t) = S[x(t)], where S is the nonlinear 
operator reflecting the signal’s transformation by object under study. Substituting this 
formula into (4), we obtain 

     
 

21
1 1

2

( )
( ) ( ) ( )

( )

F S x t
t S x t F x t

F x t
 

 
    

  
 (5) 

Thirdly, the signal x2(t) can be simply shaped by CAD tools as result of a linear 
transformation of signal x1(t): 

 x2(t) = h1(t)  x1(t), (6) 

where h1(t) is the impulse response of linear filter. Having substituted formula (6) into (5), 
we obtain (after transformation) 

      1
1 1 1

1

1
( ) ( ) ( )t S x t F S h t x t

F h t
 

               
. (7) 

In fact, F−1{1/F[h1(t)]} is the impulse response h⎯1(t) of some filter, which satisfies to the 

condition h⎯1(t)  h1(t) = ǅ(t), where ǅ(t) is the Dirac delta function. Therefore, we will 
represent expression (7) in the form: 

      1 1 1 1( ) ( ) ( )t S x t h t S h t x t        . (8) 

Thus, the used CAD systems should contain: generator of test signal x1(t), nonlinear 
simulator (based on SPICE or harmonic balance method), linear filters with impulse 
responses h1(t) and h⎯1(t) and delay lines for superposition of object’s responses to first and 
second test signal (these responses are consecutive). 
We have developed the virtual nonlinear impulse network analyzer (Semyonov et al., 2009). 
“Virtual analyzer” means analyzer that is placed in the developed scheme just as other 
library elements. Currently its version made for AWR Design Environment. The devices for 
nonlinear time domain reflection (TDR_N) and transmission (TDT_N) measurements are 
made separate (Fig. 1a). Each device contains two control points, one of which allows the 
user to display the response of object and the other – the nonlinearity characteristic. 
 

 

Fig. 1. Impulse time-domain transfer nonlinearity characteristic measurement device 
(TDT_N) and nonlinear time-domain reflectometer (TDR_N) (a); transmission line with 
linear (R1) and nonlinear (VD1 и R2) discontinuities (b) 

(a) (b) 
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Fig. 2. The results of tests of the transmission line shown in Fig. 1b by virtual nonlinear 
reflectometer 

Fig 1b shows the example of using developed virtual nonlinear reflectometer. It is a fragment 
of a window of AWR Design Environment. The transmission line with linear and nonlinear 
discontinuities has been used as the device under test (DUT). Fig. 2 shows the testing results of 
this line (thin curve is the response of network; thick curve is the nonlinearity characteristic). 
The extremum of nonlinearity characteristic is observed only at the moment that corresponds 
to the response of nonlinear discontinuity. Let's draw our special attention to the fact that 
nonlinearity characteristic does not contain the marks of any linear discontinuities. 

4. Baseband nonlinear reflectometer R4-I-01. Wire transmission  
lines sounding 

We have designed a baseband pulsed vector network analyzer R4-I-01 (Fig. 3a) which uses 
the considered investigation method of the nonlinearity of the signal's transformation 
(Loschilov et al., 2009). The device works under control of the ImpulseM 2.0 software 
(Fig. 3b). 
 

 

Fig. 3. Baseband pulsed vector network analyzer R4-I-01 (a) and screenshot of the main 
window of ImpulseM 2.0 software (b). Thin curve shows the response Su[u1(t)] of the 
network which shown in Fig. 1b, thick curve shows the nonlinearity characteristic ǆ*(t) for 
this network 

(a) 

(b) 
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The device is designed for network analysis in a frequency range 0…25 MHz including wire 
transmission lines. The amplitude of a test signal can be set up within 0.1…5 V. The 
minimum pulse width is 10 ns. The detection of nonlinear discontinuities in transmission 
lines is possible for distance up to 400 m. 
The device includes an arbitrary waveform generator (AWG), a two-channel analog-to-
digital converter (ADC), a delay line and a hub for universal serial bus (USB). AWG and 
ADC are connected to the computer with installed software ImpulseM (through USB-hub). 
The registration of real obtained test signals and object responses by two-channel ADC 
permits nonlinear distortions of test signals by the generator. The delay line allows 
separating an incident and reflected wave. 
An averaging of last observations of test signals Sx[x1, 2(t)] and object responses Su[u1, 2(t)] can 
be used for noise reduction. The “Averaging” window in the main window of ImpulseM 
software (Fig. 3b) determines how many observations are averaged. The averaged signals 
are used for the calculation of nonlinearity characteristic by means of formula (3). The 
averaged object response Su[u1(t)] and the nonlinearity characteristic ǆ*(t) are displayed on 
the graph (Fig. 3b). 
Concerning wire transmission lines, the linear reflectometry with baseband pulse test 
signals allows to determine the presence of discontinuities in a transmission line, a distance 
from them and a type of their impedance. However, we cannot determine the nonlinearity 
of discontinuities. Nonlinear elements are (for example) semiconductor elements and defects 
of a transmission lines such as metal-oxide-metal (MOM) contacts. To investigate the 
nonlinearity of signals transformation by discontinuities in a transmission line, one usually 
use a sinusoidal test signals. However, in this case we have no information about the 
distance from nonlinear discontinuities. Therefore, the use of baseband pulse test signals for 
the investigation of signals transformation nonlinearity by discontinuities in wire 
transmission lines is interesting. 
For example, Fig. 3b shows the response Su[u1(t)] (thin curve) and the nonlinearity 
characteristic ǆ*(t) (thick curve) of network shown in Fig. 1b. The nonlinearity characteristic 
has extremum close to the response of nonlinear discontinuity. Outside of this 
neighborhood (including the neighborhood of the response of linear discontinuity) 
extremums of the nonlinearity characteristic are absent. It is possible to recognize the nature 
of discontinuities (linear or nonlinear) by means of the nonlinearity characteristic (3). Such   

 

 

Fig. 4. Usual echo (a) and nonlinear echo (b) of metal-oxide-metal contact 
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possibility still remains even if the responses of discontinuities are identical (thin curve in 
Fig. 3b). The nonlinear response has small width. Therefore, it is possible to measure the 
distance from nonlinear discontinuity. 
The comparison of Fig. 2 and 3b shows that results of modeling by virtual nonlinear 
reflectometer correlate with experimental results quite well. 
Other nonlinear object, which can be in wire transmission lines, is metal-oxide-metal 
contact. Fig. 4 shows the example of detection of such contacts by means of device R4-I-01. 
We investigated the contact between the steel needle and the oxide coated steel plate. This 
contact was connected as a short circuit to the end of segment of TRP-0.4 cable. The length of 
the segment was 230 m. Fig. 4a shows the usual echo and Fig. 4b shows the nonlinearity 
characteristic (nonlinear echo). The MOM-contact is easily detected and its nonlinear nature 
is determined definitely. 
In addition, we note the advantage of objects detection based on the nonlinearity 
characteristic. 
In the presence of distributed deformations of a line, the response of this line looks like “a 
noise”. For imitation of this quite possible situation, we use unshielded TRP-0.4 cable, which 
has been winded into a coil. As discontinuity, we used the BAT46 Shottky diode, which has 
been connected in parallel to the cable. The distance between the measuring device and the 
diode was 230 m. Fig. 5 shows the response (a) and the nonlinearity characteristic (b) of this 
network. 
The amplitude of the diode response is approximately equal to the amplitude of the response 
from the distributed deformations of the cable (Fig. 5a). On the contrary, the nonlinearity 
characteristic has the clear-cut extremum corresponding to an echo-signal from the diode. 
 

 

Fig. 5. The response (a) and the nonlinearity characteristic (b) of the BAT46 Shottky diode 
connected as a parallel discontinuity to the TRP-0.4 cable with distributed deformations 

Thus, if the object under test has nonlinear properties, then an object detection based on the 
nonlinearity characteristic is preferable. 

5. Sounding of objects by low-frequency signals with an ultra-wide relative 
width of spectrum 

Selective detection of substances with use of their nonlinear properties is of interest. For this, 
the field should influence an object material. Concerning a metal, it means that the use of 
low-frequency signals is needed. 
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We've done the experimental investigations of 10-mm-dia, 1-mm-thick low-carbon-steel and 
aluminum disks (E. Semyonov & A. Semyonov, 2007). The objects were placed above the 
inductor coils with the diameter of 10 mm and at the distance of 2.5 mm from their end 
surfaces. 
Test signal x1(t) was used in the form 

 
 

up

upup

up
1

sin 2 2sin(2 2)
( )

2 2 2 2

f tf t
x t

f t f t

    
 

     
, (9) 

where fup = 24 kHz is the upper frequency limit of the spectrum of signal x1(t). The 
amplitude spectrum of test signal x2(t) was analogous to the amplitude spectrum of signal 
x1(t), and the phase spectrum of the former signal differed from the phase spectrum of x1(t) 

by a value that had a quadratic frequency dependence: 

 X2() = X1()exp(jd2||), (10) 

where d2 is the coefficient that determines a decrease in the amplitude of signal x2(t) and an 
increase in the duration of this signal relative to the corresponding parameters of signal 
x1(t). The maximum voltage of pulse x1(t) applied to the transmitting coil with a resistance of 
6.3 Ω was 28 V. 
To compare the proposed nonlinearity characteristic and the nonlinearity characteristic that 

was obtained via determination of intermodulation products, a two-frequency (16 and 18 kHz) 

test signal was used. Its amplitude was equal to the amplitude of signal x1(t). The necessary 

frequency resolution was achieved through selection of the duration of the two-frequency 

signal such that its value was much greater than the duration of signal x1(t). At a level of 0.1 of 

the amplitude of the two-frequency signal, its duration was 3.9 ms. Accordingly, the energy of 

the two-frequency signal was greater than the energy of signal x1(t). 

 

 

Fig. 6. Normalized response Su[u1(t)] (curve 1) and nonlinearity characteristic ǆ*(t) (curve 2) 
of a low-carbon-steel object (a) and an aluminum object (b) 

For the low-carbon-steel and aluminum objects, responses Su[u1(t)] and nonlinearity 
characteristic ǆ*(t) are shown in Figs. 6a and 6b, where the responses of the objects and 

nonlinearity characteristics are normalized to amplitude u1
max of response Su[u1(t)] of the 

low-carbon-steel object. 
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We see a significant nonlinearity of signals transformation by a low-carbon-steel object, 
while attributes of the nonlinearity of signal transformation performed by an aluminum 
object were not found. Hence, the proposed nonlinearity characteristic of signals 
transformation can be used to obtain additional classification attributes of an object. 
When the low-carbon-steel object was sensed by a two-frequency test signal with an 
amplitude equal to the amplitude of x1(t), the normalized amplitude of the sum of 
intermodulation products in the object response was 2.2%. This value is 7 times less than the 
normalized amplitude of nonlinearity characteristic ǆ*(t) that was obtained for this object, 
although both the sum of intermodulation products and ǆ*(t) can be interpreted as the 
residuals of the linear equation used to approximate nonlinear transformation. 
Fig. 7 additionally shows this relationship (for low-carbon-steel object). Curve 1 shows the 
amplitude spectrum Ε*(f) of the nonlinearity characteristic ǆ*(t). This spectrum is normalized 

to the maximum U1
max of the amplitude spectrum of the response to the signal x1(t). Curve 2 

shows the intermodulation products UIM(f) in the response to the two-frequency signal 
(spectral components of the test signal are rejected). This spectrum is normalized to the 

maximum Us
max of the amplitude spectrum of the response to the two-frequency signal. All 

test signals had the same amplitudes. It is clear that the normalized components of the 
amplitude spectrum of the nonlinearity characteristic ǆ*(t) is considerably greater than the 
normalized intermodulation products. 
 

 

Fig. 7. The amplitude spectrum Ε*(f) of the nonlinearity characteristic ǆ*(t) (curve 1) and 
the intermodulation products UIM(f) in the response to the two-frequency signal (curve 2) 

This fact means substantial increase of detection range of nonlinear detectors and radars 
using the considered method. 

6. Problems of creation of nonlinear reflectometer with picosecond duration 
of test signals 

If an upper frequency of measuring device exceeds 1 GHz, the formation of a pair of test 
signals with different forms has considerable difficulties. The upper frequency of up-to-date 
arbitrary waveform generators is about 10 GHz and they are very expensive. We consider 
the approach to solve this problem by using analog shaping of signals by passive circuits. 
The example of sounding of Schottky diode by the 300 ps impulse is described here. 
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An experimental setup for investigating the characteristics of nonlinear circuits using the 
considered method of nonlinear reflectometry was developed. Fig. 8 shows block diagram 
of the experimental setup. 
 

 

Fig. 8. Block diagram of the experimental setup 

 

 

Fig. 9. Examples of waveforms: 1 – G5-84 output waveform; 2 – second step shaper output 
waveform; 3 – experimental setup output waveform (incident wave); 4 – signal measured on 
channel 2 (reflected wave) 

The experimental setup works as follows. The computer sets the parameters of a test signal, 
transfers the settings to the generator G5-84 and run generation. Fast voltage step from 
generator G5-84 comes to the input of the second step shaper, where forms an additional 
voltage step, delayed relative to the first step at some time T and processed by a linear 
circuit. After that the signal comes into a directional coupler - impulse shaper, which 
differentiates the input pair of steps and produces a sequence of pulses arriving at the object 
under test. An incident component of the test signal comes to the first channel of the 
sampling oscilloscope. The signal reflected from the DUT comes to the second channel of the 
sampling oscilloscope. The sampling oscilloscope registers the incident and reflected pulses, 
and transmits the data to the computer. 
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Fig. 9 shows some examples of waveforms at the inputs/outputs of blocks of the 
experimental setup. 
The waveforms are presented at the matched mode on the output of the experimental setup. 
Fig. 9. shows the initial voltage step (curve 1) produced by the pulse generator G5-84 (the 
pulse width is much larger than the observation window). After processing by the second 
step shaper, the signal has additional voltage step with oscillations at the front (curve 2). 
Directional coupler - impulse shaper performs three functions: the differentiation of the 
initial signal (curve 3); the directional separation of the signal reflected from DUT (curve 4); 
the transfer of the incident signal to the first channel of sampling oscilloscope (curve 2). All 

signals are normalized to the amplitude ug
max of the pulse generator output signal. 

The experimental investigations were performed with the use of the designed setup. Two 
types of objects were investigated: a linear object (the 38 Ω chip resistor) and a nonlinear 
object in which the microwave Schottky diode HSMS-8202 and the 51 Ω chip resistor were 
connected in parallel. For both objects, linear and nonlinear reflectograms were measured. 
Fig. 10 shows the results of the experimental investigations. 
 

  

Fig. 10. Experimentally registered linear reflectograms Su[u1(t)] (a) and nonlinear 
reflectograms *(t) (b). Curve 1 – linear object; curve 2 – nonlinear object. All signals are 
normalized to the amplitude of signal Su[u1(t)] 

As seen from Fig. 10a, measured reflectograms of linear (curve 1) and nonlinear objects 
(curve 2) have similar forms and amplitudes. (A negative polarity of the responses indicates 
that the impedance of objects is lower than 50 Ω.) Comparison of the responses cannot 
indicate nonlinear properties of any objects. 
As seen from Fig. 10b, the results obtained by nonlinear reflectometry is different for linear 
and nonlinear objects. Nonlinear objects trace (curve 2) has a pronounced extremum in the 
neighborhood of 1.1 ns, whereas in the trace of a linear object (curve 1) there are no 
extremums greater than the noise level. Extremum time position corresponds to the point of 
connection with a nonlinear element. 
The experimental investigations performed illustrate that nonlinear reflectometry can be 
effectively realized at the width of incident and reflected pulses about 300 ps.  

7. Measurement of nonlinearity of ultra wideband receivers 

The considered method permits nonlinear distortions of test signals by the generator. 
Therefore, if the channel between the generator and the receiver is linear, then we measure 
nonlinear signals distortions only by the receiver (E. Semyonov & A. Semyonov, 2007).  

0 1 2 3 t, ns 

−0.2

0

1

2 

−0.4

−0.6

(b) 

*(t)/u1
max 

0.2

0 1 2 3 
−1.0 

−0.5 

0 

1 2 

t, ns

(a)

Su[u1(t)]/u1
max 

0.5 

www.intechopen.com



 
 Ultra Wideband Communications: Novel Trends – System, Architecture and Implementation 

 

14

In this case 

 u1, 2(t) = h(t)  x1, 2(t), (11) 

where h(t) is the impulse response of this channel. If the impulse response h(t) is Dirac delta 
function then u1(t) = x1(t) and u2(t) = x2(t). In this case ǆ(t) ≡ 0 even if transformation of 
signals by the receiver is nonlinear. Therefore it is necessary to choose h(t) so that the signals 
u1(t) and x1(t) would have different waveforms and/or amplitudes. (The same apply to 
signals u2(t) and x2 (t).) 
To use the nonlinearity characteristic (3) the receiver should be two-channel. However, quite 
often it is required to investigate the single-channel receiver (or the separate channel of the 
multichannel receiver). In this case the same channel of the receiver should register signals 
x1, 2(t) and u1, 2(t) (which are the result of transformation of signals x1, 2(t) according to (11)). 
This is possible, if signals u1, 2(t) come to the same point in which signals x1, 2(t) are 
registered (similarly how it occurs in reflectometers). 
Thus, the channel between the generator and the receiver should contain a delay line (for 
consecutive transmission of x1, 2(t) and u1, 2(t) to receiver’s input) and a linear filter which 
provides some difference between the waveforms of signals u1, 2(t) and x1, 2(t). 
If we have a single-channel receiver, then Sx = Su = Sr, where Sr is the operator of the 
investigated single-channel receiver. Therefore, the formula (3) will become: 

  21
1 1

2
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( ) [ ( )] [ ( )]

{ [ ( )]}
r

r r
r

F S u t
t S u t F S x t

F S x t
   
    

 
. (12) 

If equality (11) holds and ǆ*(t) ≠ 0 at least for some values of time t, Sr is nonlinear. (The 
receiver distorts the signals nonlinearly.) 
Fig. 11a shows the nonlinearity of transformation of baseband pulse by the Tektronix 
TDS1012B oscilloscope. Here are shown: signal Sr[u1(t)] (curve 1) and nonlinearity 

characteristic (curve 2). Both curves are normalized to amplitude u1
max of signal Sr[u1(t)]. At 

the same amplitude of the test signal the harmonic distortion has been measured. Fig. 11b 
shows the results of this measurement. (The frequency of test signal xs(t) is 50 MHz.) Let us 
notice that the amplitude of the nonlinearity characteristic of baseband pulse’s 
transformation (1%) is 5 times more than total harmonic distortion (0.2%). 
 

 

Fig. 11. Receiver-registered baseband pulse (Sr[u1(t)], curve 1) and nonlinearity characteristic 
(ǆ*(t), curve 2) (a). Spectrum module |F{Sr[xs(t)]}| of the receiver-registered sinusoidal signal 

(b). (Spectrum is normalized to the amplitude of the first harmonic Xs
max.) 
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This example illustrates special importance of linearity in UWB receivers. Besides, it is clear 
that for UWB receivers testing one should use UWB signals. In nonlinear radars and 
nonlinear reflectometers such measurements are necessary to observe the nonlinear 
response of the object against the background of nonlinear distortions in the receiver 
(E. Semyonov & A. Semyonov, 2007). 

8. Conclusion 

The considered method is effective for the following tasks. 
1. Investigation of devices (for example, receivers) for ultra wideband communication 

systems (including design stage). 
2. Detection of imperfect contacts and other nonlinear elements in wire transmission lines. 
3. Remote and selective detection of substances with the use of their nonlinear properties. 
The main advantages of the considered approach are listed below. 
1. Real signals transmitted in UWB systems can be used as test signals. 
2. Nonlinear signal distortions in the generator are acceptable. 
3. Measurement of distance from nonlinear discontinuity is possible. 
4. Nonlinear response is several times greater than the response to sinusoidal or two-

frequency signal. 
The designed devices and measuring setups show high efficiency for frequency ranges with 
various upper frequency limits (from 20 kHz to 20 GHz). 
The developed virtual analyzers provide corresponding investigations of devices and 
systems at design stage. 
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