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1. Introduction  

Composite materials containing carbon fillers are well used in a variety of material fields 

including electronic and optical device fields. The carbon fillers are capable of endowing 

conductivity, heat-releasing ability etc. to the composites. Property indispensable for such 

matrix resins, as expected for most matrix resins, is to perform high dispersion of the fillers. 

Surface modification of fillers is one of the straightforward approaches to produce the 

excellent composite materials. However, if the matrix resin itself can possess good carbon 

filler dispersing power, it can simply achieve the fine dispersion of a variety of carbon fillers 

including non-surface modified fillers, making the composite fabrication easy. 

Currently, much attention has recently focused on the filler-dispersing power of fluorene 

moieties. In the recent study on polymer materials based on fluorene based polymer (FBP), 

we have found that FBP shows not only a much filler-incorporating ability but also an 

excellent filler-dispersing ability for carbon fillers, suggesting that FBP is a highly suitable 

matrix resin for carbon fillers.  

  In this chapter, we discussed the interesting nature of FBP as matrix resin that shows 

extremely high carbon filler-incorporating and dispersing powers to yield high quality 

composite materials, along with the investigation on the interaction based on the structural 

characteristics of 9,9-diarene-substituted fluorene skeleton of FBP.  

2. Carbon filler  

2.1 Allotrope of carbon 
Atomic carbon is a very short-lived species and, therefore, carbon is stabilized in various 
multi-atomic structures with different molecular configurations called allotropes. The three 
relatively well-known allotropes of carbon are amorphous carbon, graphite, and diamond. 
Once considered exotic, fullerenes are nowadays commonly synthesized and used in research; 
they include buckyballs, [Samal, S. & Ebbesen, T.W.] carbon nanotubes,[Dresselhaus, M.S. et 
al] carbon nanobuds [Nasibulin, A. G;] and nanofibers.[ Nasibulin, A.& Vieira, R.] In this 
paper, we will focus on two carbon filler in the market: carbon black and carbon nanotube.   
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2.2 Carbon black 
Carbon black [C.A.S. NO. 1333-86-4] is a material produced by the incomplete combustion 
of heavy petroleum products such as FCC tar, coal tar, ethylene cracking tar, and a small 
amount from vegetable oil. Carbon black is a form of amorphous carbon that has a high 
surface-area-to-volume ratio, although its surface-area-to-volume ratio is low compared to 
that of activated carbon. Its physical appearance is that of a black, finely divided pellet or 
powder. Its use in tires, rubber and plastic products, printing inks and coatings is related to 
properties of specific surface area, particle size and structure, conductivity and color.  
In this paper we are focused on conductive carbon black, and evaluated dispersion power of 

fluorene moieties on conductive carbon black.  

2.3 Carbon nanotube 
Carbon nanotubes (CNTs) are allotropes of carbon with a cylindrical nanostructure. 

Nanotubes have been constructed with length-to-diameter ratio of up to 132,000,000:1,[ 

Wang, X. et al] significantly larger than any other material. Nanotubes are categorized as 

single-walled nanotubes (SWNTs) and multi-walled nanotubes (MWNTs). 

2.3.1 Mechanical properties of carbon nanotube 
Carbon nanotubes are the strongest and stiffest materials yet discovered in terms of tensile 

strength and elastic modulus respectively. This strength results from the covalent sp2 bonds 

formed between the individual carbon atoms.[ Yu, M.F.; Collins, P. G.; Jensen, K; Belluci, S.; 

Chae, H.G.; Meo, Michele; Sinnott, S.B.; Demczyk, B.G; ASTM; & Wagner, H. D. ] 

 

 Young's modulus 
(TPa) 

Tensile strength 
(GPa) 

Elongation at break 
(%) 

SWNT E ~1 (from 1 to 5) 13–53 16 

Armchair SWNT T 0.94 126.2 23.1 

Zigzag SWNT T 0.94 94.5 15.6–17.5 

Chiral SWNT  T 0.92   

MWNT E 0.2~0.95 11~150  

Stainless steel  E 0.186 ~0.214. 0.38. ~1.55 15–50 

Kevlar–29&149 E 0.06~0.18 3.6~3.8 ~2 

Table 1. Mechanical properties of carbon nanotube 

2.3.2 Electrical properties of carbon nanotube 
Because of the symmetry and unique electronic structure of graphene, the structure of a 

nanotube strongly affects its electrical properties. For a given (n,m) nanotube, if n = m, the 

nanotube is metallic; if n − m is amultiple of 3, then the nanotube is semiconducting with a 

very small band gap, otherwise the nanotube is a moderate semiconductor. Thus all 

armchair (n = m) nanotubes are metallic, and nanotubes (6,4), (9,1), etc. are semiconducting.[ 

Lu, X; Chen, Z. et al] 
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However, this rule has exceptions, because curvature effects in small diameter carbon 
nanotubes can influence strongly electrical properties. Thus, a (5,0) SWCNT that should be 
semiconducting in fact is metallic according to the calculations. Likewise, vice versa-- zigzag 
and chiral SWCNTs with small diameters that should be metallic have finite gap (armchair 
nanotubes remain metallic).[ Hong, S.H.; et al] In theory, metallic nanotubes can carry an 
electric current density of 4 × 109 A/cm2 which is morethan 1,000 times greater than metals 
such as copper,[ Takesue, I. et al] where for copper interconnects current densities are 
limited by electromigration. Multiwalled carbon nanotubes with interconnected inner shells 
show superconductivity with a relatively high transition temperature Tc = 12 K. In contrast, 
the Tc value is an order of magnitude lower for ropes of single-walled carbon nanotubes or 
for MWNTs with usual, non-interconnected shells. [ Pop, E. et al] 

2.3.3 Thermal properties of carbon nanotube 
All nanotubes are expected to be very good thermal conductors along the tube, exhibiting a 

property known as "ballistic conduction", but good insulators laterally to the tube axis. 

Measurements show that a SWNT has a room-temperature thermal conductivity along its 

axis of about 3500 W・m−1・K−1;[ Sinha, S.L. et al] compare this to copper, a metal well-

known for its good thermal conductivity, which transmits 385 W・m−1・K−1. A SWNT has 

a room-temperature thermal conductivity across its axis (in the radial direction) of about 

1.52 W・m−1・K−1, [Thostenson, E. et al] which is about as thermally conductive as soil. 

The temperature stability of carbon nanotubes is estimated to be up to 2800 °C in vacuum 

and about 750 °C in air. [Ando, W.] 

By challenging on fine dispersion of CTNs in polymer matrix, polymer composites with 

promising mechanical properties, electrical properties and thermo-conductive properties 

can be expected.   

3. Fluorene moieties  

3.1 Basic properties of fluorene moieties  
Fluorene is a member of polycyclic aromatic hydrocarbon (PAH). Two benzene rings are 
fused to cyclopentane ring. It emits violet fluorescent color.  It is not synthesized 
commercially but is obtained from middle oil fraction of coal tar.  It is insoluble in water; 
soluble in ether and acetone; melting point 116-117°C. It plays important part in metallocene 
catalysts as a ligand. It is used in the formation of polyradicals for resins.  It is used in 
manufacturing antimalaria drugs and other pharmaceuticals.[ Stephan, O. et al] 
 

 

Fig. 3.1. Fluorene 

Fluorene family compounds are base materials for dyes and optical brightening agents. 

They have useful functions such as light and temperature sensitivity, heat resistance, 

conductivity, emittability, corrosion resistance and detection of amino groups. 
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They are used in the applications of thermo and light sensitizer, liquid crystal chemistry, 
luminescence chemistry, spectrophotometric analysis, molecular chemistry, organometallic-
complexes and biochemorphology industry.  

3.2 Fluorene polymers 
3.2.1 Derived from 2.7-disubstituted fluorene 
9,9-disubstituted and polymerized in 2,7 disubstited fluorene-polymers had its promissing 
photo-sensitive applications. The application areas of polymers derived from 2,7 disubstited 
fluorene covers polarized photo- and electroluminescence materials [Grell, M.; Lim, E.; 
Morin, J.-F.; Jin, S. H.; Yang, R.; Mo, Y.; & Lee, P.I.], White-Light-Emitting Diodes by 
copolymerization with other funtional unit. [Salim, T.]; Solar cell application of Polyfluorene 
Copolymer by blending with Poly(3-hexylthiophene) Nanofiber was also reported. 
[Teramoto, T.]  

3.2.2 Polymers derived from 9,9-bis(4-hydroxyphenylfluorene) 
Because 9 position of fluorene with its high reactivity, it was easy to be oxidized by oxygen, 
and convert to fluorenone. With further reaction with the compounds with aryl group, can 
design and achive many kinds of 9,9-diaryl fluorene. [Teramoto, T.; Papava, G. S; Morgan, P. 
W.; Yamada, M.; Yamada, M.; Li, Y.J.; & Korshak, V.V]  
These kinds of diaryl fluorene, because they have multiple aromatic rings in one molecule, 
fluorene unit and aryl group can had to be positioned in same planar due to high stereo 
hindrince of them. The structure based on 9 position of fluorene similar to wings and body 
of butterfly so called cardo structure. [Sakurai, K. et al]  
 

HH

 

Fig. 3.2.2Cardo structure of fluorene based compound. 

3.2.2.1 Polymers in commercial base 

Fluorene based polyester (FBP) possess high refractive indices (1.64 in average) as well as 

extremely low birefringence, so they are used in high fidelity lens materials such as digital 

cameras and cell phones with cameras, and can also be used as promising optical film 

materials due to its high flexibiliy and low retardation.  

In genaral, organic polymers like polycarbonate and polyethyleneterephthalate have their 

high refractive index due high ratio of aromatic unit in their molecular chain. But, if the 

aromatic chains in same plane, anisotropy of unit with high dielectricity will cause optical 

anistropy in moleculars, finaly results in high birefringence of molecules. But in the case of 
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fluorene molecules with cardo-structure, even the molecule had many aromatic ring, due to 

the rings not in the same plane, anistropy of entile molecule was reduced, finaly the 

achivement the molecule with high rafractive index and low birefringence. [Yao, K.]  

Fluorene based polyester (FBP) with cardo structure in it, regardless of it’s polyester 
structure, they demonstrated as armouphous materials. FBP had its refractive index over 1.6 
which was higher than polycarbonate, and lower birefringence than PMMA. Figure 3.2.2.1 
shows injection molded polycarbonate, PMMA, and FBP under polarized plates. [Kawasaki, 
S. et al] 
 

           
 PC   PMMA   FBP 

Fig. 3.2.2.1. Birefringence property of optical polymers. 

Epoxy and Acrylates resin derived from 9,9-bis(4-hydroxyphenylfluorene) possess useful 
advantages such as high refractive indices and high heat resistance, and are used in hard 
coating materials and sealants and high refractive index coating films.[ Liu, W. B.; Xiong, 
Y.Q.; & Dai, Z.] 
FBP can also forming polymer alloys with commercial available polycarbonate and 
polyethylene naphthalene, and the final products with promissing transparency and low 
regardations compared to other alloys. [Kawasaki, S. et al] 

3.2.2.2 Polymers in development 

Except the polymers already available in the market, there are still many kinds of new 
applications on challenging by applying fluorene unit in the main chain.Polymers based on 
fluorene unit, like polyimide[Yang, C.P. et al], polyetheretherketone[Kawasaki, S. et al], 
polythioether[Hayashi, H. & Seesukphronrarak, S ] were synthesized to increase solubiliy 
and process ability of high performance polymers; silicon contained polymers to increase 
heat resistance.[ Seesukphronrarak, S et al] Spiro unit contained polymers to increase 
refractive index of fluroene polymers[Seto, R. et al] now under challenging too. Some 
nanocomposites based on organic-inorganic hybridyzation of fluorene with organic metallic 
compounds were also published recently.[ Matsukawa, K.; & Suzuki, A.]  

3.3 Potential power of fluorene moieties to disperse carbon filler 
Since the first finding by Chen F. et. al that fluorene-based polymers are able to selectively 

wrap the single-walled carbon nanotubes (SWNTs) with certain chiral angles or diameters 

depending on their chemical structures, many report regarding selective dispersion of CNTS 

in fluorene based polymers were published in the world. [Chen, F.; & Ozawa, H.] 

The polymers investigated in the research focused on 2,7-linked polymerization of fluorene 

diaryl substitutes. No report hade been published before the finding of fine dispersion of 
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9,9-bis (4-hydroxyphenyl) substitute derivatives on carbon fillers. In chapter 4, detailed 

finding of 9,9-bis (4-hydroxyl phenyl) substituted fluorene derivatives on carbon filler 

dispersion will be discussed. [Inada, T.; & Kawasaki, S.] 

4. Dispersing power of carbon fillers in fluorene moieties 

4.1 Dispersing power of fluorene moieties on carbon black in fluorene moieties 
4.1.1 Introduction 
Although the surface modification of carbon fillers is one of the established methods for 
producing excellent composite resins containing carbon fillers, a matrix resin that can 
disperse carbon fillers on its own will be a more efficient way to achieve high performance 
composite materials.  
In this section, we compare the dispersion of carbon black (CB) in fluorene-based epoxy 
(FBE) resin with bisphenol-based epoxy (PBE) resin that does not contain a fluorene 
skeleton. The dispersity of carbon black in thermal plastic resin containing 9,9-cardo 
fluorene structure compared with the common thermal plastic resin polycarbonate are also 
discussed in this section.  

4.1.2 Composites of CB/FBE  
It was found that the L value of CB/FBE composite decreased with an increase in the 
content of CB. For the CB/FBE composites, the L value was lower than that of CB/PBE 
composites in three cases (containing 3, 5, and 7 wt% of CB in CB/FBE resin), especially for 
the CB/FBE composite containing high CB content in them (Figure 4.1.1 ). 
 

 

 

Fig. 4.1.1. Colorimetric analysis of coating film in which carbon black was dispersed in the 
epoxy resin. 

www.intechopen.com



 
High Dispersion Power of Cardo-Typed Fluorene Moieties on Carbon Fillers 

 

363 

The result of the reflectance between 400 nm and 700 nm was shown in Figure 4.1.2. The 
reflectance of CB/FBE composite was lower than PBE at either CB concentration. Generally, 
the optical density that was calculated from the degree of reflection was regarded as an 
index of the blackness. The optical density (OD) is defined in the equation,  

               OD = log (1 / T)    

where T is the transmittance. 
 

 

Fig. 4.1.2.  Reflectance of CB/FBE composite sheets and CB/PBE sheets containing 7 wt% of 
CB in the composites.  

In the case of CB/FBE composite containing 7 wt% content of CB, the optical density of the 
composite was 2.18, on the other hand, the optical density of CB/PBE composite was 1.75. 
This means that the degree of blackness of CB/FBE composite was higher than that of 
CB/PBE composite.  
 

 

Fig. 4.1.3. FE-SEM images of the epoxy resin film (containing CB, 7 wt%). 
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The dispersion state of CB observed by FE-SEM is shown on Figure 4.1.3. In the case of 
CB/PBE composite, there are large aggregations of CB observed. On the other hand, in the 
case of CB/FBE composite, aggregate size was much smaller than in the CB/PBE composite.  

4.1.2 Fine dispersion of CB in FBP 
Even a 50% addition of carbon black (CB) was possible for the CB/FBP composite. High 
amount of CB in FBP did not cause a reduction in the efficiency of FBP. On the other hand, 
for the CB/PC composites only 10 wt% CB was available to be dispersed into the PC matrix. 
High dispersion amount of CB in FBP is obvious evidence for the high compatibility of FBP 
with CB.  

4.1.2.1 Effect of CB addition on the mechanical properties and thermal properties of FBP 

The effect of CB addition on CB/FBP composites is shown in Table 4.1.1. Storage modulus 
of CB/FBP composites was increased with the addition of CB in the composites. Enhancing 
ratio of CB on FBP was about two times above the PC. It means that CB interacted more 
strongly with FBP than with PC.  
 

 

Table 4.1.1. Results of Dynamic Mechanical Analysis 

The softening point of FBP was increased to about 22ºC by the addition of CB; however, the 

effect of this addition was quite low on PC (about a 4ºC increment). This was the other 

evidence supporting the high interaction between CB and FBP compared with the low 

interaction of CB and PC.  

As shown in Figure 4.1.1, the degree of blackness for the CB/FBE composite was much 

higher than that of the CB/PBE composite. The aggregation of CB in the CB/FBE composite 

was much smaller than that in CB/PBE composite. According to the results shown above, it 

is obvious that the dispersion of CB in the CB/FBE composite was much finer than in the 

CB/PBE composite.  

In addition, CB had a fine dispersion in FBP when compared with PC. With the same 
amount of CB addition, enhancement of mechanical properties and the increase in the Tg of 
FBP is much higher than that of PC (Table 4.1.2)  
All the above results indicate that 9,9-substituted fluorene may have a strong interaction 
with carbon black. The strong interaction results in the fine dispersion of CB in FBP and the 
enhancement of mechanical properties as well as an increase in Tg.  
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Table 4.1.2. Results of Glass Transition Temperature 

4.1.3 Summarize of section 4.1 
CB can be dispersed finely in CB/FBE composites. Compared with the aggregations of CB in 

PBE, there was no obvious aggregation in CB/FBE observed. The fine dispersion of CBs in 

FBE can be regarded as a result of strong π–π interaction between CB and FBE molecules. 

Also, because of the strong interaction, FBP molecules are firmly held by CB molecules by 

finely dispersing in them. This restriction of FBP molecules appears as a result of an increase 

in the Tg of FBP.  

4.2 High dispersion ability of fluorene-based polyester as polymer matrix for carbon 
nanotubes 
4.2.1 Introduction 
The high electric conductivity of CNTs make them suited for use in electronic fields and 

makes it possible to prepare polymer composites using CNTs that have particular electric 

conductivity or electrostatic discharge properties. Although surface modification of carbon 

fillers is an established method for producing excellent composite resins, developing a 

matrix resin in which carbon fillers without such modification could be dispersed would 

provide a more efficient method of achieving high-performance composite materials. 

The cardo structure of fluorene-based polymers, demonstrated in structure 1, makes it easy 

to achieve the fine dispersion of fillers such as carbon black, CNT and organic pigments. In a 

previous report, the fine dispersion ability of carbon black in FBP was proved. 

This section discusses the fine dispersion of carbon fillers having a high aspect ratio in FBP. 

MWCNT was used as high aspect fillers for FBP. Commercially available polycarbonate 

(PC) was used for comparison.  

4.2.2 Surface resistivity of MWCNT/polymer composites 
A fine dispersion of MWCNT in matrix polymer will result in a low surface resistivity. In 

contrast, a covering of the matrix polymer on the MWCNT, will disturb the electrical 

pathways between MWCNTs ― thus MWCNT covered with matrix polymer should have a 

higher surface resistivity than uncoated or ‘naked’ nanotubes.  

Figure 4.2.1 shows the surface resistivity of MWCNT/polymer composites prepared by the 

solution casting method. Both of the composites of MWCNT with PC and FBP had a low 

percolation ratio, of between 0.5 ~ 1.0 wt%. The high dispersion power of PC and FBP on 
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MWCNT induced the low surface resistivity of the composites, and due to the covering of 

FBP on ‘naked’ MWCNTs, a higher surface resistivity of MWCNT/FBP-HX was achieved 

than for MWCNT/PC. The reason for this phenomenon was the covering of FBP-HX on 

MWCNT. It resulted in both the higher surface resistivity in MWCNT/FBP-HX composites 

and the higher percolation ratio of MWCNT/FBP-HX composites when compared with the 

values for MWCNT/PC composites.  

 

 

Fig. 4.2.1. Surface resistivity of MWCNT/FBP-HX composites prepared by solution casting, 
with different weight ratios of MWCNT (● MWCNT/FBP-HX composite, ○ MWCNT/PC 
composite). 

4.2.3 Fine dispersion of MWCNT in FBP-HX observed by SEM 
MWCNTs in composite materials as prepared by the solution method showed significant 
differences in the PC and the FBP-HX polymer matrices. The fluorene structure of FBP-HX 
had a strong π–π interaction with the graphite structure on the surface of the MWCNT. This 
improved the compatibility of MWCNT with the FBP-HX polymer through a process that is 
not yet clear. The MWCNTs were separated at the nanometer level in FBP-HXs. The fine 
dispersion of MWCNTs in FBP-HX and PC resulted in the low surface resistivity of both 
kinds of MWCNT/polymer composites, even those which contained low weight ratios (0.5 
~1.0 wt%) of MWCNT.  
SEM observation of the cross-section of the MWCNT/FBP-HX composite indicated that the 
FBP-HX matrix polymer covered the surface of the MWCNTs (Figure 4.2.2b). However, this 
was not true for the MWCNT/PC composite, indicating that PC had a lower compatibility 
with the MWCNTs (Figure 4.2.2a, Figure 4.2.2c). 
Figure 4.2.2a, 4.2.2b demonstrate the differences between the status of MWCNT in PC and 
FBP-HX. In figure 2b, almost none of the MWCNTs are separated from the matrix resin. In 
figure 4.2.2a, ‘naked’ MWCNT can be observed spilling out from the matrix resin.  
The MWCNTs in FBP-HX, as observed by SEM, had diameters of 30 nm (Figure 4.2.2d). This 
was about 1.5 times that of the ‘naked’ MWCNTs (20 nm), providing more evidence for the 
fine dispersion of MWCNT in FBP-HX and the strong interaction between MWCNT and FBP-
HX. It means that FBP-HX layer with 5 nm thick were covered on MWCNTs. The covered 
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layers of FBP-HX became swollen in chloroform. The diameters of the MWCNT covered with 
FBP-HX increased to 60-70 nm after becoming swollen in CHCl3 (Figure 4.2.2e).  
All the above evidence shows that FBP-HX can cover the surface of MWCNT without 
further treatment. The fine dispersion of the MWCNT was the result of the strong 
interaction between the FBP-HX and the MWCNT.  
 

 

Fig. 4.2.2. Cross-sections of MWCNT/polymer composites observed by scanning electronic 
microscopy. a: MWCNT/PC composites with 3 wt% MWCNT,  5000 magnification; b: 
MWCNT/FBP composites with 3 wt% MWCNT,  5000 magnification; c: MWCNT/PC 
composites with 3 wt% MWCNT,  100000 magnification; d: MWCNT/FBP composites with 
3 wt% MWCNT, ×100000 magnification; e: swollen MWCNT/FBP composites with 3 wt% 
MWCNT,  100000 magnification. 

4.2.4 Variation of glass transition temperature (Tg) 
The glass transition temperature, Tg, is the temperature at which an amorphous solid, such 

as a glass or polymer, becomes brittle on cooling, or soft on heating.  In polymers, Tg is often 
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expressed as the temperature at which the Gibbs free energy is such that the activation 

energy for the cooperative movement of 50 or so elements of the polymer is exceeded. From 

this definition, we can see that the introduction of relatively stiff materials (such as carbon 

nanotubes) will interfere with the flow process and hence increase Tg. [IUPAC] 

 

 

Fig. 4.2.3. Shift in the glass transition temperature of the matrix resin due to the addition of 
MWCNT. Figure 3a and 3b represent FBP-HX and PC composites with different amounts of 
MWCNT dispersed in them.  Neat resin;  composite with 0.5 wt% MWCNT in matrix 
resin;  composite with 1.0 wt% MWCNT in matrix resin;  composite with 3.0 wt% 
MWCNT in matrix resin;  composite with 5.0 wt% MWCNT in matrix resin. 

It is shown in Figure 4.2.3 and Table 4.2.1 that the increase in Tg for FBP-HX in 

MWCNT/FBP-HX composites was due to the physical wrapping of the MWCNTs by the 

matrix resin. Although not the chemical modification of CNT, the immobilization of FBP 

molecules around CNT occurred. So, the matrix polymer (FBP-HX) was restricted by CNT. 

The reinforcements of the filler with high aspect ratio have been explained by the network 

forming method [Favier, V. et al ]. According to Favier’s theory, the incomplete nature of the 

network of the filler induces a reduction in the polymer’s properties. This is reflected by the 

data we obtained at low additions (0.5~1.0 wt%) of CNT in polymer matrix. Above the ratio 

of network forming, the further addition of filler results in the greater reinforcing effect of 

the filler in the polymer matrix.  

For the MWCNT/PC composites, the matrix polymer PC had a low interaction with the 

MWCNT. Therefore, it underwent only a minor change in its glass transition temperature. 
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Although the addition of MWCNT resulted in the improvement of the thermal dynamic 

properties for both the MWCNT/polymer composites, the driving force for the wrapping of 

MWCNT by PC and FBP is small. Therefore, the effect of MWCNT on the thermal dynamic 

properties was not that obvious, as demonstrated by the DSC data. 

 

 

Table 1. Variation of glass transition temperature of MWCNT/polymer composites 

4.2.5 Raman spectra of MWCNT/polymer composites 
Raman spectra of MWCNT/polymer composites are shown in figure 4.2.4. For the 

MWCNT/PC composites (Figure 4.2.4a), a 1 wt% addition of MWCNT was enough to 

homogenize the mobility of the materials in the composites. A peak at around 1780 cm-1, 

which is known to result from the vibration of the carbonate groups of PC, disappeared due 

to the addition of MWCNTs in PC. The Raman spectra of MWCNT/PC composites with 

MWCNT weight ratios higher than 1.0 wt%, were similar to the spectrum of MWCNT alone 

(1340 cm-1 for the defects of MWCNT and 1590 cm-1 for the G-band of MWCNT). This shows 

that the MWCNTs in PC were separated out from the resin and mainly covered the surface 

of the composites, without a covering of PC on them.  

 In the case of MWCNT/FBP-HX composites (Figure 4.2.4b), a specific peak arising from the 

stretching of the phenyl groups on fluorene moiety was observed around 1450~1500 cm-1. 

The peak remained up till 3 wt% addition of MWCNT in FBP-HX. In the MWCNT/FBP-HX 

composites with a weight ratio higher than 5 wt%, this specific peak had disappeared  

Because of the covering of FBP-HX on MWCNT, the mobility of the polymer and the 

MWCNT was almost the same; smaller amounts of ‘naked’ MWCNTs moved to the surface 

of MWCNT/FBP-HX composites. As per the increased diameter of MWCNT in FBP-HX 

compared to ‘naked’ MWCNT in PC, the Raman spectra provide more evidence for the fine 
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dispersion of MWCNT in FBP-HX because of the strong interaction between the FBP-HX 

matrix and the MWCNT filler.  

 

 

Fig. 4.2.4. Raman spectrum of MWCNT/polymer composites. Figure 4a and 4b represent  
PC and FBP-HX composites with different amounts of MWCNT in them.  Neat resin;  
 composite with 0.5 wt% MWCNT in matrix resin; composite with 1.0 wt% MWCNT in 
matrix resin;  composite with 3.0 wt% MWCNT in matrix resin;  
 composite with 5.0 wt% MWCNT in matrix resin; MWCNT. 

4.2.6 Summarize of Section 4.2 
The fine dispersion of MWCNTs in FBP-HX and PC resulted in low surface resistivity of 
both kinds of MWCNT/polymer composites, even those containing low weight ratios (0.5 

www.intechopen.com



 
High Dispersion Power of Cardo-Typed Fluorene Moieties on Carbon Fillers 

 

371 

~1.0 wt%) of MWCNT. FBP-HX covered MWCNTs were observed in MWCNT/FBP-HX 
composites; however, for the MWCNT/PC composite, the MWCNTs remained separate 
from the matrix polymer. Because of that, a higher surface resistivity and a higher 
percolation ratio were achieved for the MWCNT/FBP-HX composites, compared with the 
values for the MWCNT/PC composites.  The Tg of the matrix polymer was lower at lower 
concentrations of MWCNTs in polymer. At higher concentration ratios, that is above 5 wt% 
of MWCNT incorporated with the polymer, an increase in the Tg was observed. The relative 
increase in the Tg for FBP-HX was higher than that for PC for the MWCNT/polymer 
composites. Raman spectroscopy of MWCNT/polymer composite sheets with 3 wt% 
addition of MWCNT indicated that the MWCNTs in the MWCNT/PC composites covered 
the surface of the sheets in their ‘naked’ form, but the MWCNTs in MWCNT/FBP-HX 
sheets were distributed homogeneously in the bulk and were covered with FBP-HX. 

5. Discussion of dispersing power of fluorene moieties on carbon fillers 

All the results in section 4 indicate that 9,9-substituted fluorene may have a strong 
interaction with carbon black. The strong interaction results in the fine dispersion of Carbon 
Plate in FBP and the enhancement of mechanical properties as well as an increase in Tg. To 
prove our assumption, we performed computational simulations on both Carbon Plate 
(Carbon plate with C96 structure was designated to represent carbon filler). /FBE and 
Carbon Plate models to determine their respective stabilizing energy (Carbon Plate /FBE, 
Figure 5d) and Carbon Plate /PBE, Figure 5e)). It was shown that the most stable structure 
of FBE-M was more stable than that of PBE-M at about 10 kJ/mol. This indicated that the 
compound containing a fluorene skeleton was able to interact with the carbon compound 
more strongly than that containing bisphenol. This was one of the reasons for the high 
dispersion of the carbon compound in the epoxy resin containing fluorene structure. On the 
other hand, 9,9-substituted phenyl groups on fluorene moieties also interacted with Carbon 
Plate through π–π interactions. This strong interaction was also related to the fine dispersion 
of Carbon Plate in FBE.  

6. Conclusions 

High dispersion power of cardo-typed fluorene moieties on carbon fillers was discussed in 
this chapter.  
CB can be dispersed finely in CB/FBE composites. Compared with the aggregations of CB in 
PBE, there was no obvious aggregation in CB/FBE observed. The fine dispersion of CBs in 
FBE can be regarded as a result of strong π–π interaction between CB and FBE molecules. 
Also, because of the strong interaction, FBP molecules are firmly held by CB molecules by 
finely dispersing in them. This restriction of FBP molecules appears as a result of an increase 
in the Tg of FBP.  
MWCNTs covered with FBP-HX were observed in MWCNT/FBP-HX composites; however, 
for the MWCNT/PC composite, the MWCNTs remained separated from the matrix 
polymer. Because of that, lower concentration of MWCNT is sufficient to induce electrical 
conductivity in MWCNT/PC composites than MWCNT/FBP-HX composites. The Tg of the 
matrix polymer decreased in lower concentration of MWCNTs in polymer. At higher 
concentration ratio above 5 wt% of MWCNT incorporated with polymer, increasing of Tg is 
observed. The increase in Tg for FBP-HX was higher than that for PC in MWCNT/polymer 
composites. Raman Spectrum indicates that MWCNT in MWCNT/PC composites were 
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covered on the surface of composites sheets with naked state, compared to covered FBP-HX 
on MWCNT in MWCNT/FBP-HX composites. 
Computer simulation of the graphene model combined with the FBE and PBE models also 
proved that the graphene/FBE model has a lower minimum energy than the graphene/PBE 
model. It meas that fluorene carbon model had strong interaction than other without 
fluorene. It also resulted fine dispersion of carbon fillers in fluorene moieties.  
 

 
 

Fig. 5. Model structure and the iteration of FBE/Carbon plate and PBE/Carbon Plate models 
that have their minimum energy . Here, a, b, and c referred to the model of FBE, PBE, 
Carbon Plate (C96), respectively; d and e referred to the iteration of FBE/ Carbon Plate and 
PBE/ Carbon Plate model that has its minimum energy.  

7. References 

Ando, W.  (1987) Asakura Book Store,  Encyclopedia of Organic Compounds. 
ASTM (1965) Advances in the Technology of Stainless Steels and Related Alloys American 

Society for Testing Materials ISBN-EB: 978-0-8031-6001-9 

www.intechopen.com



 
High Dispersion Power of Cardo-Typed Fluorene Moieties on Carbon Fillers 

 

373 

Belluci, S. (19 January 2005). Carbon nanotubes: physics and applications. Physica Status 
Solidi (c) 2 (1): 34–47.  

Chae, H.G.; Kumar, S. (2006). Rigid Rod Polymeric Fibers. Journal of Applied Polymer 
Science 100 (1): 791–802.  

Chen, F.; Wang, B.; Chen, Y.; Li, L.J. (2007). Toward the extraction of single species of single-
walled carbon nanotubes using fluorene-based polymers Nano Letters 7, 3013.  

Chen, F.; Zhang, W.; Jia, M.; Wei, L.; Fang, X.F.; Kuo, J.L.; Chen, Y.; Park, M.B.C.; Li, L.J. 
(2009). Energy transfer from photo-excited fluorene-based polymers to single-
walled carbon nanotubes J. Phys. Chem C 113, 14946.   

Collins, P. G. (2000). "Nanotubes for Electronics" Scientific American: 67–69.  
Dai, Z.; Li, Y.F.; Yang, S.G.; Zhao, N.; Zhang, X.L. and Xu, J. (2009). Kinetics and thermal 

properties of epoxy resins based on bisphenol fluorene structure. Eur. Poly. J., 45, 
1941.  

Demczyk, B.G; Wang, Y.M; Cumings, J.; Hetman, M.; Han, W.; Zettl, A.; Ritchie, R.O. (2002). 
Direct mechanical measurement of the tensile strength and elastic modulus of 
multiwalled carbon nanotubes. Materials Science and Engineering A 334 (1–2): 173–
178.  

Dresselhaus, M.S.; Dresselhaus, G.; Avouris, Ph., ed. (2001). Carbon nanotubes: synthesis, 
structures, properties and applications. Topics in Applied Physics80. Springer, 
ISBN 3540410864, Berlin 

Ebbesen, T.W. ed. (1997). Carbon nanotubes—preparation and properties.: CRC Press. 
ISBN 0849396026, Boca Raton, Florida 

Favier, V.; Chanzy, H.; Cavaille, J. Y. (1995). Macromolecules, 28(18), 6365. 
Grell, M.; Bradley, D. D. C.; Ungar, G.; Hill, J.; Whitehead, K. S. (1999). Macromolecules, 32, 

5810-5817. 
Hayashi, H.; Kawasaki, S.; Kobori, K.; Koyama, Y.; Asai, S.; Takata, T. (2009). Synthesis and 

Properties of Polysiloxanes Possessing 9,9-Diarylfluorene Structure in the Main 
Chain. Polym. J., 41, 272. 

Hong, S.H.; Myung, S. (2007). Nanotube Electronics: A flexible approach to mobility. Nature 
Nanotechnology 2 (4): 207–208. 

Inada, T.; Masunaga, H.; Sakurai, K.; Kawasaki, S.; Yamada, M.; Kobori, K. (2005). Small-
angle X-ray scattering from multi-walled carbon nanotubes (CNTs) dispersed in 
polymeric matrix. Chem. Lett., 34, 524. 

IUPAC Recommendations 1994 PAC, 66, 577.  
Jensen, K; Mickelson, W.; Kis, A.; Zettl, A. (2007). Buckling and kinking force measurements 

on individual multiwalled carbon nanotubes. Phys. Rev. B 76, 195436. 
Jin, S. H.; Park, H.J.; Kim, J.Y.; Lee, K; Lee, S. P.; Moon, D. K; Lee, H. J; Gal, Y. S. (2002). 

Macromolecules, 35, 7532-7534. 
Kawasaki, S.; Yamada, M. (2005). Densizairyo.Kogyochosakai. 7. 
Kawasaki, S.; Yamada, M.; Kobori, K.; Jin, F. Z.; Takata, T. (2010). High dispersion ability of 

fluorene-based polyester as a matrix polymer for carbon nanotubes. J. Appl. Polym. 
Sci., 118, 2690. 

Kawasaki, S.; Yamada, M.; Kobori, K.; Jin, F.Z.; Kondo, Y.; Hayashi, H.; Suzuki, Y.; Takata, 
T. (2007). Synthesis and Chemical, Physical, and Optical Properties of 9,9-
Diarylfluorene-Based Poly(ether-ether-ketone). Macromolecules, 40, 5284. 

www.intechopen.com



 
Metal, Ceramic and Polymeric Composites for Various Uses 

 

374 

Kawasaki, S.; Yamada, M.; Kobori, K.; Kakumoto, T.; Jin, F. Z.; Tarutani, A.; Takata, T. (2007) 
Extraordinary high carbon filler-incorporatingand dispersing ability of 9,9-
diarylfluorene-based polymers as matrix resins. Polym. J., 39, 115 

Kawasaki, S; Kato, M; Kobori, K; Sakamoto, H; Kondo, Y; Takata, T. (2009). New concept of 
reducing a birefringence of poly by a novel alloy with fluorene-based polyester. 
Polym.Eng.Sci., 49, 2374. 

Kawasaki, S; Yamada, M; Kobori, K; Sakamoto, H; Kondo, Y; Jin, F. Z; Takata, T. (2009). 
Preparation of the novel alloy composed of fluorene-based polyester and 
poly(carbonate) and their properties for optical use. J. Appl. Polym. Sci., 111, 461. 

Korshak, V.V.; Vinogradova, S.V.; Vygodskii, Y.S. (1974). J, Macromol. Sci-Rev., Macromol. 
Chem., C11, 45, 142. 

Lee, P.I., Hsu, S.L.C.;  Lin, P.Y. (2010) White-Light-Emitting Diodes from Single Polymer 
Systems Based on Polyfluorene Copolymers with Quinoxaline Derivatives 
Macromolecules, 43, 8051 

Li, Y.J.; Yamada, M.; Wang, Y.F.; Chen, T.M.; Nakaya, T. (1996). Macromolecular Repord. 
Macromol, Rap, A33, 65-70. 

Lim, E.; Jung, B. J.; Shim, H. K.. (2003). Macromolecules, 36, 4288-4293. 
Liu, W. B; Wang, T.; Qiu, Q. H; Zhang, M. L. (2008). Syinthesis and characterization of an 

epoxy resin containing fluorene moieties and its cured polymer. Pigment & Resin 
Technology, 37, 389.  

Lu, X.; Chen, Z. (2005). Curved Pi-Conjugation, Aromaticity, and the Related Chemistry of 
Small Fullerenes (<C60) and Single-Walled Carbon Nanotubes. Chemical Reviews 
105 (10): 3643–3696.  

Matsukawa, K.; Matsuura, Y.; Nakamura, A.; Nishioka, N.; Murase, H.; Kawasaki, S. (2007). 
Preparation of titania/Acrylate hybrid thin films and properties their refractive 
indices. J. Photopolym. Sci. Technol., 20, 307. 

Meo, M.; Rossi, M. (2006). Prediction of Young’s modulus of single wall carbon nanotubes 
by molecular-mechanics-based finite element modelling. Composites Science and 
Technology 66 (11–12): 1597–1605. 

Mo, Y.; Jiang, X.; Cao, D. (2007). Org. Lett., 9, 4371-4373. 
Morgan, P. W. (1970). Macromolecules, 3, 536. 
Morin, J.-F.; Leclerc, M.  (2001). Macromolecules, 34, 4680-4682. 
Nasibulin, A. G; Pikhitsa, P.V.; Jiang, H; Brown, D.P.; Krasheninnikov, A.V.; Anisimov, A.S.; 

Queipo, P.; Moisala, A. et al. (2007). A novel hybrid carbon material. Nature 
Nanotechnology 2 (3): 156–161. 

Nasibulin, A.; Anisimov, A.S.; Pikhitsa, P.V.; Jiang, H.; Brown, D.P.; Choi, M.S.; Kauppinen, 
E.I. (2007). Investigations of NanoBud formation. Chemical Physics Letters 446: 
109–114.  

Ozawa, H.; Fujigaya, T.; Niidome, Y.; Hotta, N.; Fujiki, M.; Nakashima, N. (2011). Rational 
concept to recognize/extract single-walled carbon nanotubes with a specific 
chirality.  J Am Chem Soc. 133(8):2651-7 

Papava, G. S.; Maisuradze, N. A.; Zarkua, Z. L.; Dokhturishvili, N. S.; Sarishvile, Z. M.; 
Razmadze, G. B.; Vinogradova, S. V.; Korshak, V. V. (1988). Acta Polymerica, 8, 445. 

Pop, E.; Mann, D.; Wang, Q.; Goodson, K.; Dai, H.J. (2005). Thermal conductance of an 
individual single-wall carbon nanotube above room temperature. Nano Letters 6 
(1): 96–100.  

www.intechopen.com



 
High Dispersion Power of Cardo-Typed Fluorene Moieties on Carbon Fillers 

 

375 

Sakurai, K.; Fuji, M. (2000). Polym J, 32, 676. 
Salim, T.; Sun, S.Y.; Wong, L.H.; Xi, L.F.; Foo, Y.L.; Lam, Y.M. (2010) The Role of Poly(3-

hexylthiophene) Nanofibers in an All-Polymer Blend with a Polyfluorene 
Copolymer for Solar Cell Applications J. Phys. Chem. C, 114, 9459. 

Samal, S.; Sahoo, S.K. (1997) An overview of fullerene chemistry. Bulletin of Materials 
Science 20(2), 141-230 

Seesukphronrarak, S.; Kawasaki, S.; Kobori, K.; Takata, T. (2007). Synthesis of fluorene-
based high performance polymers. I. Poly (arylene thioether)s with excellent 
solubility and high refractive index. J. Polym. Sci. Part A, 45, 3073. 

Seesukphronrarak, S.; Takata, T. (2007) Novel Fluorene-based Biphenolic Monomer: 9,9-
Bis(4-hydroxyphenyl)-9-silafluorene. Chem. Lett., 36, 1138. 

Seto, R.; Kojima, T.; Hosokawa, K.; Koyama, Y.; Konishi, G.; Takata, T. (2010). Synthesis and 
Property of 9,9’-Spirobifluorene-containing Aromatic Polyesters as Optical 
Polymers with High Refractive Index and Low Birefringence. Polymer, 51, 4744. 

Seto, R.; Sato, T.; Kojima, T.; Hosokawa, K.; Koyama, Y.; Konishi, G.; Takata, T. (2010). 9,9’-
Spirobifluorene-Containing Polycarbonates: Transparent Polymers with High 
Refractive Index and Low Birefringence. J. Polym. Sci. Polym Chem., 48, 3658. 

Sinha, S.L.; Barjami, S.; Iannacchione, G.; Schwab, A.; Muench, G. (2005). Off-axis thermal 
properties of carbon nanotube films. Journal of Nanoparticle Research 7 (6): 651–
657.  

Sinnott, S.B.; Andrews, R. (2001). Carbon Nanotubes: Synthesis, Properties, and 
Applications. Critical Reviews in Solid State and Materials Sciences 26 (3): 145–249.  

Stephan, O.; Vial. J. C. (1999). Synthetic Metals, 106, 115-119.  
Suzuki, A.; Ando, S. (2010). Preparation and Characterization of Polyimide/ZnO Nano-

hybrid Films Exhibiting High Refractive Indices. Journal of Photopolymer Science 
and Technology, 23, 521.  

Takesue, I.; Haruyama, J.; Kobayashi, N.; Chiashi, S.; Maruyama, S.; Sugai, T.; Shinohara, H. 
(2006). "Superconductivity in Entirely End-Bonded Multiwalled Carbon 
Nanotubes" Physical Review Letters 96: 057001. 

Teramoto, T. (1995). Industrial Materials, 43, 79. 
Teramoto, T.; Kiyotaka, K.; Takayama, T.; Koyama, T. (1992). Aromatics. 44, 337. 
Thostenson, E.; Li, C; Chou, T. (2005). Nanocomposites in context. Composites Science and 

Technology 65: 491–516. 
Vieira, R. (2004). Synthesis and characterisation of carbon nanofibers with macroscopic 

shaping formed by catalytic decomposition of C2H6/H2 over nickel catalyst. 
Applied Catalysis A 274: 1–8.  

Wagner, H. D. (2002). Reinforcement Encyclopedia of Polymer Science and Technology. 
John Wiley & Sons. 

Xiong, Y.Q.; Liu, H.P.; Ou, E.C.; Zeng, X.L.; Zhou, W.; Xu, W.J. (2010) Crystal Structure, 
Curing Kinethics, and Thermal Properties of Bisphenol Fluorene Epoxy Resin. J. 
Appl. Polym. Sci., 118, 827.  

Yamada, M.; Okimi, K.; Ogata, K. (1998). Kinki Chemical Sciety, 5, 14. 
Yamada, M.; Sun, J.; Suda, Y.; Nakata, T. (1998). Chemistry Letters, 10, 1055. 
Yang, C.P.; Lin, J.H. (2009). New poly (amide-imide) syntheses. XII. Preparation and 

properties of poly(amide-imide)s based on the diimide-diacid condensed from 9,9-

www.intechopen.com



 
Metal, Ceramic and Polymeric Composites for Various Uses 

 

376 

bis[4-(4-aminophenoxy)phenyl] fluorene and trimellitic anhydride. J. Polym. Sci. 
Part A: Polym. Chem., 32, 2653. 

Yang, R; Tian, R; Hou, Q; Yang, W; Cao, Y. (2003). Macromolecules, 36, 7453-7460. 
Yao, K. (1994). Reports Prepared for the Society of Polymer Science, Japan (annual session), 

43. 
Yao, K. (1995). Reports Prepared for the Society of Polymer Science, Japan (discussion 

session), 44. 
Yu, M.F.; Lourie, O.; Dyer, M. J.; Moloni, K.; Kelly, T.F.; Ruoff, R. S. (2000). Strength and 

Breaking Mechanism of Multiwalled Carbon Nanotubes Under Tensile Load. 
Science 287 (5453): 637–640. 

www.intechopen.com



Metal, Ceramic and Polymeric Composites for Various Uses

Edited by Dr. John Cuppoletti

ISBN 978-953-307-353-8

Hard cover, 684 pages

Publisher InTech

Published online 20, July, 2011

Published in print edition July, 2011

InTech Europe

University Campus STeP Ri 

Slavka Krautzeka 83/A 

51000 Rijeka, Croatia 

Phone: +385 (51) 770 447 

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai 

No.65, Yan An Road (West), Shanghai, 200040, China 

Phone: +86-21-62489820 

Fax: +86-21-62489821

Composite materials, often shortened to composites, are engineered or naturally occurring materials made

from two or more constituent materials with significantly different physical or chemical properties which remain

separate and distinct at the macroscopic or microscopic scale within the finished structure. The aim of this

book is to provide comprehensive reference and text on composite materials and structures. This book will

cover aspects of design, production, manufacturing, exploitation and maintenance of composite materials. The

scope of the book covers scientific, technological and practical concepts concerning research, development

and realization of composites.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Shinichi Kawasaki, Toshikazu Takada and Fengzhe Jin (2011). High Dipsersion Power of Cardo-Typed

Fluorene Moieties on Carbon Fillers, Metal, Ceramic and Polymeric Composites for Various Uses, Dr. John

Cuppoletti (Ed.), ISBN: 978-953-307-353-8, InTech, Available from: http://www.intechopen.com/books/metal-

ceramic-and-polymeric-composites-for-various-uses/high-dipsersion-power-of-cardo-typed-fluorene-moieties-

on-carbon-fillers



© 2011 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.


