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1. Introduction 

A turbulent boundary layer (TBL) over a flat rigid surface can be seen in many industrial 
and environmental flows. Therefore, for the prediction and control of turbulence and design 
of better industrial apparatus, it is of great importance to elucidate the spatiotemporal 
structure of the TBL. In TBLs, it is well known that coherent motions associated with the 
bursting events exist near the wall. In the outer turbulent/nonturbulent (potential) interface 
of the TBL, large-scale coherent motions exist, which have the size of order of the boundary-
layer thickness. The latter structures are called `bulge' and `valley' and are unsteady in space 
and time (Robinson 1991). Therefore, it is of importance to clarify the spatiotemporal 
structures of these coherent motions in order to elucidate the structure of the TBL. However, 
it is difficult to study the entire structure of the TBL by a single-point measurement using an 
I- or X-type hot-wire probe. In addition, previous studies (Ichijo & Kobashi 1982, Kobashi et 
al. 1984, Thomas & Bull 1983) have suggested that these coherent motions are closely 
associated with wall static pressure fluctuations. Therefore, the simultaneous measurement 
of multipoint instantaneous velocities and wall static pressure fluctuations is appropriate for 
clarifying the spatiotemporal structure of the TBL. 
In this chapter, we will show the experimental results on the relationships between the 
bursting events occurring near the wall and the large-scale bulge and valley structures in the 
outer turbulent/nonturbulent interface of the TBL, and the spatiotemporal structures of the 
coherent motions in a zero-pressure-gradient TBL. With regard to the experiments, 
multipoint instantaneous streamwise velocities and instantaneous wall static pressures are 
simultaneously measured using a combination of a rake consisting of 23 I-type hot-wire 
probes, which covers the entire TBL, and a microphone pressure sensor. The velocity signals 
are analysed by the KL (Karhunen-Loéve) expansion (also known as the proper orthogonal 
decomposition (POD) method). The flow field is reconstructed by using either lower- or 
higher-order modes to investigate the coherent motions in the TBL. The bursting events are 
detected by applying the VITA (Variable Interval Time Average) technique to the 
instantaneous velocity signals in the original flow. The large-scale bulge and valley 
structures are detected by using the newly proposed conditional sampling method, which is 
applied to both the original flow and the reconstructed flow by using the KL expansion. 
Further, to show the future research direction, the experimental data on the statistical 
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properties of TBL affected by the disturbances in the outer mainstream are demonstrated. 
The disturbances are generated using the bi-plane square grid. The effect of the disturbance 
on the velocity statistics is discussed. 

2. Analytical methods 

2.1 VITA technique 
The VITA (Variable Interval Time Average) technique (Blackwelder & Kaplan 1976, 
Blackwelder & Haritonidis 1983, Chen & Blackwelder 1978, Osaka et al. 1986) is one of the 
conditional mean methods used to detect coherent motions in turbulent flows. The VITA 
technique is appropriate for detecting the bursting events in a TBL since the bursting events 
accompany the large velocity fluctuations. Following the general VITA technique 
(Blackwelder & Haritonidis 1983), we define the variable-interval time average of the 

fluctuating streamwise velocity u  as 

 ( ) ( ) ( )
2

2 22

2 2

1 1/ /

/ /
; , ' ' ' '

t T t T

a t T t T
v t x T u t dt u t dt
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where T  is the averaging time. Note that av  approaches the conventional time-averaged 

result as T  increases. The detection criterion is established by introducing a threshold value 

for the VITA variance signal. Thus, the detection function ( )u tα  is defined as (Blackwelder 

& Haritonidis 1983, Chen & Blackwelder 1978, Osaka et al. 1986) 
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where u  is the time-averaged mean velocity, rmsu  is the rms (root mean square) value of 

velocity fluctuations, and K  is the threshold value, which is constant. In general, the 

selection of  K  and T  is important for detecting the bursting events using the VITA 

technique. In this study, we chose 1K =  and 2 20/T Tuτ ν+ = = , on the basis of a previous 

study (Osaka et al. 1986), where uτ  is the friction velocity and ν  is the kinematic viscosity. 

We have carefully verified that the detected burst frequency is in a good agreement with 

previously published data (Blackwelder & Haritonidis 1983, Osaka et al. 1986). 

2.2 Methods for detecting large-scale coherent motions 

The large-scale coherent motions in the outer turbulent/nonturbulent interface of the TBL 

are detected using the following method. The first probe from the top of the rake, which is 

placed near the turbulent/nonturbulent interface of the TBL ( 1 23/ .y δ = ; y  and δ  are the 

distance from the wall and the thickness of the boundary layer, respectively), is used to 

detect the large-scale coherent motions since these motions pass through this probe. The 

detection of the motions depends on both u  and /u t∂ ∂  at 1 23/ .y δ = . Note that the 

direction of the rotation is based on the configuration shown in Figs. 1 and 2; the flow is 

from the left to the right along the x -direction. Therefore, the mean spanwise vorticity is in 

the clockwise direction. 
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Fig. 1. Experimental setup 
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Fig. 2. Schematic of bulge structure and bursting event (not to scale) 

2.2.1 Detection of clockwise large-scale coherent motions 

The large velocity fluctuation at 1 23/ .y δ =  with acceleration is associated with the `bulge' 
structure, which is the large-scale ( δ -scale) vortical structure rotating in the same direction 
as the mean vorticity (i.e. in the clockwise direction). Therefore, we detect the bulge 
structure by using the following conditions: 

 ( ) ( )
2 2 0' andrms

d
u t u K u u t u

dt
   − ≥ − >   
   (3) 

where 'K  is the threshold value, which is constant. In this study, from a careful inspection 
of the detected signals, 'K  has been chosen equal to 3. 

2.2.2 Detection of anticlockwise large-scale coherent motions 

The large velocity fluctuation at 1 23/ .y δ =  with deceleration is associated with the `valley' 
structure, which is the large-scale ( δ -scale) structure at the edge of the bulges (Robinson 
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1991) rotating in the opposite direction of the mean vorticity (i.e. in the anticlockwise 
direction). Therefore, we detect the valley structure by using the following conditions: 

 ( ) ( )
2 2 0' andrms

d
u t u K u u t u

dt
   − ≥ − <   
   (4) 

It has been verified that the value of 3'K =  is appropriate for detecting the valley structures. 

2.3 KL expansion 

The KLȐKarhunen-Loéveȑexpansion, which is also known as the proper orthogonal 
decomposition (POD) method and is an extension of the general Fourier series (Davenport 
& Root 1958, Lumley 1967, 1981), is the representation of a stochastic process as a linear 
combination of orthogonal functions. The basis functions of the expansion are defined such 
that the coefficients are uncorrelated (independent) with each other and are arranged in the 
descending order according to the magnitude of their eigenvalues. The sum of all the 
eigenvalues corresponds to the sum of the mean square values in the entire region where 
the KL expansion is applied. Here, the KL expansion is applied for the simultaneous 
measurement of the streamwise velocities at 23 points in the TBL. Therefore, there are 23 
modes ( 1 23~n = ) in the KL expansion. The lower modes are expected to extract the 
turbulence structures in the near-wall region (i.e., the inner region), where turbulence 
energy is larger, and the higher modes are expected to extract the turbulence structures from 
the outer region to the outside of boundary layer, where turbulence energy is smaller. In this 
study, the sum of the first three modes (lower modes) retains 65% of the total energy; 
therefore, the flow field reconstructed by using the lower modes ( 1 3~n = ) is considered to 
represent the energetic coherent motions. The modes from 4 to 23, which contain the rest of 
the 35% energy, are regarded as the higher modes in this work. 

3. Experiments 

3.1 Experimental apparatus 
Experiments are carried out in an Eiffel-type wind tunnel. The length, height, and span of the 
test section of this tunnel are 2,600, 300, and 520 mm, respectively. The TBL is developed along 
a smooth flat plate (Fig. 1) placed horizontally in the wind tunnel. The plate is 2,100 mm in 
length, 8 mm in thickness, and 520 mm in span and is made of Bakelite in order to reduce the 
heat loss from the hot-wire probe in near-wall measurements. The leading edge of the plate 
has a parabolic shape. To generate a fully developed TBL in a short distance from the leading 
edge, transition was promoted by using a tripping wire of 1.0 mm diameter placed 50 mm 
downstream from the leading edge of the plate, as shown in Fig. 1. The zero-pressure-gradient 
condition is achieved by adjusting the height of the test section. The coordinate system is as 
follows: the x-axis is along the streamwise direction starting from the leading edge, the y-axis 
is in the vertical direction, and the z-axis is along the spanwise direction (see Fig. 1).  

3.2 Velocity and wall static pressure measurements 

A constant-temperature hot-wire anemometer (CTA) is used for the velocity measurement. 

The rake consists of 23 I-type probes, which covers the entire TBL at 1 884,x = mm; the 

sensors of the rake cover a length of 0 1 48 5. ~ .y = mm. The wires are made of tungsten. The 

length of the sensor is 1l = mm and its diameter is 5d = µm, giving an aspect ratio of 
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200/l d = . By comparing the data obtained from a single I-type probe with those from the 

rake of I-type probes, it has been confirmed that there is no interference between the probes, 

which are placed with 2.2 mm apart from each other. 

To measure the instantaneous static pressure at the wall, the 1/8 inch microphone pressure 

sensor (Brüel & Kjær Type 4138) is used. The sensor is mounted flush to the wall surface at 

the measurement position ( 1 884,x = mm) through a pressure hole of 0 6.D = mm diameter. 

The frequency response of the pressure sensor has been checked; both the phase difference 

ϕ  and the magnitude ratio M between the input signal and the output signal from the 

sensor exhibit flat responses up to 7 kHz. These results suggest that the frequency response 

limit of the pressure sensor is 7 kHz. Note that nondimensional diameter of the sensing area 

in this study is 18/D Duτ ν+ = = . Previous studies (Gravante et al. 1998, Schewe 1983) have 

shown that when 19 20~D+ < , the spatial resolution is sufficient to resolve the essential 

structures of the static pressure fluctuations at the wall. Therefore, in addition to the 

frequency response, the spatial resolution is sufficient to measure the static pressure 

fluctuations at the wall. In fact, we have confirmed that when 18D+ < , the power spectra of 

wall static pressure fluctuations are identical. 

3.3 Experimental conditions and data sampling method 

The mean speed of the uniform flow is set at 0 10 9.=U m/s. The unit Reynolds number is 
5

0 7 38 10Re / .ν= = ×U m-1, and the Reynolds number based on the momentum thickness at 

the measurement point ( 1 884,x =  mm) is 2 820Re ,θ = . Note that the spatial resolution of 

the hot-wire probe in the near-wall measurement is sufficient for 5 000Re ,θ <  (Robinson 

1991). The δ  and uτ  at the measurement point ( 1 884,x = mm) are 41 mm and 0.453 m/s, 

respectively. We have confirmed that there is no pressure gradient in the streamwise 

direction, and the mean flow is two-dimensional. The sampling frequency and sample size 

are 10 kHz and 229,376, respectively, and are sufficient to obtain reliable statistics: these 

parameters are based on the performance of the A/D converter (Microscience ADM-688PCI) 

and the computer (Dell Dimension 8200) used. The output voltage signals from the hot-wire 

anemometer and the pressure sensor are converted into 12-bit digital data by the A/D 

converter and recorded on the hard disc of the computer. The A/D converter and the digital 

output board are PCI interface boards and are synchronized through master-slave 

connections. The time lag between the output of the clock signal from the master unit and 

the input of the signal into the slave unit is only 125 ns; therefore, very fast multichannel 

sampling is achieved. To confirm this point, we input the same wave pattern generated by 

the function generator into the whole channels simultaneously, and compare the output 

signals. The result showed that the output signals are the same and no discernible time lag is 

observed. Statistical processing of the digitized data was carried out using the computer. 

4. Results and discussion 

4.1 Reliability of measurements 

The vertical profile of streamwise mean velocity is shown in Fig. 3, where U+ = U/uτ and 

y yuτ ν+ = . The log-law region can be seen for 30 200y+< < . Figures 4 and 5 show the 

power spectrum of streamwise velocity fluctuations normalized by the squared rms value of 
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the velocity fluctuations, 2
rmsu , and the power spectrum of the wall static pressure 

fluctuations normalized by the squared rms value of the wall static pressure fluctuations, 
2
rmsp , respectively. Figure 4 shows that the power spectrum of the longitudinal velocity 

fluctuations collapses irrespective of y+ . The spectrum also shows the -1 and -5/3 decay 

regions (Perry et al. 1986). On the other hand, the power spectrum of wall static pressure 

fluctuations (Fig. 5) has the -1, -7/3, and -5 decay regions, and the result agrees with that of 

previous experiments carried out by Gravante et al. (1998) and Löfdahl (1996). In addition, 

turbulence intensities and probability density functions (not shown) are in good agreement 

with those found in previous studies. Therefore, it is confirmed that the present 

measurements of velocity and wall static pressure fluctuations are highly accurate. 
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Fig. 3. Vertical profile of streamwise mean velocity 

 

     

Fig. 4. Power spectrum of streamwise 
velocity fluctuations 

Fig. 5. Power spectrum of wall static 
pressure fluctuations 

www.intechopen.com



Relationships between Large-scale  
Coherent Motions and Bursting Events in a Turbulent Boundary Layer 

 

499 

4.2 Relationships between bursting events and large-scale coherent motions 

The clockwise and anticlockwise large-scale coherent motions are detected using the 

method proposed in the subsection 2.2, and the results are shown in Figs. 6 and 7, 

respectively.  In Figs. 6 and 7, the upper and lower graphs show the conditionally averaged 

time histories of the normalized velocity, ( ) ( )( )' / rmsu u u uτ τ= −  , and the conditionally 

averaged time histories of normalized wall static pressure, ( ) ( )( )' / rmsp p p pτ τ= −  , 

respectively. Here, ( )u τ  and ( )p τ  are the ensemble-averaged values of conditionally 

sampled velocity and wall static pressure, respectively, and u  and p  are the ordinary (non-

conditional)  time-averaged velocity and wall static pressure, respectively.  In Figs. 6 and 7, 

τ  is the time lag from the detection time at which the instantaneous velocity signal takes the 

maximum or minimum value at the detection point of 1 23/ .y δ = , and is normalized by 

using U0 and δ . Figure 6 shows that when the clockwise large-scale coherent motion passes, 

the velocity increases outside the TBL ( 1/y δ > ) and decreases inside the TBL ( 1/y δ < ). 

The result suggests the presence of a rotational flow whose center is located near the 

turbulent/nonturbulent interface: this structure corresponds to the bulge (Kobashi et al. 

1984). It is also observed from Fig. 6 that the wall static pressure decreases when the 

clockwise large-scale coherent motion passes. It is presumed that measured decrease in the 

wall static pressure is associated with the low pressure in the clockwise large-scale coherent 

motion (Robinson 1991). 
 

    

Fig. 6. Ensemble-averaged time histories of 

conditionally sampled velocity and wall 

static pressure corresponding to the bulge 

structure 

Fig. 7. Ensemble-averaged time histories of  

conditionally sampled velocity and wall 

static pressure corresponding to the valley 

structure 

On the other hand, Fig. 7 shows that when the anticlockwise large-scale coherent motion 

passes, the velocity decreases outside the TBL ( 1/y δ > ) and slightly increases inside the TBL 

( 1/y δ < ). The detected signals suggest the valley, which exists at the edge of the bulges. It 
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has been reported (Robinson 1991, Thomas & Bull 1983) that there is an inflow from the free-
stream flow into the turbulent region, and the inflow has an instantaneous velocity vector that 
is against the mean flow. Therefore, it is expected that the decrease in the velocity in the outer 
region in Fig. 7 is associated with the inflow from the free-stream flow. The wall static pressure 
increases when the anticlockwise large-scale coherent motion passes. These results are in 
agreement with the model for the structure of a TBL proposed by Thomas & Bull (1983). 
The VITA technique is applied to the raw signals to detect the bursting events. Figure 8 
shows the ensemble-averaged time histories of conditionally sampled velocity 
 

 

Fig. 8. Ensemble-averaged time histories of conditionally sampled velocity and wall static 
pressure. The detection is based on the VITA technique 

( ) ( )( )' / rmsu u u uτ τ= −   and of conditionally sampled wall static pressure 

( ) ( )( )' / rmsp p p pτ τ= −  . Here, ( )u τ  and ( )p τ  are the conditionally averaged velocity 

and wall static pressure by the VITA technique, respectively. The solid and broken lines in 

Fig. 8 denote ( ) 'u τ  and ( ) 'p τ , respectively. τ  is the time lag from the detection time at 

which the instantaneous velocity ( )u t  is the same as the ordinary (non-conditional) time-

averaged velocity u  at each measuring point. Figure 8 shows the cycle of events of ejection 

( ( ) 0'u τ < ) at 0τ < , which is the upward motion of a low-speed fluid lump, and sweep 

( ( ) 0'u τ > ) at 0τ > , which is the downward motion of a high-speed fluid lump (Osaka et 

al. 1986). The wall static pressure exhibits a rapid increase when the burst occurs above the 

measurement point (Kobashi et al. 1984). Considering the results shown in Figs. 6 and 7 

together with the result in Fig. 8, it is concluded that the bulge structure, which is 

accompanied by the pressure decrease, cannot coexist with the bursting event, which is 

accompanied by the pressure increase. On the other hand, the valley structure, which is 

accompanied by the pressure increase, can coexist with the bursting event. 

4.3 Flow field reconstructed by using lower modes (n=1 ~ 3) 

Using the method proposed in the subsection 2.2, the clockwise and anticlockwise large-

scale coherent motions are detected in the flow field reconstructed by using the lower 

www.intechopen.com



Relationships between Large-scale  
Coherent Motions and Bursting Events in a Turbulent Boundary Layer 

 

501 

modes ( 1 3~n = ) of the KL expansion, and the results are shown in Figs. 9 and 10, 

respectively.  Figures 9 and 10 show that both the clockwise large-scale coherent motion (i.e. 

bulge), which is accompanied by the pressure decrease, and the anticlockwise large-scale 

coherent motion (i.e. valley), which is accompanied  by the pressure increase, exist in  

 

     

Fig. 9. Ensemble-averaged time histories of  
conditionally sampled velocity and wall 
static pressure when the velocity is 
reconstructed by the lower modes 
( 1 3~n = ) and the detection method of the 
clockwise bulge structure is applied. 

Fig. 10. Ensemble-averaged time histories 
of conditionally sampled velocity and wall 
static pressure when the velocity is 
reconstructed by the lower modes 
( 1 3~n = ) and the detection method of the  
anticlockwise valley structure is applied. 

 

 

Fig. 11. Ensemble-averaged time histories of conditionally sampled velocity and wall static 

pressure when the velocity is reconstructed by the lower modes ( 1 3~n = ). The detection is 

based on the VITA technique applied to the original flow field ( 1 23~n = ) at 0 003/ .y δ =  
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the flow field reconstructed by using the lower modes. Comparing these results with those 
shown in Figs. 6 and 7, which are obtained by applying the method to the original flow field 

( 1 23~n = ), it is found that these structures are more clearly observed in the flow field 

reconstructed by using the lower modes and they are observed even near the wall. 
Figure 11 shows the ensemble-averaged time histories of conditionally sampled  velocity 

and wall static pressure when the velocity is reconstructed by the lower modes ( 1 3~n = ) 

and the detection by the VITA technique is applied to the original flow field ( 1 23~n = ) at 

0 003/ .y δ = . It is observed from Fig. 11 that the velocity inside the TBL (in the 

reconstructed flow) increases and the velocity outside the TBL (in the reconstructed flow) 
decreases when the bursting event occurs. These velocity patterns are similar to those 
during the anticlockwise large-scale coherent motion (i.e. valley). Thus, the results suggest 
that the bursting event and valley can coexist at the same longitudinal location in the flow 

reconstructed by using the lower modes ( 1 3~n = ). 

4.4 Flow field reconstructed by using higher modes (n=4 ~ 23) 

Using the method proposed in the subsection 2.2, the clockwise and anticlockwise large-

scale coherent motions are detected in the flow field reconstructed by using the higher 

modes ( 4 23~n = ) of the KL expansion, and the results are shown in Figs. 12 and 13, 

respectively. Figure 12 (for the bulge) shows a velocity variation near the wall. However, the 

velocity hardly changes near the wall in Fig. 13 (for the valley). These results suggest that in 

the flow field reconstructed by using the higher modes, only the clockwise large-scale  

 

 

Fig. 12. Ensemble-averaged time histories 

of  conditionally sampled velocity and wall 

static pressure when the velocity is 

reconstructed by the higher modes 

( 4 23~n = ) and the detection method of 

the clockwise bulge structure is applied. 

Fig. 13. Ensemble-averaged time histories of  

conditionally sampled velocity and wall 

static pressure when the velocity is 

reconstructed by the higher modes 

( 4 23~n = ) and the detection method of the 

anticlockwise valley structure is applied. 
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coherent motion (i.e. bulge) exists near the wall and the anticlockwise large-scale coherent 
motion (i.e. valley) does not influence the flow field near the wall. These results also suggest 
that the turbulent kinetic energy in the bulge structure is larger than that in the valley structure. 
This result is consistent with the fact that the valley is generated by the bulge structures. 
Figure 14 shows the ensemble-averaged time histories of conditionally sampled velocity and 

wall static pressure when the velocity is reconstructed by the higher modes ( 4 23~n = ) and 

the detection by the VITA technique is applied to the original flow field ( 1 23~n = ) at 

0 003/ .y δ = . Figure 14 shows that when the bursting events are detected, the velocity in the 

outer region does not change in the reconstructed flow. This result suggests that in the flow 
field reconstructed by using the higher modes, the large-scale coherent motions are weakly 
associated with the bursting events. 

4.5 Effect of freestream turbulence on the Turbulent Boundary Layer 
In the industrial flows such as those in turbomachines and heat exchangers, inflow streams 
often contain the turbulent eddies generated by the upstream structures. These free stream 
turbulence influences the large scale coherent structure and the turbulence characteristics of 
the TBL. In this subsection, some experimental data on the statistical properties of TBL 
affected by the freestream turbulence generated by the square grid are demonstrated. 
The experiments are performed by using the experimental apparatus shown in the 
subsection 3.1. The turbulence-generating grid is installed at 100mm upstream from the 
leading edge of the plate. The square-mesh biplane grid M10 is used.  M10 was constructed 
from square-sectioned aluminium rods. The mesh size M and the rod thickness d are  

3×10-2m and 6×10-3m, respectively, and therefore, its solidity is σ = 0.36. The mean speed of 
free stream flow when the grid is installed is set at U0 = 10.1m/s. The unit Reynolds number 

is Re = U0/ν = 6.84 ×105m-1 and the Reynolds number based on the momentum thickness at 

the measurement point (x=1,880 mm) is Reθ = 3,000. When the grid is not installed, the flow 

condition is adjusted to realize Reθ = 3,000 at the same measurement point (x=1,880 mm). 
The instantaneous streamwise velocity is measured by the hot-wire CTA with the I-type 
probe.  The wire is made of tungsten.  The length of sensor is 1.0 mm and its diameter is 

5µm, giving an aspect ratio of l/d = 200. The output signals from the CTA are digitized and 
recorded on the hard disc using the data recording unit (KEYENCE WR-60).  The sampling 
frequency and sample size are 20 kHz and 524,288(=219), respectively.   

The vertical profiles of y+ dU+/dy+ in both cases with and without the grid are shown in 

Fig.15, where the result by the Direct Numerical Simulation (DNS) in the case of  Reθ = 1,410 

(Spalart 1988) is also depicted for the comparison.  Note that in the logarithmic region the 

value of y+ dU+/dy+ should be constant, i.e., y+ dU+/dy+ = 1/κ. From Fig.15, it is found that 

the logarithmic region for the case with the grid expands to the outer side of the TBL in 

comparison with the case without the grid. Figure 16 shows the vertical profiles of the 

velocity fluctuation rms value urms normalized by the friction velocity uτ, i.e., /rms rmsu u uτ
+ = . 

It is found that  rmsu+  in the case with the grid increases in comparison with the case without 

the grid. However it should be noted that in general the  free-stream  disturbance  does  not 

always increase rmsu+ , and  in some cases rmsu+  decreases (Hancock & Bradshow 1989,  

Nagata et al. 2011).  The effects of free-stream disturbance on the characteristics of the TBL 

are still open question. The future works are expected to elucidate the relation between the 

free-stream disturbance and the flow dynamics of the TBL. 
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Fig. 14. Ensemble-averaged time histories of conditionally sampled velocity and wall static 

pressure when the velocity is reconstructed by the higher modes ( 4 23~n = ). The detection 

is based on the VITA technique applied to the original flow field ( 1 23~n = ) at 0 003/ .y δ =  
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Fig. 15. The vertical profiles of y dU dy+ + +  
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Fig. 16. The vertical profiles of rmsu+  
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5. Conclusions 

Multipoint instantaneous streamwise velocities and instantaneous wall static pressures have 
been simultaneously measured by using a combination of a rake consisting of 23 I-type hot-
wire probes and a microphone pressure sensor in a fully developed, zero-pressure-gradient 
turbulent boundary layer (TBL) in a wind tunnel. The KLȐKarhunen-Loéveȑexpansion, 

the VITA technique and the newly proposed method for the detection of large-scale 
coherent motions were applied to examine the relationships between large-scale coherent 
motions and the bursting events. Further, the statistical properties of the TBL affected by the 
freestream turbulence generated by the square grid were investigated. 
The main results obtained in this chapter are summarized as follows: 
1. The structure of the TBL inferred from the present experiment is in agreement with the 

TBL model proposed by Thomas & Bull (1983). 
2. The bursting events and valley structure (both accompanied by an increase in wall 

static pressure) can coexist at the same longitudinal location, whereas the bursting 
events and bulge structure cannot coexist with each other. 

3. In the flow field reconstructed by using the lower modes, both the bulge structure, 
which is accompanied by bursting events, and the valley structure, which is not 
accompanied by the bursting events, exist. On the other hand, in the flow field 
reconstructed by using the higher modes, the large-scale coherent structures are weakly 
associated with the bursting events. 

4. The grid turbulence introduced into the outer mainstream has the effect to enlarge the 
logarithmic region to the outer side of turbulent boundary layer. 
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