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A Computer-assisted Wind Load Evaluation 
System for the Design of Cladding of Buildings: 

A Case Study of Spatial Structures 

Yasushi Uematsu 
Tohoku University 

Japan 

1. Introduction 

Thin sheet metal and/or membrane are often used for roof cladding of spatial structures 
because of their strength and lightness (Noguchi et al., 2003). Being light and flexible, such 
roofing materials are vulnerable to dynamic wind actions. Since wind pressures acting on 
spatial structures vary spatially as well as in time, the design wind loads should be 
determined based on the dynamic characteristics of wind pressures. Fatigue of cladding 
elements, such as roofing material and its fixings, may play an important role in the wind 
resistant performance of cladding systems, although it is seldom considered in the design. 
Roof cladding is usually designed based on the worst peak pressure coefficients irrespective 
of wind direction. The conventional codification provides a single peak design pressure 
coefficient for each roof zone considering a nominal worst-case scenario. Neither the 
probability distribution of the peak pressure coefficients nor the peaks other than the largest 
one are considered. Hence, they are not suitable for fatigue and risk-consistent designs.  
Building design has recently shifted to a performance-oriented one. Therefore, it is hoped to 
develop a new methodology that provides the peak pressure coefficients according to 
predetermined risk levels and the loading sequence for estimating the fatigue damage to 
roof cladding and its fixings. Computer simulation of wind pressure time series may be 
useful for this purpose. 
Kumar and Stathopoulos (1998, 1999, 2001) proposed a novel simulating methodology that 
generates both Gaussian and non-Gaussian wind pressure fluctuations on low building 
roofs. Despite its simple procedure, the technique is successfully applied to fatigue analysis 
as well as to the evaluation of extreme pressures in a risk-consistent way. Therefore, this 
technology is used in this chapter and a simplification of this method is discussed.  Gaussian 
and non-Gaussian pressure fluctuations can be simulated from the statistics of wind 
pressures, i.e. the mean, standard deviation, skewness, kurtosis and power spectrum.  These 
statistical values change with location as well as with many factors related to the structure’s 
geometry and the turbulence characteristics of approach flow. For such a complicated 
phenomenon, in which a number of variables involve, artificial neural networks (simply 
neural networks or ANN’s) can be used effectively. Artificial neural networks can capture a 
complex, non-linear relationship via training with informative input-output example data 
pairs obtained from computations and/or experiments. Among a variety of artificial neural 
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networks developed so far, Cascade Correlation Learning Network (Fahlman and Lebiere, 
1990) is applied to the present problem. It is a popular supervised learning architecture that 
dynamically grows layers of hidden neurons of a fixed non-linear activation (e.g. sigmoid), 
so that the topology (size and depth) can also be efficiently determined. 
This chapter proposes a computer-assisted wind load evaluation system for the design of roof 
cladding of spatial structures. Focus is on spherical domes and vaulted roofs, as typical shapes 
of spatial structures. The composition of the system is schematically illustrated in Fig. 1. This 
system provides wind loads for the design of cladding and its fixings without carrying out any 
additional wind tunnel experiments. An aerodynamic database, artificial neural network and 
time-series simulation technique are employed in the system. Finally, applications of the 
system to risk-consistent design as well as to fatigue design are presented. 
 

 

Fig. 1. Wind load evaluation system for the roof cladding of spatial structures 

The wind load evaluation system proposed here is based on our previous studies (Uematsu 
et al., 2005, 2007, 2008). It can be applied not only to spherical domes and vaulted roofs but 
also to any other structures. However, such a system may be more useful for designing the 
cladding of spatial structures because of its sensitivity to dynamic load effects of fluctuating 
wind pressures. The spatial variation of statistical properties and the non-normality of 
pressure fluctuations on spherical domes and vaulted roofs are less significant than those on 
flat and gable roofs. Therefore, an ANN and a time-series simulation technique can be used 
more efficiently for these structures. This is the reason why we focus on the cladding of 
spherical domes and vaulted roofs in this chapter.  

2. Aerodynamic dadabase 

2.1 Wind tunnel experiments 
Two series of wind tunnel experiments were carried out; one is for spherical domes and the 
other is for vaulted roofs. The experimental conditions are somewhat different from each 
other. The outline of the experimental conditions is presented here. 

2.1.1 Spherical dome 
The experiments were carried out in a closed-circuit-type wind tunnel with a working 
section 18.1 m long, 2.5 m wide and 2.0 m high. Two kinds of turbulent boundary layers 
simulating natural winds over typical open-country and urban terrains were generated; 
these flows are respectively referred to as Flows ‘II’ and ‘IV’ in this chapter. The geometric 
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scale of these flows ranges from 1/400 to 1/500, judging from the longitudinal integral scale 
of turbulence. 
The geometry of the wind tunnel model is schematically illustrated in Fig. 2(a). The 
rise/span ratio (f/D) is varied from 0 to 0.5, while the eaves-height/span ratio (h/D) from 0 
to 1. The span D of the wind tunnel model is 267 mm and the surface of the model is 
nominally smooth. Each model is equipped with 433 pressure taps of 0.5 mm diameter, as 
shown in Fig. 2(b). The pressure taps are connected to pressure transducers in parallel via 80 
cm lengths of flexible vinyl tubing of 1 mm inside diameter. The compensation for the 
frequency response of this pneumatic tubing system is carried out by using a digital filter, 
which is designed so that the dynamic data up to approximately 500 Hz can be obtained 
without distortion. The signals from the transducers are sampled in parallel at a rate of 1 
kHz on each channel for a period of approximately 33 seconds. All measurements are made 
at a wind velocity of Uref = 10 m/s at a reference height of Zref = 267 mm. The velocity scale is 
assumed 1/5.  The wind velocity Utop at the level of rooftop ranges from 5.3 to 10.2 m/s; the 
corresponding Reynolds number Re, defined in terms of D and Utop, ranges from 
approximately 9.4 × 104 to 1.8 × 105.  The turbulence intensity Iu,top at the level of rooftop 
ranges from 0.13 to 0.20 for Flow II and from 0.12 to 0.27 for Flow IV. 
 

 

  f/D = 0, 0.05, 0.10, 0.20, 0.50

 h/D = 0, 1/16, ･･･, 16/16 

WIND

WIND

f

h
z

y O

D = 267mm

x

y

O

 
(a) Geometry (side view) (b) Location of pressure taps (top view) 

Fig. 2. Wind tunnel model and coordinate system (spherical domes) 

2.1.2 Vaulted roof 
The experiments were carried out in a closed-circuit-type wind tunnel with a working 
section 18.9 m long, 2.6 m wide and 2.1 to 2.4 m high. Two kinds of turbulent boundary 
layers similar to those used for spherical domes were generated; these flows are respectively 
referred to as Flows ‘II’’ and ‘IV’’ in this chapter. 
The geometry of the wind tunnel model is schematically illustrated in Fig. 3(a). The 
rise/span ratio (f/D) is varied from 0.1 to 0.4, while the eaves-height/span ratio (h/D) from 
1/30 to 20/30. The span D of the wind tunnel model is 150 mm and the length W is 300mm.  
Each model is equipped with 228 pressure taps of 0.5 mm diameter, as shown in Fig. 3(b).  
The turbulence intensity Iu,H at the mean roof height H is approximately 0.16 for Flow II’ and 
approximately 0.19 for Flow IV’. 
The experimental procedure is the same as that for spherical domes except that the wind 
direction is varied from 0 to 90o at a step of 5o. 
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(a) Geometry (side view) (b) Location of pressure taps (top view) 

Fig. 3. Wind tunnel model and coordinate system (vaulted roofs) 

2.2 Database of the statistics of wind pressures 
The data from the simultaneous pressure measurements are stored on a computer in the 
form of pressure coefficient; the pressure coefficient Cp is defined in terms of the velocity 

pressure qH (= 1/2ρUH2, with ρ and UH being the air density and the wind velocity at the 
mean roof height H, respectively). Then, the statistical values of pressure coefficients, i.e. 

mean pC , standard deviation 'pC , maximum and minimum peaks, Cpmax and Cpmin, during 

a full-scale period of 10 min, skewness Sk, kurtosis Ku and power spectrum Sp(f), with f being 

the frequency, are computed. In the spherical dome case, the distributions of pC , 'pC , Cpmax, 

Cpmin, Sk and Ku in the circumferential direction are smoothed by using a cubic spline 
function. Furthermore, the values at two points that are symmetric with respect to the 
centreline parallel to the wind direction are replaced by the average of the two values, which 
makes the distribution symmetric with respect to the centreline. In the case of vaulted roofs, 
the distributions along the roof’s periphery are smoothed by using a cubic spline function. 
Such a smoothing procedure may eliminate noisy errors included in the experimental data. 

Sample results on pC  are shown in Figs. 4 and 5. The smoothed data for all the cases tested 

are stored in the database, together with the coordinates (x, y) of pressure taps, the values of 
geometric parameters (i.e. f/D and h/D), and the turbulence intensity IuH of approach flow at 
the mean roof height H and the wind direction (only for vaulted roofs). 
The power spectrum Sp(f) is approximated by the following equation: 

 1 1 2 22

( )
exp exp

p

H Hp

S f f DH f DH
a c a c

U Uσ

   
= − + −      

   
 (1) 

where σp is the standard deviation of pressure fluctuation; a1 and a2 are the position 
constants and c1 and c2 are the shape constants. The first and second terms of the right-hand 

side of Eq. (1) control the position and shape of Sp(f)/σp2 at lower and higher frequencies, 
respectively. Similar representation was used by Kumar and Stathopoulos (1998) for 
pressures on low building roofs. In the above equation, however, the frequency f is reduced 
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by DH , not by H. This is related to a three-dimensional effect of the flow around the roofs. 

The values of the four constants are determined based on the least squares method applied 
to the experimental data. 

 

 

Fig. 4. Distributions of pC  on a spherical dome (f/D = 0.1, h/D= 4/16, Flow II) 

 

 

Fig. 5. Distributions of pC  on a vaulted roof (f/D = 0.1, h/D= 1/30, Flow IV’) 

In the spherical dome case, the general shape of Sp(f)/σp2 changes only slightly in the x-
direction (Noguchi and Uematsu, 2004). Therefore, focus is on the variation of Sp(f)/σp2 only 
in the y-direction. The values of a1, a2, c1 and c2 at the pressure taps on the dome’s centreline 
are computed for all the cases tested and stored in the database. In the wind load evaluation 
system, we use the values of the four constants at a point on the centreline that gives a y-axis 
value closest to that of the target point (evaluation point). Fig. 6 shows sample results of 
comparison between experiment and formula for the power spectra at two points on a 
spherical dome. The experimental results are plotted by the circles and the empirical 
formula is represented by the solid line. It is seen that the approximation by Eq. (1) is 
generally satisfactory. 
In the vaulted roof case, the wind pressures are affected by the wind direction. Hence, the 
power spectra are calculated for all pressure taps and wind directions. Fig. 7 shows sample 
results of comparison between experiment and formula for the power spectra at two points 
on a vaulted roof. Again, the agreement is generally good. 
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Fig. 6. Wind pressure spectra for a spherical dome (f/D = 0.1, h/D = 4/16, Flow II) 
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Fig. 7. Wind pressure spectra for a circular arc roof (f/D = 0.1, h/D = 1/30, Flow IV’) 

3. Artificial neural network 

3.1 Spherical dome 
Although the wind pressures were measured simultaneously at several hundreds points in the 
wind tunnel experiments, spatial resolution may be still limited from the viewpoint of cladding 
design. Cladding or roofing cover is sensitive to the spatial variation and fluctuating character 
of the time-dependent wind pressures. The turbulence of approach flow also affects the wind 
pressures significantly. Hence, an artificial neural network based on Cascade Correlation 
Learning Network (CCLN, Fahlman and Lebiere, 1990) is used to improve the resolution. 

Fig. 8 illustrates the network architecture, which has a layered structure with an input layer, 

an output layer and a hidden layer between the input and output layers. The input vector 

consists of five parameters, that is, two geometric parameters of the building (f/D and h/D), 

the coordinates (x, y) of measuring point, and the turbulence intensity IuH of the approach 

flow at the mean roof height H; the coordinate system is defined as shown in Fig. 2. There is 

also a bias unit, permanently set to +1. Each network is constructed for each of the four 

parameters, pC , 'pC , Sk and Ku. 
The quickprop algorithm (Fahlman, 1988) is used to train the output weights. Training 
begins with no hidden units. As the first step, the direct input-output connections are 
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trained as well as possible over the entire training set. The network is trained until either a 
predetermined maximum number of iterations is reached, or no significant error reduction 
has occurred after a certain number of training cycles. If the error is not acceptable after the 
first step, a new hidden unit is added to the network to reduce this residual error. The new 
unit is added to the network, its input weights are frozen, and all the output weights are 
once again trained. This cycle repeats until the error becomes acceptably small. 
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Fig. 8. CCLN for the statistics of wind pressures on spherical domes 

Well-distributed representative data are required for training the network. In the above-

mentioned database, pressure data at 230 locations are stored each for five f/D ratios, 

seventeen h/D ratios and two kinds of turbulent boundary layers (open-country and urban 

exposures). Note that the h/D ratio is varied from 1/16 to 1 in the flat roof case (f/D = 0).  

Therefore, the number of data set is 38,640 (= 2× (16+17×4) ×230 = 168×230). Ten typical 

cases of experimental conditions are selected from these 168 cases. Forty-six locations are 

randomly selected from the 230 points for testing. Therefore, the number of test data is 460 

(= 10×46). The other data are used for training the network. 
The sigmoid function represented by the following equation is used to process the net input 
signals and provide the output signals at hidden nodes: 

 max min
min( )

1 s

S S
f s S

e−

−
= +

+
 (2) 

where Smax and Smin represent the upper and lower limits of the output from the neuron.  

Appropriate values of Smax and Smin depend on the output vector. In the training phase of 

the network using the quickprop algorithm, three empirical terms, i.e. learning rate η, 

maximum growth factor µ, and weight decay term λ, are introduced to improve the 

convergence of training and the stability of computation. Appropriate values of these terms 

are determined by trial and error, considering the behaviour of the mean square error that 

the network produces. The weights are initialised to random numbers between +1.0 and –

1.0. The number of epochs also affects the convergence of training, which is again 

determined by trial and error. Table 1 summarizes the values of η and the numbers of 
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epochs for pC , 'pC , Sk and Ku, together with the values of the error index IE in the training 

phase; the error index is defined by the following equation: 

 

( )2

1

1 N

k k
k

E

T O
N

I
σ

=

−

=


 (3) 

where Tk and Ok represent the target value and the actual output for training pattern k, 

respectively; N = number of training patterns; and σ = standard deviation of the target data.  
Because the values of Sk and Ku change over a wide range, these values are divided by some 
factors. 
 

Statistical value η Number of epochs IE (training phase) 

pC  0.5 100 0.144 

'pC  0.5 50 0.333 

Sk 0.02 200 0.478 
Ku 0.2 300 0.421 

Table 1. Characteristics of the neural network for spherical domes 

 

 

Fig. 9. Comparison between experiment and ANN prediction for pC , 'pC , Sk and Ku 
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Fig. 9 shows comparisons between experiment and prediction by ANN for pC , 'pC , Sk and 

Ku, respectively; 460 data are plotted in each figure. The solid lines in the figures represent 

permitted limits, which are tentatively chosen as a standard deviation of the experimental 

values. Regarding pC  and 'pC , the agreement is generally good. Regarding the skewness 

and kurtosis, on the other hand, the agreement is somewhat poorer than that for pC  and 

'pC , although the ANN captures the general trend of the experimental data. This is because 

the skewness and kurtosis exhibit large values in magnitude in relatively small areas. 

Furthermore, their variation in these areas is also remarkable. However, as will be described 

later, the effects of Sk and Ku on the simulated time-series of wind pressures are relatively 

small. This feature implies that the neural networks constructed for Sk and Ku can be used in 

the practical applications. 

To discuss the application of the ANN to practical situations, a comparison is made between 

the prediction by the ANN and the experimental data for Nagoya Dome (Fig. 10). The 

geometry of this building is as follows: i.e. span D = 187.2 m, rise f = 32.95 m, eaves-height h = 

30.7 m (f/D = 0.18, h/D = 0.16). This dome is constructed in the suburb of Nagoya City, Japan. 

The wind tunnel experiment was carried out with a 1/500 scale model in a turbulent boundary 

layer with a power law exponent of α = 0.25 and the turbulence intensity of 0.19 at the level of 

rooftop. The actual situation in the circular area with a radius of 450 m around the dome was 

modeled exactly. The experimental data on pC  and 'pC  were provided by Takenaka 

Corporation that had carried out the wind tunnel experiment. Fig. 11 shows comparisons 

between the ANN prediction and the experimental data for pC  and 'pC . The agreement is 

relatively good, particularly for pC . The ANN somewhat overestimates the values of 'pC . 

However, such a difference up to about 0.1 may be acceptable in plactical applications. 
 

 

Fig. 10. Nagoya Dome (provided by Takenaka Corporation) 
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Fig. 11. Comparison between ANN and experiment for the pC  and 'pC  distributions 

3.2 Vaulted roof 

Fig. 12 shows the ANN architecture for vaulted roofs. In this case, the wind direction θ is 
considered in the input vector. The network is trained in the same manner as that for 
spherical domes. Eighteen typical cases of experimental conditions are selected from the 342 
cases. Forty-five locations are randomly selected from the 228 points for testing. The number 

of test data is 810 (= 18×45). The other data are used for training the network. Table 2 
summarizes the characteristics of the network obtained. 

Fig. 13 shows comparisons between experiment and prediction by ANN for pC , 'pC , Sk and 

Ku, respectively; 810 data are plotted in each figure. The behaviour of the networks for 

vaulted roofs is similar to that for spherical domes shown in Fig. 9. However, the ANN 

prediction is somewhat poorer than that for spherical domes. This may be related to a wider 

variation of the characteristics of wind pressures with many parameters in the vaulted roof 

case. 
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Fig. 12. CCLN for the statistics of wind pressures on vaulted roofs 
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Statistical value η Number of epochs IE (training phase) 

pC  0.2 150 0.229 

'pC  0.5 150 0.378 

Sk 0.2 300 0.446 
Ku 0.2 500 0.827 

Table 2. Characteristics of the neural network for vaulted roofs 

 

 

Fig. 13. Comparison between experiment and ANN prediction for pC , 'pC , Sk and Ku 

4. Time series simulation of wind pressures 

4.1 Outline of the procedure 
First, the application of the Kumar and Stathopoulos’s method (1999, 2001) to the present 
problem is discussed. The flow chart for the simulation is described in Fig. 14. The approach 
is based on an FFT Algorithm. The Fourier amplitude is constructed from the power 
spectrum Sp(f) of pressure fluctuations, which is represented by Eq. (1). The values of the 
four coefficients involved in the equation are obtained from the database. The spike features 
inducing the non-Gaussian character to the pressure fluctuations are achieved by preserving 
the target skewness and kurtosis given by the ANN and the database. A simple stochastic 
model with a single parameter b has been suggested for the simulation of phase. The 
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computation of b is accomplished by minimizing the sum of the squared errors in skewness 
and kurtosis. In practice, changing the value of b from 0 to 1 with a small increment (e.g. 
0.01), the skewness Sk and kurtosis Ku of the simulated time series are computed. The sum of 
the squared errors (SSE) in Sk and Ku are calculated for each value of b and the value giving 
the least SSE is chosen as the optimum one. 
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Fig. 14. Schematic of the generation of non-Gaussian wind pressure time series (Kumar and 
Stathopoulos, 1999, 2001) 

4.2 Toward simplification of the procedure 
The most troublesome and time-consuming procedure is the determination of the optimum 
value of b. Fig. 15 shows sample results on the variation of Sk and Ku with b. Note that the 
ordinate of the figure for kurtosis is represented by Ku–3, considering that Ku = 3 for 
Gaussian processes. Because the skewness and kurtosis are related to each other, both Sk and 
Ku show similar behavior. They increase monotonically with an increase in b. When the 
value of b is relatively small, such as b < 0.6, for example, the variation is quite small. On the 
other hand, they increase significantly with increasing b for larger values of b. In practice, 
the optimum value of b is not so large and the values of Sk and Ku are less sensitive to b. 
Therefore, the variation of Sk and Ku can be approximated by a simple function of b with a 
small number of data points in the practical range. The cubic spline function is used here. 
Using such a function, the optimum value of b can be calculated easily. 
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Fig. 15. Variation of Sk and Ku with b for a spherical dome (f/D = 0.1, h/D = 0.25, Flow II) 
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4.3 Results and discussion 
A comparison of the wind pressure time series between experiment and simulation is 
shown in Fig. 16. The spike features of pressure fluctuations are simulated well. Tables 3 
and 4 summarize comparisons between experiment and simulation for the statistics of the 
wind pressures at two typical points on a spherical dome and a vaulted roof, respectively.  
Note that the averaging time for evaluating the peak pressure coefficients is 1 sec and the 
values in the table are all the ensemble averages of the results from six consecutive runs. A 
good agreement between experiment and simulation is seen for both points. Similar 
comparisons are made for ninety-two points shown in Fig. 17 (points on the solid lines).  
The results for Cpmax and Cpmin are plotted in Fig. 18. The agreement is relatively good. 
Approximately 95 % of the simulated results is within a range of the target value ± 0.1 for 
Cpmax and ± 0.2 for Cpmax. These results indicate that the method proposed here can be used 
for evaluating the design wind loads by combining the database of the statistics of wind 
pressures and the ANN. 
 

 

Fig. 16. Experimental and simulated time series of wind pressure coefficient at a point near 
the leeward edge of a spherical dome (f/D = 0.2, h/D = 4/16, Flow II) 
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Statistics pC  Cpmax Cpmin Sk Ku Tap location 

(a) Point 1       

Experiment 0.226 -0.394 -1.872 -0.385 3.065 

Simulation 0.211 -0.395 -1.685 -0.436 3.057 

Error 0.015 0.001 -0.187 0.051 0.008 

(b) Point 192       

Experiment 0.126 0.208 -0.742 -0.647 4.225 

Simulation 0.120 0.154 -0.732 -0.661 4.212 

Error 0.006 0.054 -0.010 0.014 0.013 

Table 3. Comparison between experiment and simulation for the statistics of wind pressures 
on a spherical dome (f/D = 0.2, h/D = 0.25, Flow II) 

 

Statistics 
pC  Cpmax Cpmin Sk Ku Tap location 

(a) Point 1       

Experiment 0.475 -0.437 -3.188 -1.367 3.302 

Simulation 0.437 -0.386 -3.084 -1.188 2.852 

Error 0.038 -0.051 -0.104 -0.179 0.450 

(b) Point 210       

Experiment 0.206 0.115 -1.209 -0.884 2.708 

Simulation 0.190 0.066 -1.142 -0.852 2.332 

Error 0.016 0.049 -0.067 -0.032 0.376 

Table 4. Comparison between experiment and simulation for the statistics of wind pressures 
on a vaulted roof (f/D = 0.3, h/D = 10/30, Flow II’) 
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Fig. 17. Tap locations where the time series of pressure fluctuations is simulated (92 points 
on the solid lines) 
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Fig. 18. Comparison between experimant and simulation for a spherical dome (f/D = 0.2, 
h/D = 4/16, Flow II) 

 

 

Fig. 19. Effects of Sk and Ku on the simulated value of Cpmin for a spherical dome (f/D = 0.2, 
h/D = 9/16, x/D = 0, y/D = –1/4) 

As mentioned above, the accuracy of the ANN prediction for Sk and Ku is not so high, 

compared with that for pC  and 'pC . Then, the effects of Sk and Ku on the simulated results 

are investigated. The time series is simulated by changing either Sk or Ku from the optimum 

value. Fig. 19(a) shows the variation of the change of Cpmin (∆Cpmin) with the change of Sk 

(∆Sk) from the optimum value. A similar result for Ku is shown in Fig. 19(b). It is found that 

the simulated results are not sensitive to the variation of Sk and Ku. In practice, the simulated 

result of Cpmin changes some 5 percent when the values of Sk or Ku change by 50 percent. 

5. Application of the wind load evaluation system to wind resistant design 

The wind load evaluation system proposed here can provide peak pressure coefficients 
according to a predetermined risk level by combining the extreme value analysis. Fig. 20 
shows the probability of non-exceedence for Cpmin at a windward edge point of a spherical 
dome. The thick solid line shows the result calculated from a set of 200 extremes that the 
evaluation system predicted. For comparative purpose, the results predicted from 33 sets of 
six extremes by using BLUE (Lieblein, 1974) are represented by thin solid lines.  These 
results exhibit a considerable scatter around the 200 data curve. The result predicted from 
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the six experimental data is also quite different from the 200 data curve. Such a difference 
implies that we need a lot of data for predicting the probability of non-exceedence precisely. 
It takes a long time to collect so much data in a wind tunnel experiment. By comparison, the 
proposed wind load evaluation system can provide much data more easily. This is one of 
the advantages of the system over the wind tunnel experiment. 
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Fig. 20. Probability of non-exceedence for Cpmin (Spherical dome; f/D = 0.2, h/D = 4/16, 
Flow II) 

Furthermore, by introducing a load cycle counting method, such as the rainflow count 
method, the system can provide the wind load cycles for fatigue design. Fig. 21 shows a 
sample result on the frequency distribution of wind pressure coefficient fluctuations, 
represented as a function of mean and amplitude of fluctuation at the center of a dome. By 
combining such a result with the influence coefficients, we can easily compute the stresses 
or strains induced in the cladding and its fixings, which are used for evaluating the fatigue 
damage. 
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Fig. 21. Number of load cycles (Spherical dome; f/D = 0.2, h/D = 4/16, Flow II) 

6. Concluding remarks 

A computer-assisted load evaluation system for the design of roof cladding of spatial 
structures using an aerodynamic database, artificial neural network and time-series 
simulation technique has been proposed. Focus is on spherical domes and vaulted roofs as 
typical roof shapes used for spatial structures. The proposed methodology is capable of 

WIND
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providing peak pressure coefficients according to pre-determined risk levels by combining 
the extreme value analysis; this can generate risk consistent and more economical design 
wind loads for the roof cladding. Furthermore, by introducing a load cycle counting 
method, such as the rainflow count method, the system can provide the wind load cycles to 
be used for fatigue design. 
This chapter describes the components of the load evaluation system proposed by the 
author. Although there are some problems to be investigated further, the results presented 
here indicate that the proposed system is promising. In this chapter the subject is limited to 
spherical domes and vaulted roofs. However, it is possible to apply the proposed method to 
the cladding of any buildings, once the database of the statistics of wind pressures has been 
constructed based on a wind tunnel experiment and/or CFD computations. 
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