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1. Introduction 

Huge amounts of biomass wastes, such as animal waste and sewage sludge, are produced 

continuously in farms and disposal plants. The most common method for treating these 

wastes is to use landfill and/or incineration methods that consume large amounts of energy 

and cause environmental problems such as air and soil pollution. Because biomass wastes 

contain nitrogen compounds and various hydrocarbons, a new alternative process to 

convert the wastes into useful chemicals is desirable. 

Ammonia, one such chemical, has been used as a fertilizer, and increasing interest has 

focused on it as a hydrogen carrier. Ammonia is a liquid around 0.8 MPa at room 

temperature and offers significant hydrogen storage capacity (17.7 wt% hydrogen in 

ammonia). Hydrogen has been produced by the decomposition of ammonia with catalysts, 

such as ruthenium and nickel (Ganley et al., 2004; Liu et al., 2008; Wang et al., 2004; Yin et 

al., 2004, 2006; Zhen et al., 2008). Hence, the recovery of ammonia from biomass wastes is 

demanded. After the treatment for ammonia recovery, the remaining liquid wastes 

containing lower ammonia concentrations could be used as liquid fertilizer, whereas the 

high concentration of ammonia in raw biomass wastes causes eutrophication of the soil. 

Biomass wastes also contain various hydrocarbons, and several methods exist, such as 
thermal cracking and fermentation, to convert these wastes into useful chemicals. Methane 
and hydrogen have been produced by the gasification of biomass wastes above 1000 K with 
the addition of steam or air (Gross et al., 2008; Nipattummakul et al., 2010). Supercritical 
water gasification is a method conducted under high pressure to produce hydrogen (Guo et 
al., 2010a). Fuel oil has been produced by the treatment of biomass wastes at relatively low 
temperatures of between 673 and 823 K (Shen et al., 2005). Anaerobic fermentation has 
produced methane (Guo et al., 2010b). The treatment of biomass wastes under moderate 
conditions is desirable because of the high moisture content of the wastes. Biomass wastes 
contain various oxygen-containing hydrocarbons, and thus the conversion of these 
hydrocarbons into useful chemicals, such as ketones, appears to be a promising approach. 
Acetone is used as a raw material for plastics, such as poly(methyl methacrylate) (PMMA) 
and polycarbonate (PC). 
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This chapter describes a new method, shown in Fig. 1, to recover useful chemicals, such as 
ammonia and ketones, from biomass wastes. Ammonia is recovered by the adsorption of 
nitrogen compounds in the waste, and oxygen-containing hydrocarbons in the waste are 
catalytically cracked to produce ketones. 
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Fig. 1. Recovery method of ammonia and ketones from biomass wastes. 

2. Recovery of ammonia 

A promising method of ammonia recovery from biomass wastes includes two processes: the 

recovery of gaseous ammonia, which is generated by aeration of the biomass wastes, and the 

recovery of aqueous ammonium ions. Adequate adsorbents are required in both processes.  

Some adsorbents, such as zeolite, sepiolite, and activated carbon, have been used to recover 

ammonia gas (Bernal and Lopez-Real, 1993; Park et al., 2005). The maximum amounts of 

ammonia adsorption on zeolite and sepiolite were approximately 0.8 mol-N/kg-zeolite and 

0.3 mol-N/kg-sepiolite (Bernal and Lopez-Real, 1993). Zeolite and sepiolite have also been 

used to recover ammonium ions in liquid phase (Balci, 2004; Bernal and Lopez-Real, 1993; 

Yusofa et al., 2010). The maximum adsorption of ammonium ions on zeolite Y was 

approximately 2.4 mol-N/kg-zeolite (Yusofa et al., 2010). 
The precipitation of magnesium ammonium phosphate (MgNH4PO4·6H2O, MAP) is a useful 
process for removing ammonium ions in liquid phase (Chimenos et al., 2003; Diwania et al., 
2007; Nelson et al., 2003; Stratful et al., 2001). MAP can be precipitated by adding magnesium 
and phosphate to ammonium solution at a pH above 7. Sugiyama et al. (2005, 2007) reported 
that an adsorbent derived from MAP was useful for the recovery of ammonium ions from 
aqueous solution. Ammonia was removed from MAP by thermal treatment above 353 K, 
yielding a solid, which is the adsorbent for the recovery of aqueous ammonium ions. 
The application of MAP-derived adsorbents to both the adsorption process of gaseous 

ammonia and aqueous ammonium ions could be a promising approach to recover ammonia 
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from biomass wastes. The recovery process of ammonia from biomass wastes in liquid or 

gas phase is depicted in Fig. 2. Thermal treating of MAP produces ammonia, water, and the 

adsorbent, which is Mg(NH3)1-XHPO4. The behaviors of adsorption of gaseous ammonia and 

aqueous ammonium ions and desorption of ammonia are discussed in this section. 
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Fig. 2. Ammonia recovery process from biomass wastes using MAP-derived adsorbents. 

2.1 Adsorbents derived from MAP 
Ammonia can be removed from MAP by heating. Sugiyama et al. (2005) reported that the 
weight of MAP decreased drastically in the temperature range of 350–400 K due to the 
elimination of ammonia and water when MAP was heated. The nitrogen content in MAP 
was reduced by heating, and ammonia was largely eliminated from MAP in the 
temperature range of 340–360 K (Fumoto et al., 2009). Table 1 shows the remaining nitrogen 
content in the solids treated at 378 K and 573 K for 24 h in a thermostatic oven. 
Approximately 70% and 90% of ammonia was eliminated from MAP by thermal treatment 
at 378 K and 573 K, respectively (Fumoto et al., 2009). The remaining nitrogen content and 
the amount of weight loss indicate that the adsorption capacity of ammonia onto the solids 
treated at 378 K and 573 K was 3.6 and 6.0 mol-N/kg-solid, respectively. 
 

Treatment temperature  
[K] 

Remaining nitrogen content 
[mol-N/mol-Mg] 

Surface area 
 [m2/g] 

378 0.30 204 

573 0.090 111 

Table 1. Remaining nitrogen content and BET surface area of solids obtained by thermal 
treatment of MAP (Fumoto et al., 2009). 
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Figures 3 and 4 illustrate the nitrogen sorption isotherms and pore volume distributions of 
the solids obtained by treating MAP at 378 K and 573 K. The Brunauer-Emmett-Teller (BET) 
surface area of the solids was calculated and is given in Table 1. The sorption isotherms 
exhibited hysteresis, indicating that the solids have pores. The solid treated at 378 K had 
several nanopores, and the surface area of this solid was larger than that of the solid treated 
at 573 K (Fumoto et al., 2009). These results suggest that the solid treated at 378 K may be a 
suitable adsorbent for recovering gaseous ammonia and aqueous ammonium ions. 
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Fig. 3. Nitrogen sorption isotherms of solids obtained by treating MAP at 378 K and 573 K 
(Fumoto et al., 2009). 
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Fig. 4. Pore volume distribution of solids obtained by treating MAP at 378 K and 573 K 
(Fumoto et al., 2009). 
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2.2 Gas phase adsorption of ammonia on MAP-derived adsorbents 
The adsorption of gaseous ammonia on the adsorbent obtained by treating MAP at 378 K 
was investigated. The adsorbent, loaded in a stainless steel column, was controlled at 313–
353 K, and the experiment of ammonia adsorption was conducted by introducing a mixture 
of ammonia, hydrogen, and argon. The concentration of ammonia in the inlet gas, C0, was 
2.4 mol/m3. The outlet gas, including ammonia, hydrogen, and argon, was monitored with 
a quadrupole mass spectrometer (Q-MS). The mass numbers were chosen as 15, 2, and 40, to 
detect ammonia, hydrogen, and argon, respectively. Hydrogen was introduced to determine 
the travel time of the gas from the inlet to the Q-MS. In a preliminary experiment, hydrogen 
and argon were confirmed to not be adsorbed on the adsorbent. 
Figure 5 depicts the effect of temperature on the amount of adsorption of gaseous ammonia 

on the adsorbent obtained by treating MAP at 378 K. Breakthrough curves of ammonia 

adsorption were obtained from the measured ammonia concentration in the outlet gas, Ct. 

The amount of ammonia adsorption, q, was calculated according to Eq. (1). 

 ( )0
00

1 / dt

v C
q C C t

W

∞⋅
= − , (1) 

where v is the flow rate and W is the weight of the adsorbent. The lower the temperature is, 
the larger the amount of ammonia is adsorbed. The maximum adsorption amount was 2.56 
mol-N/kg-adsorbent (Fumoto et al., 2009), which is much larger than that on zeolite (0.8 
mol-N/kg-zeolite; Bernal and Lopez-Real, 1993). 
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Fig. 5. Effect of temperature on the amount of gaseous ammonia adsorbed on the adsorbent 

obtained by treating MAP at 378 K (Fumoto et al., 2009). 

Figure 6 presents an adsorption isotherm of gaseous ammonia at 313 K. The adsorbent was 
obtained by thermal treatment of MAP at 378 K. The amount of adsorption of ammonia was 
proportional to the ammonia concentration, indicating Henry-type adsorption (Fumoto et 
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al., 2009). The adsorption energy, calculated from the data of Arrhenius plots in Fig. 5, was 
low (–3.0 kJ/mol). These results suggest that gaseous ammonia was physically adsorbed on 
the adsorbent. 
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Fig. 6. Adsorption isotherm of gaseous ammonia at 313 K on the adsorbent obtained by 
treating MAP at 378 K (Fumoto et al., 2009). 

2.3 Liquid phase adsorption of ammonium ions on MAP-derived adsorbents 
The adsorption of ammonium ions on MAP-derived adsorbents from ammonia water was 
investigated. The ammonium concentration was 500–12000 ppm and the pH of the ammonia 
water was adjusted to 11 by adding sodium hydroxide. The adsorbent obtained by treating 
MAP at 378 K and 573 K was added to the ammonia water at a weight ratio of adsorbents to 
ammonia water of 1:100, and the ammonium concentration was analyzed after 1 h of stirring 
at room temperature. 
Figure 7 depicts the adsorption isotherms of ammonium ions on the adsorbent from 
ammonia water at room temperature; the calculated adsorption capacity of ammonium ions 
is also shown. A large amount of ammonium ions became adsorbed on the adsorbent 
treated at 378 K (Fumoto et al., 2009), whereas the maximum adsorption amount on zeolite 
Y was approximately 2.4 mol-N/kg-zeolite (Yusofa et al., 2010). The experimental value of 
the adsorbed ammonium ions on the adsorbent treated at 378 K was larger than the 
calculated value. An adsorption isotherm of ammonium ions on the adsorbent treated at 378 
K shows Langmuir-type adsorption, indicating chemical adsorption. Figure 8 shows X-ray 
diffraction (XRD) patterns of MAP and the adsorbent treated at 378 K before and after the 
adsorption of ammonium ions. The pattern of the adsorbent treated at 378 K shows peaks 
corresponding to MgNH4PO4·H2O. Sugiyama et al. (2005) reported that MAP was converted 
to amorphous MgHPO4 by thermal treatment below 773 K. These results suggest that the 
adsorbent consisted of amorphous MgHPO4 and MgNH4PO4·H2O. The adsorbent after the 
adsorption of ammonium ions exhibited peaks similar to those of the MAP (Fumoto et al., 
2009). Hence, ammonium ions were adsorbed on the site of MgHPO4 of the adsorbent, and 
the MAP was re-formed in the presence of water. 
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Fig. 7. Adsorption isotherms of ammonium ions at room temperature on the adsorbent 
obtained by treating MAP at 378 K and 573 K (Fumoto et al., 2009). 
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Fig. 8. XRD patterns of MAP and adsorbent treated at 378 K before and after the adsorption 
of ammonium ions (Fumoto et al., 2009). 
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The amount of ammonium ions adsorbed on the adsorbent treated at 573 K was significantly 
less than that of the adsorbent treated at 378 K, as shown in Fig. 7. Furthermore, the 
experimental value was less than the calculated capacity in the case of the adsorbent treated 
at 573 K. The fewer nanopores and smaller surface area of the adsorbent treated at 573 K 
caused the lower adsorption of ammonium ions. The surface chemical properties of the 
adsorbent may be different between the adsorbents treated at 378 K and 573 K. 
Consequently, the adsorbent obtained by treating MAP at 378 K was more suitable for the 
adsorption of ammonium ions. 

2.4 Recovery of ammonium ions from animal wastes 
The feasibility of recovering ammonia from biomass wastes was demonstrated using cow 
urine. The urine was pretreated under a hydrothermal condition at 573 K for 1 h to convert 
nitrogen compounds in the urine into ammonium ions. The pH was adjusted to 10.5 by 
adding sodium hydroxide and the adsorbent treated at 378 K was added to the pretreated 
urine at an adsorbent to urine weight ratio of 1:10. The nitrogen concentration was analyzed 
after 1 h of stirring. 
 

 
Recovery yield 

[mol%-N] 

Impurities deposition [mol/mol] 

C/N S/N 

Pretreated urine 56.9 0.103 0 

Untreated urine 65.2 0.486 0.0196 

Table 2. Nitrogen recovery yield and impurities deposited on the adsorbent from urine 
solution (Fumoto et al., 2009). 

Table 2 lists the nitrogen recovery yield and the impurities deposited on the adsorbent from 
the urine; the results obtained using untreated urine are also shown. More than 50% of the 
nitrogen was recovered from the urine using the adsorbent obtained by treating MAP at 378 
K (Fumoto et al., 2009). The nitrogen concentration of the urine decreased to 2000 ppm after 
the recovery experiment, and the remaining liquid wastes could be used as liquid fertilizer 
because the liquid contained a low concentration of ammonia. 
The nitrogen recovered from pretreated urine corresponded well with ammonium ions 
because the carbon deposition on the adsorbent was small, as shown in Table 2. In contrast, 
some carbon was deposited on the adsorbent from the untreated urine, indicating that most of 
the nitrogen adsorbed on the adsorbent was urea. Furthermore, no sulfur was deposited on 
the adsorbent from the pretreated urine, which contained sulfur. Therefore, large amounts of 
ammonia were recovered from the biomass wastes using this method without impurities. 

2.5 Desorption of ammonia from solids adsorbing ammonia 
The recovery of ammonia by thermal treatment of the solids adsorbing gaseous ammonia 
and aqueous ammonium ions was examined. The MAP structure was re-formed after the 
adsorption of ammonium ions in liquid phase. Hence, the solid adsorbing gaseous ammonia 
and MAP were loaded in the stainless column, followed by heating the column at a rate of 1 
K/min in an argon stream. The solid, which was obtained by treating MAP at 378 K, was 
used after the adsorption of gaseous ammonia. The ammonia and steam eliminated from the 
solid and MAP was measured by Q-MS. The mass numbers were chosen as 15, 18, and 40 to 
detect ammonia, steam, and argon, respectively. 
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Fig. 9. Gas fractions generated from the solid adsorbing gaseous ammonia and MAP. 

Figure 9 describes the gas fractions eliminated from the solids adsorbing gaseous ammonia 
and MAP. Ammonia was eliminated when these samples were heated. The solid adsorbing 
gaseous ammonia released ammonia at a relatively lower temperature compared with the 
MAP, suggesting the physical adsorption of gaseous ammonia. Steam may be desorbed 
from moisture adsorbed on the surface of the solids and crystallization water of MAP. These 
results indicate that ammonia could be recovered by thermal treatment of the solids after the 
adsorption of gaseous ammonia and ammonium ions. Hence, the adsorbent derived from 
MAP could be used repeatedly. 

2.6 Stability of adsorbents for repeated use 
The adsorbents derived from MAP are expected to be reused for the recycling process of 
adsorption and desorption of ammonia. Sugiyama et al. (2005) reported that the removal of 
ammonium ions in the second run was about 80% of that in the first run when an 
ammonium removal experiment from aqueous ammonium ions was conducted using 
adsorbent derived from MAP. The stability of the adsorbents was investigated for repeated 
use in gaseous ammonium adsorption. 
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Figure 10 illustrates the change in amounts of adsorbed ammonia on the adsorbents when the 
sequence of ammonia adsorption and desorption was repeated. After the adsorption of 
gaseous ammonia at 313 K on the adsorbent obtained by treating MAP at 378 K, the adsorbent 
was heated to 378 K to eliminate the ammonia, and it was used repeatedly for the adsorption 
experiment. The amount of ammonia hardly changed in the adsorption/desorption sequence. 
The pore structure of the adsorbent was almost maintained. Accordingly, this adsorbent is 
useful for the recovery of ammonia with repeated sequences of adsorption and desorption. 
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Fig. 10. Change in the amount of adsorbed gaseous ammonia with repeated sequences of 
ammonia adsorption and desorption. 

3. Recovery of ketones 

The conversion of hydrocarbons in biomass wastes into useful chemicals is also a promising 
method. Figure 11 depicts the recovery process of ketones from biomass wastes. To 
solubilize the solid biomass wastes, such as sewage sludge, the wastes are hydrothermally 
treated, producing black water. The obtained black water consists of oxygen-containing 
hydrocarbons and a large amount of water. Some impurities, such as nitrogen and sulfur, 
are contained in the black water. The conversion of black water into useful chemicals 
requires catalysts having the following properties: a strong ability to decompose the 
hydrocarbons in the black water, stable activity in the presence of water, and resistance to 
the deposition of impurities contained in the black water. 
Zirconia-supporting iron oxide catalysts are effective for the decomposition of oil palm 
waste (Masuda et al., 2001) and petroleum residual oil (Fumoto et al., 2004) in a steam 
atmosphere. Oil palm waste can be converted to a mixture containing phenol, acetone, and 
butanone using the catalyst. Hydrocarbons in oil palm waste and petroleum residual oil 
react with active oxygen species generated from steam on the iron oxide catalyst. Zirconia 
promotes the generation of the active oxygen species from steam. 
The production of ketones from sewage-derived black water was investigated. Figure 12 
presents the conversion of oxygen-containing hydrocarbons to ketones with the zirconia-
supporting iron oxide catalysts. The active oxygen species generated from steam could react 
with the hydrocarbons. 
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Fig. 11. Recovery of ketones from biomass wastes. 
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Fig. 12. Reaction mechanism of oxygen-containing hydrocarbons with zirconia-supporting 
iron oxide catalysts. 

3.1 Production of ketones from sewage sludge 
Catalytic cracking of sewage-derived black water was investigated under superheating steam 

conditions. The black water was obtained by the hydrothermal treatment of digested sewage 

sludge at 573 K. The moisture content of the black water was 98 wt%. The zirconia-supporting 

iron oxide catalyst was prepared by a coprecipitation method using FeCl3·6H2O and 

ZrOCl3·8H2O, yielding the catalyst denoted as Zr(Y)-FeOX, where Y is the amount of the 

supported zirconia by weight percent. The catalytic cracking of sewage-derived black water 

was carried out at 523 K under 2 MPa for 2 h using a batch autoclave reactor loaded with 0.2 g 

of catalyst and 3.2 g of black water. The product was analyzed by gas chromatography (GC). 
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Figure 13 illustrates the product yield after the reaction of black water with Zr(Y)-FeOX 

catalysts. The catalysts were active for producing acetone from black water (Fumoto et al., 

2006a). The yield of acetone produced from black water increased with increasing zirconia 

content and reached the maximum value at 7.7 wt% zirconia content. Figure 14 shows the 

desorption rate of hydrogen generated by the decomposition of steam when the catalysts 

were heated after the pre-adsorption of steam on the catalysts. The catalyst supporting 

zirconia exhibited higher steam decomposition activity, even at lower temperatures, 

producing hydrogen (Masuda et al., 2001). Simultaneously, active oxygen species were 

generated from steam. These oxygen species spill over to the surface of iron oxide, and 

oxygen-containing hydrocarbons in black water react with the active oxygen species on the 

iron oxide. The yield of acetone produced in the reaction with the Zr(15.8)- FeOX catalyst 

was less than that in case of the Zr(7.7)-FeOX catalyst. The active sites on the iron oxide may 

be covered with the excessively supported zirconia. Consequently, the largest amount of 

acetone was produced by the reaction of sewage-derived black water with the Zr(7.7)-FeOX 

catalyst. 
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Fig. 13. Product yield of the reaction of black water derived from sewage sludge with Zr(Y)-

FeOX catalysts (Fumoto et al., 2006a). 

3.2 Durability of zirconia-supporting iron oxide catalysts 
High durability of the catalysts is demanded for their long-term use. The black water 
contains impurities, such as nitrogen and sulfur, which have the potential of poisoning the 
catalysts. Nitrogen compounds could be removed by adsorption using the MAP-derived 
adsorbent. To examine the durability of the catalysts, an accelerated deterioration test using 
petroleum residual oil, which contained sulfur, was conducted. 
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Fig. 14. Desorption rate of hydrogen from steam when the catalyst was heated after the pre-
adsorption of steam on the catalysts (Masuda et al., 2001). 

Three types of catalysts, Zr/FeOX, Zr/Al-FeOX, and Zr-Al-FeOX, were prepared. Zirconia 
was supported on the iron oxide, which was generated from the treatment of α-FeOOH with 
steam, by impregnation using ZrOCl3·8H2O, yielding the Zr/FeOX catalyst. The complex 
metal oxide of aluminum and iron was obtained by a coprecipitation method using 
FeCl3·6H2O and Al2(SO4)3·14-18H2O, and zirconia was supported on the complex metal 
oxide by impregnation, yielding the Zr/Al-FeOX catalyst. The Zr-Al-FeOX catalyst was 
prepared by coprecipitation using FeCl3·6H2O, Al2(SO4)3·14-18H2O, and ZrOCl3·8H2O. The 
loaded amount of zirconia was 7.7 wt% and the atomic fraction of Al in Al-FeOX was 0.079. 
The catalytic cracking of atmospheric residual oil was conducted in a steam atmosphere at 
773 K under atmospheric pressure using a fixed bed reactor loaded with the catalyst. The 
product oil was analyzed by GC and gel permeation chromatography (GPC). 
Figure 15 depicts the change in catalytic activity for the decomposition of heavy oil after the 
sequence of reaction of residual oil and regeneration of the catalyst. The reaction rate 
constant, k, was calculated according to Eq. (2): 

 
( )

2C30
C30

R

d

d /

f
k f

W F
+

+= − ⋅ , (2) 

where fC30+ represents the weight fraction of heavy oil (carbon number above 30), and W/FR 

is the time factor corresponding to the ratio of the weight of catalyst to the flow rate of 

residual oil. The activity of the Zr/FeOX catalyst decreased when the sequence of reaction 

and regeneration was repeated (Fumoto et al., 2006b). The peeling of zirconia from iron 

oxide due to structural changes of the iron oxide catalyst caused the deactivation. The 

Zr/Al-FeOX catalyst was not deactivated after the reaction and regeneration sequence. The 

addition of alumina prevented the structural change of iron oxide. When the reaction was 

repeated without regeneration, the Zr-Al-FeOX catalyst maintained high activity (Fumoto et 

al., 2006c), whereas the activity of the Zr/Al-FeOX catalyst decreased without the 
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regeneration. The lattice oxygen of iron oxide was consumed during the reaction, causing a 

phase change of the iron oxide of Zr/FeOX and Zr/Al-FeOX catalysts from hematite to 

magnetite. Hence, the catalyst was regenerated by calcinations. In contrast, the hematite of 

the Zr-Al-FeOX catalyst was maintained after the reaction, leading to stable activity without 

regeneration. No correlation was observed between the activity of the catalyst and the 

deposition of impurities from residual oil. Accordingly, the Zr-Al-FeOX catalyst could be 

useful for long-term application in the conversion process of biomass wastes. 
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Fig. 15. Change in catalytic activity for the decomposition of heavy oil with a repeated 
sequence of reaction and regeneration (Fumoto et al., 2006b, 2006c). 

4. Conclusion 

New methods for recovering ammonia and ketones from biomass wastes were investigated. 

The gaseous ammonia and aqueous ammonium ions were adsorbed effectively on the 

adsorbent obtained by treating MAP at 378 K. The adsorption of gaseous ammonia and 

aqueous ammonium ions was physical and chemical adsorption, respectively. The ammonia 

could be recovered by thermal treating of the adsorbent after the adsorption of ammonia 

and ammonium ions, suggesting that the adsorbent is useful for repeated use of the 

ammonia adsorption/desorption sequence. Large amounts of ammonia were recovered 

from hydrothermally treated cow urine using the adsorbent, without impurities contained 

in the urine. Biomass wastes also contain various hydrocarbons. The solid wastes, such as 

sewage sludge, were solubilized by hydrothermal treatment, producing black water, and 

catalytic cracking of the black water was conducted. As a result, large amounts of acetone 

were produced with the zirconia-supporting iron oxide catalyst. Oxygen-containing 

hydrocarbons reacted with the active oxygen species generated from steam on the iron 

oxide catalyst. Supported zirconia promoted the generation of the active species. Hence, the 

yield of acetone increased with the increasing zirconia content in the catalyst. Furthermore, 

the complex metal oxide catalyst of iron, zirconium, and aluminum showed stable activity 
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for the decomposition of heavy oil. Accordingly, the catalyst may be suitable for the catalytic 

cracking of biomass wastes. 
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