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Self-Consistent Anharmonic  
Theory and Its Application to BaTiO3 Crystal 

Yutaka Aikawa  
Taiyo Yuden Co, Ltd.  

Japan  

1. Introduction  

Because phase transition is important in solid state physics, numerous attempts have thus 

far been made to study the nature of phase transitions in magnets, superconductors, 

ferroelectrics, and so on. For ferroelectrics, both phenomenological and microscopic 

approaches have been adopted to study phase transitions. Generally, it  is considered that at 

high temperatures, the general phenomenological theory and first-principles calculations 

appears to be almost mutually exclusive. 

It is well known that the phenomenological Landau theory of phase transitions can 

provide a qualitatively correct interpretation of the soft mode of ferroelectrics at the Curie 

temperature (L.D.Landau & E.M.Lifshitz, 1958); however, this theory cannot explain the 

mechanism of ferroelectric phase transition. Furthermore, the coefficients of the expansion 

terms of the Gibbs potential cannot be explained by the essential parameters derived by 

first-principles calculations. The first principles calculations were performed to determine 

the adiabatic potential surface of atoms, and the potential parameters were determined to 

recreate the original adiabatic potential surface. This procedure ensures a highly 

systematic study of ferroelectric properties without any reference to the experimental 

values. 

In order to study the phase transition, Gillis et al. discussed first the instability phenomena 

in crystals, on the basis of a self-consistent Einstein model (N. S. Gills et al., 1968, 1971). In 

this model each atom is assumed to perform harmonic oscillation with the frequency which 

is self-consistently determined from the knowledge of interatomic potential in crystal and 

the averaged motions of all atoms. The effect of anharmonicity comes in through the self-

consistent equations. T. Matsubara et al. applied this method to a simple one-dimensional 

model to discuss anharmonic lattice vibration,  which is enhanced on and near the surface 

than in the interior (T. Matsubara & K. Kamiya,1977). 

On the other hand, the combination of the results derived from first-principles calculations 

with the effective Hamiltonian method implemented by means of a Monte Carlo simulation 

(W. Zhong et al.,1995), seems to successfully explain the lattice strain change in BaTiO3 at 

high temperatures. However, the abovementioned approach cannot explain the behavior of 

the dielectric property of materials at high temperatures during the phase transitions in the 

soft mode.  
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To discuss such high temperature transitions, K. Fujii et al. have proposed a self-consistent 
anharmonic model (K. Fujii et al., 2001), and the author has extended it to derive the 
ferroelectric properties of BaTiO3 (Y.AIkawa et al., 2007, 2009), in other words, it has been 
shown that the ferroelectric properties of materials can be described by the interatomic 
potential, which is derived from first-principles calculations. In the present study we 
applied a theoretical method, namely, the self-consistent anharmonic theory, to study the 
cubic-to-tetragonal phase transition in practical applications. The author shows that the 
transition occurs in the soft mode, and that the relationship between the transition behavior 
in the high temperature region and the essential parameters at absolute zero temperature 
which can be derived using first-principles calculations.  
In the previous study, the author introduces the anharmonicity not only into crystal 
potential but also into trial one in order to extend the self-consistent Einstein model, and 
succeeded to derive the soft mode frequency of BaTiO3 crystal near the transition 
temperature, and showed that the softening phenomena never take place when harmonic 
oscillator is adopted as trial potential (Y. Aikawa & K. Fujii, 2010). Furthermore, it becomes 
possible to explain the relation between the dielectric property in high temperature and 
atomic potential at absolute zero temperature derived from first principles calculations 
(Y.Aikawa et al., 2009 ), and also to explain the isotope effect (Y.Aikawa et al., 2010a), 
surface effect (Y.Aikawa et al., 2010b; T. Hoshina et al., 2008), and so on. 

2. Theoretical analysis  

Landau constructed a phenomenological theory for the second order phase transition by 
considering only the symmetry change of a system (L. D. Landau & E. M. Lifshitz, 1958). 
Gibbs free energy is expanded by an order parameter σ in the vicinity of transition 
temperature as 

++−+= 42
0 σσ A)TT(BGG C

 

It is difficult to reflect microscopic information such as interactions between atoms in the 
expansion coefficients A, B and the transition temperature TC . 
K. Fujii et.al  showed theoretically a softening mechanism from the variational principle at 
finite temperature (K. Fujii et al., 2001, 2003). In that work, the coefficients of the second and 
fourth order terms in a trial potential represented by an anharmonic oscillator system were 
expressed by the characteristic constants of interatomic potentials in a crystal.  The author 
found that the temperature dependence of the coefficient of the second order term in the 
trial potential shows the same behavior as the Landau expansion.  The softening phenomena 
are discussed on the basis of the temperature- and wave vector-dependence of the 
expansion coefficient near the instability temperature, and the soft mode is identified by 
introducing normal coordinates instead of direct atomic displacements.  

It is considered a crystal system consisting of N  atoms. Let 
nx  be coordinate of the n-th 

atom whose mass is 
nm .  The Hamiltonian of this system is given by  

 
(1) 

 

where V  are interatomic pair potentials.  An interatomic distance between atoms n  and n′  
is given by 

www.intechopen.com



 
Self-Consistent Anharmonic Theory and Its Application to BaTiO3 Crystal 

 

329 

( ) ( ) ,N,,,SQemu
S

S

S

,nn,n 321 ⋅⋅⋅== −
αα

1/2

( )
,QcVQH

S n,n S
S

nn

SnnS  
′

′
′ 






 ++= a2

2

1 

.QBQAQH
S

SS
S

SS
S

Str  ++= 242

2

1 

( )
.FQBQAQcV

FHHF

tr
S

SS
S

SS
n,n S

S

nn

Snn

trtr

+−−





 +=

+−=

 
′

′
′

24a

( ) ,Qc
S

S

nn

Snnnn  ′
′′ +=− axx

(2) 
 

where 
nn ′a means the interatomic distance in equilibrium state and 

nu  denotes an atomic 

displacement from the equilibrium position. The displacement 
α,nu  in the ͉direction is 

expanded by using the eigenfunctions ( )S
,ne α

 of a dynamical matrix as 
 

(3) 
 
where 

SQ  are the normal coordinates.  The interatomic distance is represented by 

 
(4) 

 
where cS(nn’) are defined by using the the direction cosine, 

α,nn ′ , of the interatomic distance 

vector as (͉=x,y,z) 

 
(5) 

 

Then, Hamiltonian is rewritten in terms of the normal coordinates 
SQ  as (Y. Aikawa & K. 

Fujii, 1993) 
 

(6) 

The variational principle at finite temperature is applied to obtain thermal properties of the 
crystal.  In this method, an anharmonic oscillator with the fourth order term is adopted as a 
trial Hamiltonian

trH , (Y. Aikawa & K. Fujii, 2009) 

 
(7) 

 

The thermal average of a physical quantity ( )SS Q,QX   is given by 
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 (8) 

The free energy of the crystal is given by  
 
 
 

(9) 
 
The free energy 

trF  of the trial system is also calculated by using the relation 
trtr ZTF lnk B−= . 

The partition function 
trZ  is represented by using the variables TQAy SSS B

44 k≡  and 

SSS BTAp Bk41≡  as: 
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(10) 
 
 
 
 
 
where z(pS) satisfies a differential equation (Y. Onodera,1970):  

 ( ) ( )
( )

2

2

d d
2 0

dd
.S S

S S
SS

z p z p
p z p

pp
− − =  (11) 

The solution z(pS) is expressed later by the confluent hyper geometric function.  The thermal 

averages of 2

Sy  and 4

Sy  are easily obtained as  
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4 2
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Thus,  

 4 2 1
.

2 4
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Q Q
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= − +  (13) 

The free energy given by eq. (9) is rewritten as 
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where the potential is decomposed into the Fourier component.  The notation 
C

  denotes 

the cumulant as defined by 
 

(15) 
 
It is evident from the formula of the trial Hamiltonian that  

0
0

0 :
,

:
n
S n

S

n odd
Q

Q n even


= 


 

thus the cumulant expansions are as follows:  
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From the variation of the free energy with the interatomic distance
nn ′a , we have the equation 
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From the optimum condition 0=∂∂ SAF  gives the relation  
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The optimum condition 0=∂∂ SBF  gives the relation  
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(19)
 

From eq. (18) and eq. (19), an equation to be satisfied in the thermal equilibrium state is 
obtained as 
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It is obtained the solution for the anharmonic system as follows: 
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Substituting eq. (21) into eq. (19), an important equation to determine the equilibrium 
condition for the free energy is obtained as 
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In high temperature region ( p≪1 ), the solution for eq. (11) is given by 
 
 

(23) 
 
 
where ( ) ( ) 3380

4
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4
3 .≅≡ ΓΓδ  and F is the confluent hyper geometric function defined as 
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As a result, the average of  QS 2  is determined as 

 
( )2 2 3 2B 1

2

k
1 4 4S S S

S

T
Q p p

A
δ δ δ = − − + + 

 (25) 

In high temperature approximation, the equation for 
SA  to satisfy eqs. (21) and (25) is 

obtained as  
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To substitute eq. (26) into eq.(22), the equation for determining the instability phenomena in 
the crystal is obtained as 
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3. Soft mode 

The aim of this section is as follows:  the author derives equations to determine the soft 
mode which minimizes the k-dependent part of the second order term in the trial potential, 
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and apply the result to the transition from cubic to tetragonal phase in a ferroelectric crystal 
BaTiO3.  The force constants between atoms are estimated by comparing the theoretical 
result for dispersion relations derived from a dynamical matrix with that of a neutron 
diffraction experiment (G. Shirane et.al., 1967; B. Jannet et al., 1984).  The author applies the 
result to determination equations,  and verify that the lowest frequency mode at ̳ point 

corresponds to a mode causing the ferroelectric phase transition of BaTiO3. 

3.1 Determination equations for the soft mode 
It is considered that the crystal instability takes place when the coefficient of the second 
order term in the trial potential becomes infinitesimal as temperature approaches to the 
transition point. Namely, the parameter νS  increases to an unlimited extent. This type of 

phase transition accompanied by the symmetry change is suggested as the softening in the 
crystals (W.  Cochran, 1959). The instability temperature TC is defined by the temperature 
where νS→∞ in eq.(29) as  
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where 
∞f  and ( )2

∞f  mean the values of f  and ( )2f  under ∞→Sν . In the vicinity of the 

instability temperature, the parameter 
Sν  can be represented from eqs.(29) and (31) as:  
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where the instability temperature is obtained as 
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Consequently, the variational parameter of the second order term is given as 
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and the variational parameter of the forth order term is also calculated as: 
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Near the instability temperature, the optimum value of the trial potential is represented as 
 

(36) 
 
where the degree of freedom of the system, S = 3N, is replaced by the branch and the wave 

vector (R,k ).  In order that the softening may actually occur, it is necessary that ( )kRB  

becomes minimum at the definite k  vector which is written as  
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where ( )kRγ  is thek -dependent part in ( )kRB  as 
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(39) 

 

Here, the eigenfunctions ( )α,n
,Re k

 of the dynamical matrix given approximately in Appendix 

can be easily derived.  Consequently, determination equations for the soft mode identified 
by (R, k) are given by 
 

(40) 
 
First, whether or not the crystal instability takes place is decided by the temperature 

dependence of the second order term in the trial potential as shown in eq. (36). Next, the soft 

mode is identified by the determination equations formalized by eq.(40). To apply the 

equations, the eigenfunctions included in eq. (39) are necessary which are obtained through 

the eigenvalue problem of the dynamical matrix. Landau theory presents that only one 

irreducible representation takes part in the phase transition accompanied by the symmetry 

change. When more than two modes belong to the same irreducible representation, it is 

unknown which mode corresponds to the soft mode with the lowest frequency. In this 

section, the author shows that one can solve this difficulty by using eq.(40) as the 

determination equations for the soft mode. 

3.2 Application to the ferroelectric crystal BaTiO3 
The author constructs a formalism to specify the atomic displacement pattern in softening of 

the BaTiO3 crystal.  The Bravais lattice of this crystal above the transition temperature is a 

cubic lattice whose unit cell and Brillouin zone are shown in Fig.1.  

.

www.intechopen.com



 
Self-Consistent Anharmonic Theory and Its Application to BaTiO3 Crystal 

 

335 

a

Ti

yO

Ba

zO

xO

a

Ti

yO

Ba

zO

xO

 
                                          (a)                                             (b) 

Fig. 1. Cubic structure and Brillouin zone of BaTiO3 at high temperature.  (a)The atoms in a 
unit cell are arranged at the original (nx, ny, nz) for Ti, the corner (nx+1/2, ny+1/2, nz+1/2) 
for Ba and the face center (nx+1/2, ny, nz) for O, respectively.  The atomic masses are defined 
as MB, MT and MO for Ba, Ti and O, respectively. (b) The optical modes discussed in this 

work are restricted within the neighborhood of Γ point along the kZ axis limits. 

When the temperature decreases just below the transition temperature, a freezing of the 
mode that Ti and O ions vibrate reversely along the <001> direction of the crystal causes the 
structural phase transition from cubic to tetragonal symmetry under softening.  

The atomic displacement patterns for vibrational modes at ̳ point belonging to the 

irreducible representation of space group 1

hO  are derived by using the method of projection 

operator as (G. Burns, 1977) 

 
1u 2u4T T ,+  (41) 

These modes are three-fold degenerate in accordance with the three-dimensional irreducible 

representation T .  There are five branches which consist of one acoustical branch and four 

optical branches, named A, O1, O2, O3 and O4.  The Slater(S), Last (L), Bending (B) modes and 

so on can be constructed by a combination of atomic displacements which form the basis 

functions of 
1uT .  However, one is not able to decide from the group theory which mode 

appears actually.   

The dispersion relations 2

k,Rω  depend upon the force constants, shown in Fig. 2 , which are 

derived from the second-order derivative of the interatomic potential with respect to the 

interatomic distance, and defined as 

 ,,,, TiBaOOOBaOTi −−−− ==== κγκηκβκα  (42) 
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It is, however, difficult to estimate the force constants because the various interactions 
between atoms exist.  The author attempt to decide them so as not to contradict the results 
by the neutron diffraction experiment (G.Shirane et al., 1967; B. Jannet et al.,1984).  
 

 

Fig. 2. Definition of the force constants between atoms: Ș, ș, Ț and η for Ti-O, Ba-O, Ti-
Ba and O-O, respectively.  

All the six optical modes which are capable of appearing under the various force constants 
are obtained by solving the dynamical matrix.  In the low frequency region of the dispersion  
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Fig. 3. Triangular diagram composed of the relative force constants ( )γηγβγα ,, . The 
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curves, only two modes always appear within the set of four modes L, B, S1 and S2.  The 
other two modes T2u and Plane appear constantly in the high frequency region.  It is well-
known that the Slater mode is considered to be an optical lattice vibration in which Ti-
sublattice vibrates in the reverse direction to O-octahedron.  Until now, it has been sufficient 
to treat the displacements for only Ti and O ions, to explain qualitatively the appearance of 
an electric polarization. Though the motion of Ba-sublattice has been neglected in the past, 
the displacements for Ba ions must be considered in the case that the dispersion relations are 
compared between the theory proposed here and the experiment by the neutron diffraction. 
There are two kinds of the Slater mode: S1 in which Ti-sublattice vibrates in the reverse 
direction to Ba-sublattice and O-octahedrons, and S2 in which Ba-sublattice and Ti-sublattice 
vibrate in the reverse direction to O-octahedrons. 
 

a
rb

㻚 
u
n
it

( )kω

∆

4O

3O

2O

1O

A

ΧΓ

a
rb

㻚 
u
n
it

( )kω

∆

4O

3O

2O

1O

A

ΧΓ  
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Fig. 4. Dispersion curves  with the force constants (Ș/Ț=0.1, ș/Ț=0.09, η/Ț=0.81)  

of BaTiO3.  (a) The lowest frequency mode at Γ point for each branch is shown with the 
atomic displacement patten.  (b) The solid curves represent the theoretical values for  
the dispersion relations derived from eq. A-1.  Small rectangles correspond to the 
experimental results. (Y.Aikawa & K.Fujii, 2011 to be published in Ferrolelectrics) 

The triangular coordinates are introduced whose three axes mean the ratio of ͉, ͊ and ͏ 
normalized by ͋, namely, ͉/͋, ͊/͋, ͏/͋.  The triangular diagram in Fig.3 shows 
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which mode corresponds to the lowest frequency mode for the given coordinates at ̳point 
in the Brilloin zone.  The dispersion relations within the region enclosed with an ellipse are 
in agreement with the results obtained by the neutron diffraction experiment.  The lowest 
frequency mode is S2 mode at the coordinates (͉/͋=0.1, ͊/͋=0.09, ͏/͋=0.81) in the 
enclosed region.  

The dispersion curves with the force constants ( )0.1, 0.09, 0.81α γ β γ η γ= = =  of BaTiO3 
and the experimental values obtained by the neutron diffraction are shown in Fig. 4.  
Conversely, the author can estimate the relative force constants of the BaTiO3 crystal by the 
above coordinates.  
The (R, k)-dependent part, ( )kRγ , for the coefficient ( )( )TTB CR −k  of the second order term 

in the trial potential is given by 
 
 

(43) 
 

It is to be noted that the functions ( )nn

,Rc
′

k
 are given by the eigenfunctions of the dynamical 

matrix which is dependent on the force constants.  The author has found that the O1 branch 
corresponding to the S2 mode at ̳point tends to decrease in approaching to Γ point and 

satisfies with the condition given by eq.(40) as shown in Fig. 5.    
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                                                          (a)                                        (b) 

Fig. 5. The function ( )Rγ k  for the optical branches near Γ point.   (a) The k-dependence of 
ȚR(k) for the optical branches derived from eq. (43) shows the softening of O1 branch at 
Γpoint.  (b) The details obtained by magnifying the figure (a).  
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When the S2 mode freezes, the BaTiO3 crystal undergoes the structural phase transition from 
cubic to tetragonal symmetry and brings about the ferroelectricity.  As a result, the author 
has been able to show that eq.(40) can provide the justifiable equations to determine the soft 
mode. 

Appendix 

The BaTiO3 crystal with the perovskite-type structure has a property that the alloy of Ba-Ti 
bonding takes in the octahedron of O-O bonding by Ti-O bonding and Ba-O bonding, since 
the crystal is composed of three components, Ba-cubic lattice, Ti-cubic lattice and O-
octahedron.  As far as the author take notice of the soft mode at ̳ point for the phase 

transition of BaTiO3 at high temperature region, it is sufficient to discuss within the atomic 
displacements of one direction.   
The equations of motion for atoms in a unit cell can be solved by applying the running wave 
solutions. The dynamical matrix is obtained as 
 
 
 
 
 
 

A - 1 
 
 
 
 
 
 
where the masses of atoms are defined in Fig.1, and the force constants are represented in  
Fig. 2. 

4. Dielectric property 

It becomes to shown the relationship between the behavior of the dielectric property at high 
temperature region and the essential parameter at absolute zero temperature derived from 
the first principles calculations. 

4.1 Interatomic potential 
Considering that the ferroelectricity of BaTiO3 mainly depends on the potential between Ti 
and O atoms, the author introduced the crystal potential at the nth Ti atom along the x-axis 
as follows (Y. Aikawa, et al., 2009):  
 
 

(44) 
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where xn is the coordinate of the nth atom and <xn> is the averaged equilibrium position of 

the n-site Ti atom along the x –axis, as shown in Fig.1, r∆  is the distance between <xn> and 
the minimum position, D is potential depth,  2D͉2 is the classical spring constant in the 
harmonic approximation, and CF is the coefficient of the long-range order interaction.  
Replacing the interatomic distance 

nn ′a  with the atomic position xn is expected to result in a 

good approximation of the nearest interaction in the neighbourhood. Then, Eqs.(17) and (29) 
are rewritten as follows: 

 0 ,n nV x∂ ∂ =  (45) 
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The thermal average of Vn is calculated as 
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thus the condition of eq. (45) is  
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here 

( )exp .y xα≡  
 

By using the solution of eq. (48), the equilibrium condition eq.(46) is as follows: 
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The potential parameters D, ͉, ̴r, and CF listed in Table1 were determined with reference 

to the results of the first-principles calculations within the density functionl theory.  
 

 Ferro Para

FC 2.1  0  

[ ]eVD 094.0  2255.0  

[ ]1−Aα 25  25  

[ ]Ar∆ 02833.0  02833.0  

( )42.EqinC 5108.4 × 5108.4 ×

Table 1. (Y. Aikawa et al., 2009, Ferroelectrics 378) 

Ultrasoft pseudopotentials (D. Vanderbilt, 1990) were used to reduce the size of the plane-

wave basis. Exchange-correlation energy was treated with a generalized gradient 

approximation (GGA-PBE96). Y. Iwazaki evaluated the total energy differences for a 

number of different positions of Ti atoms positions along the x-axis (Fig.6) with all other 

atoms fixed at the original equilibrium positions, which are denoted by open circles in Fig.7. 

The solid lines in these figures indicate the theoretical values obtained using Eq.(44) with the 

fitting parameters listed in Table1. 
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Fig. 6. Perovskite crystal structure of BaTiO3 

 

 

Fig. 7. Atomic potential of Ti in ferroelectric phase of BaTiO3 denoted by open circles were  

obtained by first principles calculations, the solid line indicate theoretical values given by 
eq.(44) (Y. Aikawa et al., 2009, Ferroelectrics 378) 

4.2 Ferroelectricity of barium titanate 
When the softening occurs close to the Curie point, the solution λS increases rapidly. This 

increase implies that the second-order variational parameter BS tends to zero, the square of 

the angular frequency 2

SΩ  also tends to zero because the variational parameter 2BS 

corresponds to 2

SMΩ . Thus, 

 
2

.S
S

T
λ ∝

Ω
 (50) 
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The instability of the ferroelectrics in terms of the oscillator model can be explained as 
follows: as the temperature approaches the Curie temperature Tc, ΩS2  changes to zero from 

a positive value according to displacive ferroelectrics (B>0); ΩS2 changes to zero from a 

negative value according to the order-disorder model (B<0). The former is termed the 
propagation soft mode, and the latter, the non-propagation soft mode. 
The relation between the dielectric constant and the frequency of an optical mode as 
expressed by Lyddane, Sachs and Teller (R.H.Lyddane et al.,1941) is 

 
2

1
,

t

ε ∝
Ω

 (51) 

where Ωt denotes the frequency of transverse optic modes. From eqs. (50) and (51), the 

relation between ͍ and λS is given by: 

 
0

,S

C

T

ε
λ

ε
=  (52) 

where C is a constant. The temperature dependence of λS is calculated by Eq.(49). Fig.8 

shows the dielectric constant along the c axis measured as a function of temperature for a 
single crystal (W. J. Merz, 1953). The solid line in Fig.8 is fitted according to the theoretical 
calculation performed using Eq.(52) and the potential parameters listed in Table1. 
 

 

Fig. 8. Temperature dependence of the dielectric constant of single crystal of BaTiO3 along 
the c axis. The solid line is calculated by Eq. (52), and the open circles are experimental 
values. (Y. Aikawa et al., 2009, Ferroelectrics 378) 

5. Isotope effect 

There have been some reports of the isotope effects on displacive-type phase transition, as 
determined experimentally (T. Hidaka & K. Oka, 1987). In classical approximation (A. D. B. 
Woods et al., 1960; W. Cochran, 1960), TC is expected to shift to a higher temperature in 
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heavy-isotope-rich materials and vice versa. However, the experimental results are 
completely opposite to the expected results. It has been long considered that the origin of 
these phenomena in BaTiO3 may be related to the quantum mechanical electron-phonon 
interaction (T. Hidaka, 1978, 1979).  
However, it seems to be problematic to introduce the quantum mechanical electron-phonon 

interaction to interpret the ferroelectric phase transition in BaTiO3, because the phase 

transition is a phenomenon in the high-temperature region in which there is scarcely any 

quantum effect. In order to discuss such a phenomenon in the high-temperature region, K. 

Fujii et al. have proposed a self-consistent anharmonic model that is applied to the phase 

transition (K. Fujii et al., 2001), and the author has extended it to derive the ferroelectric 

properties of BaTiO3 (Y. Aikawa et al., 2009). In this section the isotope effect of TC is 

explained through this theory, and the theoretical result is compared with experimental 

data. 

5.1 Theory 
Postulating that atomic potential is independent of atomic mass, eq. (33) is rewritten as   
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where ͎ is the mass-dependent part in TC as   
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In order to calculate eq. (54), it is necessary to obtain the eigen function ( )n
Se  in eq.(5) by 

solving the dynamical matrix, which consisted of atomic mass and force constants, as shown 

in Fig.2. The force constants shown in Fig.2 are derived from the second-order derivative of 

interatomic potential with respect to interatomic distance.  

It is, however, difficult to estimate the force constants because estimate various interactions 

between atoms exist. The author did attempt to estimate them so as not to contradict the 

results of neutron diffraction experiments; as (͉/͋, ͊/͋, ͏/͋) = (0.1, 0.09, 0.81) as 

derived in 3.2. 

5.2 Numerical calculation and comparison with experiments 
It was also shown that the soft mode is the Slater mode, which is the lowest frequency optic 
mode at k = 0 under this condition. Using this force constants, the ratio of TC (yBa xTi O3 that 
is replaced with isotope elements) to TC (natural 137.33Ba 47.88Ti 16O3) is obtained by 
calculating eq.(54) using x = 46-50, y =134-138 as parameters. The results are shown in  
Fig. 9.   
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Fig. 9. x-y phase diagrams of the ratio of Tc (yBa xTi O3) to Tc (137.33Ba 47.88Ti 16O3)     
(Y.Aikawa et al., 2010 Jpn. J. Appl. Phys. 49 09ME11) 

In Fig.10, the solid curve shows the theoretical values of the transition temperature for the 
isotope effects of Ti calculated using eq. (54), and the experimental values are represented 
by open circles. It appears that the theoretical values in the solid curved line are roughly in 
agreement with the experimental values represented by the open circles as shown in the 
figure.  
 

 

Fig. 10. Comparison between the theoretical and experimental values in terms of x-
dependence of the ratio of Tc (137.33 Ba xTi 16O3) to Tc (137.33Ba 47.88Ti 16O3). (Y.Aikawa et al., 
2010 Jpn. J. Appl. Phys. 49 09ME11) 
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In the case of harmonic approximation, as the heavy Ti isotope is introduced, the Curie 
temperature rises, and vice versa for the light Ti isotope (T. Hidaka & K. Oka, 1987), because 

only the coefficient ( )2nn

Sc
′  of the harmonic term 2

SQ  is considered. It is known that 

anharmonicity promotes the instability in the crystal (K.Fujii et al., 2001), as a result, the 
instability undergoes the structural phase transition in the crystal systems with a strong 

anharmonicity. In eq.(54) the effect of the coefficient ( )4nn

Sc
′  of the fourth-order term 4

SQ  is 

to sift TC to the lower-temperature region, whereas that of the coefficient ( )2nn

Sc
′  of the 

quadratic term 2

SQ  is to shift TC to the higher-temperature region. In the higher-

temperature region, the effect of 4

SQ  is more important. Therefore, the self-consistent 

anharmonic theory in the high-temperature region enables the explanation of the tendency 
that TC is expect to shift to the lower temperature in the heavier Ti isotope. 
The instability temperature or the transition temperature for the trial potential represented 
by an anharmonic oscillator has been derived from the variational method at finite 
temperature where the normal coordinates were introduced in this work to reflect the 
crystal symmetry in the softening phenomenon. The result obtained here has been applied 
to the isotope effect of the ferroelectric crystal BaTiO3.  The transition temperature TC given 
by eq. (53) has been applied after substituting the actual values obtained for the force 
constants into ͎ given by eq.(54). As a result, the author has been able to probe that the 

transition temperature TC of barium titanate consisting of heavy-isotope Ti is lower than that 
of barium titanate consisting of light-isotope Ti. 

6. Conclusion 

The instability temperature or the transition temperature for the trial potential represented 
by an anharmonic oscillator has been derived from the variational method at finite 
temperature where the normal coordinates were introduced in this work to reflect the 
crystal symmetry in the softening phenomenon.  
1. Though the expression obtained here has the same form as the Landau expansion, the 

transition temperature and the expansion coefficients can be represented by the 
characteristic constants of the potentials between atoms.  From the fact that the 
coefficient of the second order term in the trial potential is expressed by the form such 
as ( )( )TTBR −Ck , the author has proposed the equations to determine the soft mode by 

imposing the condition that its k -dependent part takes the minimum value.  The result 
obtained here has been applied to the structural phase transition of the ferroelectric crystal 
BaTiO3.  The dispersion relations derived from the dynamical matrix has been compared 
with that from the neutron diffraction experiment.  The force constants between atoms 
have been fitted so as to reproduce the experimental results for the dispersion relations.  
The determination equations given by eq.(40) has been applied after substituted the actual 
values obtained for the force constants into ͋R(k) given by eq.(38). As a result, the author 

has been able to probe that the lowest frequency mode at ̳ point corresponded to the S2 

mode causing the structural phase transition in the BaTiO3 crystal. 
2. The author has shown that the ferroelectric properties of BaTiO3 result from the 

equilibrium condition of free energy by using the anharmonic oscillation model and the 
elemental parameters derived using first-principles calculations. 
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3. The result obtained here has been applied to the isotope effect of the ferroelectric crystal 
BaTiO3. The transition temperature TC given by eq. (53) has been applied after 
substituting the actual values obtained for the force constants into ͎ given by eq. (54). 

As a result, the author has been able to probe that the transition temperature TC of 
barium titanate consisting of heavy-isotope Ti is lower than that of barium titanate 
consisting of light-isotope Ti.  
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