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1. Introduction  

RFID technology has received much attention both in industry and academia in recent years 
and it is seen as the leading ubiquitous computing technology. A typical RFID system 
consists of a reader, ࣬, and a set of tags, ሺ ௜࣮ሻଵஸ௜ஸே. The reader ࣬ is composed of a set of 
transceivers and a powerful backend database. Each tag ௜࣮ is a passive transponder 
identified by a unique ID. However, the fact that RFID tags can be read without line-of-sight 
results in security risks, especially in relation to the privacy of tag users. Therefore, 
developing privacy preserving authentication protocols for low-cost RFID tags is a major 
security challenge that needs to be addressed if RFID systems are to be widely deployed in 
the coming years.  
In previous research in this area the majority of authentication protocols use challenge-
response mutual authentication based on symmetric-key ciphers. In order to preserve 
privacy, on receiving a challenge from a reader, a tag uses pseudonyms, which are the result 
of using symmetric-key ciphers to process the secret key or ID, as authenticators to the 
reader. The reason symmetric-key ciphers are used is that the hardware cost of existing 
asymmetric-key ciphers is too expensive for low-cost tags. For example, ECC and RSA 
require more than 40,000 gates, which are too large for low-cost tags in which only 200 – 
2,000 gates out of 1,000 – 10,000 gates are available for security features (Juels, 2006). A 
lightweight algorithm known as the learning parity with noise (LPN) problem was first 
introduced in the HB protocol for human authentication by Hopper & Blum (2001). Juels & 
Weis (2005) first employed the LPN problem in the HB+ protocol for RFID authentication. 
The simplicity and novelty of the HB+ protocol has led to the proposal of other HB-related 
protocols (Jr et al., 2010). Gilbert et al. (2008) introduced a simple but effective man-in-the-
middle attack against these types of protocols, in which the adversary can derive the secret 
key of the LPN problem through modifying the tag’s response messages. This attack is 
known as a GRS-MIM attack. In the Trusted-HB protocol (Bringer & Chabanne, 2008), a 
universal hashing based message authentication code (MAC) is introduced to effectively 
resist GRS-MIM attacks. Although cryptographic attacks to the Trusted-HB protocol have 
been reported, they are impractical as they are too complex to implement (Frumkin & 
Shamir, 2009). Meanwhile, in the F-HB protocol (Cao & O’Neill, 2011), the LNP problem is 
first introduced to protect the forward privacy of low-cost tags. The operations in the LPN 
problem involve the calculation of inner products of binary vectors and Bernoulli noise bit 
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generation. Computing the binary inner product only requires bitwise AND and OR 
operations that can be computed on the fly. Therefore the LPN problem is a hardware-
friendly primitive, and very attractive for low-cost RFID security. The most recent progress 
in LPN-based protocols was reported by Kiltz et al. (2011). They introduced an 
authentication protocol based on a variant of the LPN problem, known as the Subspace LPN 
problem, and also proposed an efficient MAC construction based on the LPN problem. 
The rigorous definition and modelling of privacy in RFID systems has also been 
investigated in previous research (Avoine, 2005; Juels & Weis, 2007; Vaudenay, 2007; Ha et 
al., 2008). This research differs in how they treat the adversary’s ability to corrupt tags and 
their different privacy notions for corrupted tags. Compared to the general privacy notion 
that only considers adversaries that are unable to corrupt a tag, forward privacy is a 
stronger privacy notion because it also considers the privacy of a corrupted tag. Ma et al. 
(2009) prove that the unpredictable privacy notion (Ha et al.,  2008) is stronger than the 
indistinguishable privacy notion (Juels & Weis, 2007), and that the unpredictable privacy 
notion is equivalent to a pseudo random function (PRF). It can be observed that the majority 
of existing forward privacy schemes (Ohkubo et al.,  2003; Berbain et al.,  2009; Billet et al.,  
2010) are based on the indistinguishable privacy notion, and the F-HB protocol is based on 
the unpredictable privacy notion. 
Scalability must also be considered in forward private protocols based on symmetric-key 
ciphers. In order to protect a tag’s privacy, before the tag is authenticated by the reader, it 
must not reveal its identity (its secret key) to the reader. As a result, in order to locate the 
identity of a tag, the reader must perform a brute-force search of all the tags to check all the 
keys in its database. As the number of tags increases, this brute-force search will inevitably 
lead to scalability problems. Existing research into scalability protocols are composed of 
three categories. The first category comprises protocols that perform a brute-force search of 
all the tags in the database (Weis et al., 2003; Ohkubo et al., 2003), the time complexity of 
which is ܱሺܰሻ, where ܰ is the number of tags in the system. This method is only suitable for 
systems with a small number of tags. The second category involves tree-based protocols 
(Molnar and Wagner, 2004; Molnar et al., 2005), with a time complexity of ܱሺlog௕ܰሻ where ܾ 
represents the branch factor of the tree. These protocols consider each tag as a leaf in a 
balanced tree, and each tag needs to store ڿlog௕ܰۀ secrets corresponding to the path from the 
root to the tag leaf. The disadvantage of this method is that because this approach requires 
that each tag stores correlated keys, the system privacy is weakened when an adversary is 
able to corrupt at least one tag. The more tags that are corrupted, the more the privacy of 
this system is compromised. The advantage of this method is that it supports dynamic 
scalability, so that new tag entries can be easily added without affecting the operation of the 
protocol. The third category of scalable protocols are hash-table based protocols (Henrici 
and Muller, 2004; Dimitriou, 2005; Tsudik, 2006; Lim and Kwon, 2006; Le et al., 2007; Song, 
2009; Alomair et al., 2010; Cao & O’Neill, 2011). These protocols require only constant-time, ܱሺͳሻ, running time to identify a tag. These protocols need to store pre-computed hash-tables 
in the database associated with the reader. The reader uses pseudonyms from a tag as the 
indices of the hash-table to match a value, realizing constant-time tag identification. 
Compared to the tree-based protocols, hash-table based protocols need smaller storage on a 
tag and maintain a constant response time even when the number of tags increases. The 
disadvantage of these protocols is that the backend database needs a large storage to build a 
hash-table. Although, it is assumed that in RFID systems the database possesses infinite 
computational ability, from a practical viewpoint, all previously proposed protocols in this 
category require unrealistic large storage, and lack dynamic scalability (Avoine et al., 2010). 
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In this chapter, building on previous work in this area, a novel scalable and forward private 
authentication protocol, F-HB+, suitable for low-cost RFID applications is proposed. The 
contributions are as follows. Firstly, similar to the F-HB protocol, the proposed protocol uses 
an LPN problem and a pseudo random number generator (PRNG); however, a hardware 
counter is introduced to the tag to enhance its desynchronization resistance, and the MAC 
code generation based on the proposal of Kiltz et al. (2011) is more efficient than in the F-HB 
protocol. Secondly, a new Re-Hash technique is presented to effectively reduce the storage 
requirement of the hash-table over previous protocols. The Re-Hash technique is adapted to 
support dynamic scalability and it is used to construct the hash-table required in the F-HB+ 
protocol. Thirdly, the security proof of the F-HB+ protocol is derived under the standard 
model. Overall, the proposed protocol features: (i) from the tag’s perspective, low-cost 
implementation and forward privacy; (ii) from the reader’s perspective, constant-time 
scalability, small hash-table storage and dynamic scalability.   
The rest of the chapter is organized as follows. In section 2, the mathematical definitions and 
previous related work are introduced. In section 3, the Re-Hash technique is presented, and 
how it can be adapted to include dynamic scalability is discussed. The proposed F-HB+ 
scheme with the Re-Hash technique is described in section 4. The unpredictable forward 
privacy framework and security proof are derived in section 5. Section 6 presents a 
performance evaluation and comparison results, while Section 7 concludes the chapter. 

2. Preliminary  

2.1 Mathematical definitions 

Definition 1. LPN Problem (Hopper & Blum, 2001). Let Berఎ denote the Bernoulli 

distribution with parameter ߟ ∈ ሺͲ,ͳ/ʹሻ. A bit ߭ ← Berఎ is such that Prሾ߭ ൌ ͳሿ ൌ and Prሾ߭ ߟ ൌ Ͳሿ ൌ ͳ െ ߭ while an ݈-bit vector ,ߟ ← Ber௟,ఎ is such that each bit of ߭ is independently 

drawn according to Berఎ. Let Hwtሺ߭ሻ denote the hamming weight of vector ߭. Let ܶ be a 

random ሺ݈ ൈ ݊ሻ binary matrix, let ݔ be a random ݊-bit vector, let ߟ ∈ ሺͲ,ͳ/ʹሻ be a noise 
parameter, and let ߭ be a random ݈-bit vector according to Ber௟,ఎ, such that Hwtሺ߭ሻ ൑  .݈ߟ
Given ܶ, ߟ and ݖ ൌ ሺܶ ∙ ሻݔ ⊕ ߭, find an ݊-bit vector ݕ such that Hwtሺሺܶ ∙ ሻݕ ⊕ ሻݖ ൑   .݈ߟ
For a fixed ݊-bit string, ݇, let ߨ௞,ఎ denote the oracle returning an independent ሺ݊ ൅ ͳሻ-bit 

string according to the LPN problem:  

 ൛ሺܽ, ሺ݇ ⋅ ܽሻ ⊕ ߭ሻ|ܽ ∈ோ ሼͲ,ͳሽ௡, ߭ ← Berఎൟ. (1) 

The following Lemma 1 upper-bounds the probability that an adversary predicts the secret ݊-bit string ݇ given some instances of oracle ߨ௞,ఎ, which implies that the two oracles, ߨ௞,ఎ 

and ܷ௡ାଵ, are computationally indistinguishable, where ܷ௡ାଵ denotes an oracle that returns 

an independent uniformly random ݊ ൅ ͳ-bit string. 
Lemma 1. Indistinguishability of LPN Problem (Katz & Shin, 2006). Assume there exists an 
algorithm ܣ making ݍ oracle queries, running in time ݐ, and such that  

 |Prሾܣగೖ,ആሺͳ௡ሻ ൌ ͳሿ െ Prሾܣ௎೙శభሺͳ௡ሻ ൌ ͳሿ| ൒ ߳. (2) 

Then there is an algorithm ܤ making ܱሺݍ ∙ ߳ିଶ log ݊ሻ oracle queries, running in time ܱሺݐ ∙ ݊߳ିଶ log ݊ሻ, and such that  

 Prሾܤగೖ,ആሺͳ௡ሻ ൌ ݇|݇ ∈ோ ሼͲ,ͳሽ௡ሿ ൒ ߳ Ͷ⁄ . (3)  
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Definition 2. PRNG (Goldreich, 2001). A PRNG is a function ݃: ሼͲ,ͳሽ௠ → ሼͲ,ͳሽ௡ that takes as 
input an ݉-bit hidden seed and returns an ݊-bit string, where ݊ ൐ ݉. The output of the 
PRNG is called a pseudo random number, which appears to be random. A ሺݐ, ߳௚ሻ-secure 

PRNG represents that the output of this PRNG cannot be discriminated with a true random 
string in time ݐ with advantage at most ߳௚.   

The PRNG can be implemented using stream ciphers such as those proposed in the 
STREAM project (Cid & Robshaw, 2009) and a secure stream cipher is seen as a PRF (Billet et 
al., 2010).  

Definition 3. Universal Hash Functions (Wegman & Carter, 1981). A family of functions ሼ݄௨: ሼͲ,ͳሽ௟ → ሼͲ,ͳሽ௠ሽ௨∈௎ is called a strongly universal hash family if ∀ݔ ∈ ሼͲ,ͳሽ௟, ∀ݕ ∈ ሼͲ,ͳሽ௠:  

 Prሾ݄௨ሺݔሻ ൌ ሿݕ ൌ ʹି௠, (4) 

and ∀ݔଵ ് ଶݔ ∈ ሼͲ,ͳሽ௟, ∀ݕଵ, ଶݕ ∈ ሼͲ,ͳሽ௠: 

 Prሾ݄௨ሺݔଶሻ ൌ ଵሻݔ݄௨ሺ	&	ଶݕ ൌ ଵሿݕ ൌ ʹିଶ௠ (5) 

where any hash function is easily selected by ݑ ∈ ܷ. 
An ሺ݈ ൈ ݉ሻ-bit Toeplitz matrix is a matrix for which the entries on every upper-left to lower-
left diagonal have the same value. Since the diagonal values of a Toeplitz matrix are fixed, 
the entire matrix is specified by the top row and the first column. Thus a Toeplitz matrix can 
be stored in ሺ݈ ൅ ݉ െ ͳ) bits rather than the (݈ ൈ ݉ሻ bits required for a truly random matrix. 
For any ሺ݈ ൅ ݉ െ ͳሻ-bit vector ݑ, let ௨ܶ denote the Toeplitz matrix whose top row and first 
column are represented by ݑ.  
Definition 4. Toeplitz based Universal Hash Function (Krawczyk, 1994). Let ሼ ௨ܶሽ௨∈௎ be the 

family of Toeplitz matrices where the ሺ݈ ൅ ݉ െ ͳሻ-bit vector ݑ is chosen at random, and ݖ is a 

random ݉-bit vector. Then the following is a strongly universal hash function family:   

 ሼ݄௨ሺݔሻ ൌ ሺ ௨ܶ ∙ ሻݔ ⊕ :ݖ ሼͲ,ͳሽ௟ → ሼͲ,ͳሽ௠ሽ	௨∈௎. (6) 

Meanwhile, according to the property in (5), the Toeplitz based universal hash function is 
also a pairwise independent hash function (Naor & Reingold, 1997). 

Definition 5. LPN based MAC (Kiltz et al., 2011). Let ݄௨: ሼͲ,ͳሽ௟ → ሼͲ,ͳሽ௠ be a pairwise 

independent hash function, ߩሺ∙ሻ be a pairwise independent permutation on ሼͲ,ͳሽ௟ൈ௡ା௡ା௪, ߭ ← Ber௡,ఎ, ݏ௜ ∈ோ ሼͲ,ͳሽ௟, ݎ ∈ோ ሼͲ,ͳሽ௪, and ܶ ∈ோ ሼͲ,ͳሽ௟ൈ௡. Given a secret key ൫ሼݏ௜ሽሺ଴ஸ௜ஸ௠ሻ, ݄௨,  ൯ߨ
and a message ݔ, the LPN based MAC for the message, ݔ, can be defined as: 

 MACሺ௦,௛,గሻሺݔሻ ൌ ,ሺܶߩ ܶ୘ ∙ ሻݕሺݏ ⊕ ߭,  ሻ, (7)ݎ

where ݕ ൌ ݄௨ሺݔ, ሻݕሺݏ ሻ andݎ ൌ ଴ݏ ⊕௜:௬ሾ௜ሿୀଵ ௜ሺͲݏ ൑ ݅ ൑ ݉ሻ.  
The verification steps of the LPN based MAC are as follows. Firstly, use ିߩଵሺ∙ሻ to obtain ሺܶ, ,ݖ ሻ; if rankሺܶሻݎ ് ݊, then reject. Secondly, use ݄௨ሺݔ, ሻ. Thirdly, if Hwtݕሺݏ and ݕ ሻ to obtainݎ ቀݖ ⊕ ܶ୘ ∙ ሻቁݕሺݏ ൑ ݊ ቀଵସ൅ ఎଶቁ, accept the MAC, otherwise reject. 

One disadvantage of this MAC is that if the standard pairwise independent permutation ߩሺݔሻ ൌ ܽ ൈ ݔ ൅ ܾ (where ܽ and ܾ are random strings) is used, the computation for the 

multiplier will be a bottleneck for the LPN based MAC (Kiltz et al., 2011). But it can be 

observed that the function of ߩሺ∙ሻ prevents the adversary from directly choosing the input of 

a MAC. The protocol proposed in this chapter solves this limitation by using a simplified 
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pairwise independent permutation, ߩሺݔሻ ൌ ݔ ൅ ܾ, where ܽ ൌ ͳ. Another disadvantage is that 

the key ൫ሼݏ௜ሽሺ଴ஸ௜ஸ௠ሻ, ݄௨,  ൯ requires a large storage cost. The proposed protocol solves this byߨ

using a PRNG that is able to generate successive random strings.  

2.2 Related work 

In this section, a brief introduction and analysis of previous research is presented. The most 
relevant work for comparison is the hash-table based scalable and forward private 
protocols. These protocols can be divided into two classes according to their methods for 
generating pseudonyms. In the remainder of the chapter, the word “pseudonyms” is taken 
to mean indices used to look up a hash-table.  
In the first class of protocols, each tag stores a unique key, which can be used as the tag’s 
authenticator to the reader. The pseudonyms are derived from this secret key, and the 
pseudonym update method on the tag depends on a one-way secure hash function without 
interference from the reader. In the first hash-table based protocol proposed by Weis et al. 
(2003), on any query from a reader, a tag always replies with the fixed pseudonym of its 
unique secret key. Therefore, it is vulnerable to tracking attacks and tag impersonation. In 
the protocols proposed by Henrici and Muller (2004) and Dimitriou (2005), the tag’s 
response comprises a pseudonym and an authenticator. Due to the fixed pseudonym used 
between successful mutual authentications, these protocols fail to resist tag tracking. The 
protocols proposed by Lim and Kwon (2006) and Tsudik (2006) also use a response pair. But 
the pseudonyms in these protocols will recycle in a brute-force desynchronization attack, so 
they fail to provide forward privacy. 
In the second class of protocols, each tag needs to store two secrets, where one secret is used 
as the tag’s final authenticator key and the other one is used to generate the pseudonym 
chain. These protocols possess the advantage that pseudonyms are unrelated to the secret 
key, but they use more non-volatile memory on the tag. The O-FRAP protocol was proposed 
by Le et al., (2007) for RFID authentication under a universally composable framework and 
provides forward privacy. It updates pseudonyms using the same method as in the first 
class of protocols. The O-FRAP protocol constructs a hash-table using the output of a PRF 
implemented by a PRNG. But it is difficult to validate that the output of a PRF possesses the 
collision-free property. Two further protocols in this class (Song, 2009; Alomair et al., 2010) 
require the help of the reader to update pseudonyms and send the updated pseudonyms to 
tags, which does not relieve the burden on the tag and adds to the risk of desynchronization.  
The desynchronization threats in the above protocols can be alleviated by using more than 
one pseudonym for a secret key. There are two methods to achieve this purpose. One 
method is based on the time-stamp concept (Tsudik, 2006), and involves adding a hardware 
timer to the tag, inevitably increasing the cost of the tag. This technique is unsuitable for 
low-cost tags. Another technique relies on a hardware counter on the tag (Le et al., 2007; 
Song, 2009; Alomair et al., 2010). This counter is used to limit the maximum number of 
pseudonyms associated with a secret key. The maximum threshold value of this counter 
determines the ability to resist desynchronization attacks. Although the hardware counter 
also increases the cost of the tag, it is more practical than a hardware timer. Another 
problem of the above protocols is that they utilise cryptographic secure hash functions, the 
hardware cost of which exceeds the budget of low-cost tags. For example, according to the 
latest literature reports, the standard algorithm, SHA-1, requires at least 5,000 gates (O'Neill, 
2008).  
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The most recent progress in constant-time scalable protocols is presented by Alomair et al.  
(2010). It also uses a counter with threshold ݄ܶ to control the number of pseudonyms for 
each secret key. Compared to the previous proposals, this protocol considers a further step: 
how to build a hash-table with a reasonable storage in the database. This paper points out 
that impractically large hash tables are a result of the fact that the bit-length of a 
pseudonym, ܮ, must be long enough to avoid collision. And in order to directly address the 
hash-table, the size of the hash-table must be ܱሺʹ௅ሻ bits, which is unrealistic in practice. In 
order to reduce the storage requirement, a 2-level hash-table construction method is 
proposed. The 1st level is a hash-table with the ݏ most significant bits (MSB) of the ܮ-bit 
pseudonyms as its indices, and that stores the addresses of the 2nd level. The 2nd level is a 
linear table composed of the remainding (ܮ െ  bit pseudonym, that stores the-ܮ bits of the (ݏ
addresses of the actual information. Assuming that the number of pseudonyms is ܰ′, the 
protocol recommends the use of the following parameters: the 1st level storage is ܱሺʹ௦ሻ bits, 
where ݏ ൌ ′logଶሺܰڿ ൈ ݄ܶሻۀ, and the 2nd level storage is ܱሺܰ′ ൈ ݄ܶሻ bits. Using these 
parameters, constant-time authentication can be achieved with the 2-level hash-table. 
Avoine et al. (2010) noted that although this method is very efficient, its total storage 
requirement for the 2-level structure is still very large and does not support dynamic 
resizing.  

3. Proposed Re-Hash technique 

3.1 Basic Re-Hash technique 

As mentioned before, in the hash-table based protocols, a tag can be identified in constant-
time by its ܮ-bit pseudonyms. The total number of valid pseudonyms for each tag in a 
synchronized state is controlled by a counter with a maximum threshold, ݄ܶ. Firstly, let us 
take an example to show how much storage is required if these pseudonyms are directly 
used as look-up indices of a hash-table. The total number of tags, ܰ, is assumed to be ʹଷ଴ 
(greater than 1 billion) and the value of ݄ܶ is ʹଵ଴. Therefore ʹସ଴ (ൌ ܰ ൈ ݄ܶ) indices are 
needed for the hash-table, so the collision-free bit-length of an index should be at least 40 
bits. According to Alomair et al. (2010), the bit-length of pseudonyms should be large 
enough to obtain a collision-free 40-bit index of a hash-table. Assuming ܮ ൌ	60 bits, the 
collision-free hash-table needs at least ʹଵ଻ terabytes (TB) of storage with ʹ଺଴ slots (ʹ଺଴ ൈ ͳ 
bit, i.e., assume every slot in the hash-table stores 1 bit) to meet the demands of direct 
addressing. This storage requirement is too large for practical use.  
 

 

 

Fig. 1. The traditional Hash-table vs. basic Re-Hash hash-table 
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It can be observed that in the above example only ʹସ଴ slots out of the total ʹ଺଴ slots are used 
in each authentication session, so that the truly useful storage of all the indices during each 
authentication session is 0.125 TB (ʹସ଴ ൈ ͳ bit), which is practical. Therefore, of the total ܱሺʹ௅ሻ bits of storage, the true requirement is at most ܱሺܰ ൈ ݄ܶሻ bits, which causes a huge 
storage waste.  
Therefore, in order to reduce the storage cost, a mathematical mapping is needed, ݂: ሼͲ,ͳሽ଺଴ → ሼͲ,ͳሽସ଴, which is the essence of the Re-Hash technique proposed in this chapter. 
The function ݂ሺ൉ሻ can be implemented as a look-up table hash function ݄ுሺ൉ሻ, which uses the 
60-bit pseudonyms of tags as its inputs and outputs 40-bit strings. These 40-bit outputs can 
then be used as look-up indices of a hash-table. If this technique is used, the storage cost of 
the directly addressed hash-table in the above example can be reduced to 0.125 TB (ʹସ଴ ൈ ͳ 
bit). Fig. 1 illustrates the difference between the traditional hash-table and the basic Re-Hash 
hash-table, where ܫ represents the pseudonym of a tag, and ݌ represents the address of the 
actual information related to the tag. 
The Re-Hash technique for hash-table construction can be generalized as follows: 
1. Determine the number of pseudonyms required during each authentication session, ܰ ൈ ݄ܶ, in the RFID system. 
2. Determine the collision-free bit-length of a pseudonym, ܮ.  

3. Select an appropriate look-up table hash function, ݄ு: ሼͲ,ͳሽ௅ → ሼͲ,ͳሽேൈ்௛, which uses 
the pseudonyms as its input values. 

4. Use the output of ݄ு as indices to construct the hash-table, in which every slot stores a 
pointer to the address storing actual tag information. 

The important advantage of this technique is the storage cost saving. One possible 

disadvantage is that the collision probability among hash-table indices may increase, 

because the number of hash-table indices is equal to the number of pseudonyms in each 

authentication session. However in section 6.1 analysis shows that if an appropriate Re-

Hash hash function is used, constant-time look-up is maintained. 

3.2 Dynamic Re-Hash 

In this section it is illustrated that it is necessary to build a dynamic hash-table to 

accommodate frequent database changes, insertions and deletions. Firstly, dynamic table 

should effectively utilize the storage available. Assume a large-scale supermarket 

respectively sells and buys ʹଶ଴ (greater than 1 million) items per month, the change in the 

number of indices for the hash-table is ʹଷଵ (ʹ ൈ ʹଶ଴ ൈ ʹଵ଴). Thus, the change in storage will 

be at least 2 gigabytes (GB) (ʹଷଵ ൈ ͳ bit). If the hash-table is fixed, then this 2 GB storage may 

not be fully utilized. Secondly, a dynamic table should be able to process concurrent 

transactions without affecting the system response time. For example, merchandize is 

checked out in a supermarket at the same time. This would need many hash-table insertions 

and deletions at the same time.  

Linear-Hashing (Black, 2009) is a dynamically updateable hash-table construction method 
which implements a hash-table that grows or shrinks one slot at a time through splitting a 
current slot into two slots. In general, assuming the Linear-Hashing scheme has an initial 
hash-table with ܯ slots, then it needs a family of look-up table hash functions ݄ு,௝ሺ൉ሻ ൌ݂ሺ൉ሻ	mod	ሺʹ௝ܯሻ. At any time, there is a value ݆(൒ Ͳ) that indicates the current splitting round 

and the current look-up hash functions; a pointer ݌ ∈ ሾͲ,… , ʹ௝ܯ െ ͳሿ which points to the slot 

to be split next; a total of (ʹ௝ܯ ൅ p) slots, each of which consists of a primary page and 
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possibly some overflow pages; and two hash functions ݄ு,௝ and ݄ு,௝ାଵ. The look-up process 

works as follows: If ݄ு,௝ሺ൉ሻ ൒  choose slot ݄ு,௝ሺ൉ሻ since this slot has not been split yet in the ,݌

current round; otherwise, choose slot ݄ு,௝ାଵሺ൉ሻ, which can either be the slot ݄ு,௝ሺ൉ሻ or its split 

image slot ݄ு,௝ሺ൉ሻ ൅ ʹ௝ܯ. 

The final proposed dynamic hash-table construction method, in which the Re-Hash 
technique is adapted to include the Linear-Hashing technique, can be described as follows: 
1. Determine the system capacity, i.e., the maximum tag number ܰெ஺௑ the system can 

accommodate, and the collision-free bit-length of a pseudonym ܮ.  
2. Determine the output range of the Re-Hash hash function, ܮ′, such that  ܮ′ ൒  .ʹ/ܮ
3. Select an appropriate look-up table hash function, which is used as the Re-Hash hash 

function, ݄ு: ሼͲ,ͳሽ௅ → ሼͲ,ͳሽ௅′. 
4. Determine the initial tag number of this RFID system, ܰ, and the initial dynamic hash-

table size, ܯ, such that ܯ ൒ ܰ ൈ ݄ܶ. 

5. Determine the Linear-Hashing look-up hash function family, ݄ு,௝ሺ൉ሻ ൌ ݄ுሺ൉ሻ	mod	ሺʹ௝ܯሻ. 
6. Use the outputs of ݄ு,௝ሺ൉ሻ as indices to construct the dynamic hash-table, in which every 

slot stores a pointer to the address storing actual tag information. 

4. F-HB
+
 protocol description 

4.1 Initialization 

The initialization steps involved in the proposed F-HB+ protocol are as follows.  

 Tag: Every tag is independently assigned a secret key ݇ ∈ோ ሼͲ,ͳሽ௠, which is shared with 
the reader. Each tag can compute a PRNG ݃ሺ∙ሻ as in Definition 2, multiple instances of ߨ௞,ఎ at the same time, and an ݉-bit counter ࣮ܿݐ ← Ͳ whose maximum threshold value is ݄ܶ. They also have enough non-volatile memory to store the value of ݇ and ࣮ܿݐ.  

 Reader: In the database, there is an old key ݇௢௟ௗ ← ݇, a current key ݇௖௨௥ ← ݇, a counter ܿ࣬ݐ ← Ͳ with threshold ݄ܶ, and ݄ܶ hash-table entries {݄ு,௝ሺܫ௜)|Ͳ ൑ i ൏ ݄ܶ} for every tag, 

where ܫ௜ ൌ ሺ ௞ܶ ∙ ݅ሻ ⊕  ሻ. The two secret keysݎݑ௜ is the ݅-th iteration result of ݃ሺ݇ܿݎ ௜ andݎ
are used to resist brute-force desynchronization attacks, and the ݄ܶ hash-table entries 
are used to enhance the desynchronization resistance. The variables for Linear Hashing 
are also initialized: the current splitting round indicator ݆ ← Ͳ and the current splitting 
pointer ݌௦ ← Ͳ. All the information is organized into a pre-computed 2-level database 
structure, which is illustrated in Fig. 2. In addition, the database can compute a look-up 
hash function family ሼ݄ு,௝ሺ൉ሻሽ௝ஹ଴. The 1st level of the database is the pre-computed 

 

 

Fig. 2. The 2-level Database Structure with a Re-Hash Hash-table 
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dynamic hash-table. For every tag, there are ݄ܶ slots (maybe not successive) in this 

hash-table, which store the pointers ݌ indicating an address in the 2nd level table. The 
address of the 1st level hash-table is computed by ݄ு,௝ሺܫ௜ሻ. The 2nd level of the database 

is a pre-organized linear table. For each tag, there is only 1 slot in this level to store ݇௢௟ௗ, ݇௖௨௥, ܿ࣬ݐ and the actual information about each tag. 

4.2 Authentication interaction 

An overview of the proposed authentication protocol is illustrated in Fig. 3. It is a 3-pass 
mutual authentication protocol.  
 

 

Fig. 3. The Proposed F-HB+ Protocol 

Fig. 4 illustrates the tag’s operation after the tag receives the challenge message ܿ from the 

reader. It can be observed that the Toeplitz matrix ௞ܶ is used in the LPN problem such that ܽ ← ൫ ௞ܶ ∙ ሺܿ, ሻ൯ܫ ⊕ ߭, and in the strong universal hashing such that ܫ ← ሺ ௞ܶ ∙ ሻ࣮ݐܿ ⊕  at the ݎ

same time. Meanwhile, the PRNG ݃ is also used in the strong universal hashing such that 

ݎ	} ← ݃ሺ݇ሻ, ܫ ← ሺ ௞ܶ ∙ ሻ࣮ݐܿ ⊕  More importantly, the PRNG is in charge of generating all the .{ݎ

secret keys of the LPN based MAC, such that ൫ሼݏ௜ሽሺ଴ஸ௜ஸ௠ሻ, ,ଵݎ ଶ൯ݎ ← ݃ሺ݇ሻ.   
Fig. 5 explains the reader’s key search method in detail after it receives the authentication 

message ሺܫ, ܽ,  and authenticator ܽ pass the ݐ ሻ from the tag. Only if both the MAC codeݐ

verification will the reader accept the tag and generates a confirmation message, ܾ. It can 

be observed that the reader does not use ݇௖௨௥ as the secret key for the LPN problem again, 

but uses the noise vector ߭′ such that ܾ ← ൫ జܶᇱ ∙ ሺ݇௖௨௥ , ܽ, ሻ൯ݐ ⊕ ߭′′. This is to prevent GRS-

MIM attackers from recovering the secret key ݇௖௨௥. The difference between steps 1 and 2 is 

that (i) step 1 only involves the current key ݇௖௨௥ of one tag providing constant-time 

 

ܿ 

Reader ࣬                                                                                                                                                  Tag ࣮   
[݇௢௟ௗ, ݇௖௨௥, ܿ࣬ݐ, {݄ு,௝(ܫ௜) | Ͳ ൑ ݅ ൏ ݄ܶ}]                                         [࣮ݐܿ ,݇]                                                                  

,ܫ ܽ,  ݐ
1. Use ݄ு,௝ሺܫሻ as index to look up hash-table 

2. If ‘1’ fails, perform brute-force search ∃ ሶ݇ ∈{݇௢௟ௗ, ݇௖௨௥} 

3. In both ‘1’ and ‘2’, first check ݐ, then check ܽ. If  

‘1’ or ‘2’ succeed, calculate response ܾ, update the  

hash-table, accept the tag, respond with ܾ   
4. If both ‘1’ and ‘2’ fail, reject the tag ܾ 

  If Hwt ቀܾ ⊕ ൫ జܶ ∙ ሺ݇, ܽ, ሻ൯ቁݐ ൑  ݈ߟ
        ݇ ← ݇ ⊕ ߭ 
  Else  
        reject the reader 

1. Calculate the hash table index ܫ  
    and the LPN response ܽ 
2  Calculate the LPN based 

Generate a random challenge 
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scalability; but (ii) step 2 involves the secret key pair ሺ݇௢௟ௗ , ݇௖௨௥ሻ of all the tags, and needs 

to try all keys.  

 

 

Fig. 4. Tag’s response operation in the Proposed F-HB+ Protocol 

 

 

Fig. 5. Reader’s authentication operation in the Proposed F-HB+ Protocol 

4.3 Hash-table update procedure 

This protocol supports dynamic update. The update procedure consists of insertion and 
deletion. Let us first to describe the insertion procedure. There are two insertion scenarios. 
One is when a tag is successfully authenticated, the old secret key is updated for this tag, 
therefore, the associated old ݄ܶ pseudonyms also need to be updated. The other scenario is 
when new tags are added into the system, new pseudonyms should also be included. 
Assuming that there is a new pseudonym called ܫ௡௘௪, and its corresponding hash-table 
index is ݄ு,௝(ܫ௡௘௪). Therefore, ܫ௡௘௪ is inserted into the slot ݄ு,௝(ܫ௡௘௪) as follows: 

 If no overflow occurs, its position is within the primary page of this slot. Insertion 
process is completed.  

 Otherwise ܫ௡௘௪ is put into the overflow page of the slot ݄ு,௝(ܫ௡௘௪). The pseudonyms in 

the current splitting slot ݌௦ are split into 2 slots: ݌௦ and ݌௦ ൅ ʹ௝ܯ using the look-up hash 
function ݄ு,௝ାଵ(∙). The splitting pointer ݌௦ moves to the next slot, ݌௦ ← ௦݌ ൅ ͳ. If ݌௦ ൒ ʹ௝ܯ, increment the current splitting round indicator, ݆ ← ݆ ൅ ͳ, and reset the 
splitting pointer, ݌௦ ← Ͳ. Insertion process is completed. 

Deletion will cause the hash-table to shrink. Slots that have been split can be recombined. The 
operation of two slots merging together is the reverse of splitting a slot in the insertion process.  

Step 1:  

ݕ  ← ൫ܶ ∙ ሺܿ, ܽ, ,ܫ ሻ൯ݎ ⊕ ሻݕሺݏ ଵݎ ൌ ଴ݏ ⊕௜:௬ሾ௜ሿୀଵ ௜ሺͲݏ ൑ ݅ ൑ ݉ሻ 
ݎ ← ݃ሺ݇௖௨௥ሻ, ൫ሼݏ௜ሽሺ଴ஸ௜ஸ௠ሻ, ,ଵݎ ଶ൯ݎ ← ݃ሺ݇௖௨௥ሻ ሺܶ, ,ݖ ሻ	ݎ ← ݐ െ ଶ, if rankሺܶሻݎ ് ݊, reject 

If Hwt൫ݖ ⊕ ܶ୘ ∙ ሻ൯ݕሺݏ ൑ ݊ ቀଵସ൅ ఎଶቁ 

    ߭′ ← ቀ ௞ܶ೎ೠೝ ∙ ሺܿ, ሻቁܫ ⊕ ܽ 

    If ܿ࣬ݐ ൏ ݄ܶ and Hwtሺ߭ᇱሻ ൑  ݈ߟ
        ߭′′ ← Ber௟,ఎ, ܿ࣬ݐ ← Ͳ 

        ܾ ← ൫ జܶᇱ ∙ ሺ݇௖௨௥ , ܽ, ሻ൯ݐ ⊕ ߭′′ 
        ሺ݇௢௟ௗ , ݇௖௨௥ሻ ← ሺ݇௖௨௥ , ݇௖௨௥ ⊕߭′ሻ  
        update {݄ு,௝(ܫ௜)|Ͳ ൑ ݅ ൏ ݄ܶ}  

        accept the tag 

ሻݕሺݏ ൌ ଴ݏ ⊕௜:௬ሾ௜ሿୀଵ ௜ሺͲݏ ൑ ݅ ൑ ݉ሻ 
ݎ ← ݃ሺ ሶ݇ ሻ, ൫ሼݏ௜ሽሺ଴ஸ௜ஸ௠ሻ, ,ଵݎ ଶ൯ݎ ← ݃ሺ ሶ݇ ሻ ሺܶ, ,ݖ ݎ ሻ ← ݐ െ ଶ, if rankሺܶሻݎ ് ݊, reject ݕ ← ൫ܶ ∙ ሺܿ, ܽ, ,ܫ ሻ൯ݎ ⊕  ,ଵݎ

If Hwt൫ݖ ⊕ ܶ୘ ∙ ሻ൯ݕሺݏ ൑ ݊ ቀଵସ൅ ఎଶቁ 

    ߭′ ← ൫ܶ௞ሶ ∙ ሺܿ, ሻ൯ܫ ⊕ ܽ 

    If ܿ࣬ݐ ൏ ݄ܶ and Hwtሺ߭ᇱሻ ൑  ݈ߟ
         ߭′′ ← Ber௟,ఎ, ܿ࣬ݐ ← Ͳ 

         ܾ ← ቀ జܶᇱ ∙ ൫ ሶ݇ , ܽ, ൯ቁݐ ⊕ ߭′′ 
         ሺ݇௢௟ௗ , ݇௖௨௥ሻ ← ൫ ሶ݇ , ሶ݇ ⊕ ߭′൯ 
         update {݄ு,௝(ܫ௜)|Ͳ ൑ ݅ ൏ ݄ܶ} 

         accept the tag 

ܽ ← ൫ ௞ܶ ∙ ሺܿ, ሻ൯ܫ ⊕ ߭ 

߭ ← Ber௟,ఎ, ݎ ← ݃ሺ݇ሻ 
If ࣮ܿݐ ൏ ݄ܶ  
ܫ      ← ሺ ௞ܶ ∙ ሻ࣮ݐܿ ⊕ ࣮ݐܿ ,ݎ ← ࣮ݐܿ ൅ ͳ  
Else     
ܫ      ∈ோ ሼͲ,ͳሽ௡, ࣮ܿݐ ← ࣮ݐܿ  

Step 1:  

ሻݕሺݏ ൌ ଴ݏ ⊕௜:௬ሾ௜ሿୀଵ ௜ሺͲݏ ൑ ݅ ൑ ݉ሻ 
Generate random ݎ and ܶ, ߭ ← Ber௡,ఎ, ൫ሼݏ௜ሽሺ଴ஸ௜ஸ௠ሻ, ,ଵݎ ଶ൯ݎ ← ݃ሺ݇ሻ,  ݕ ← ൫ܶ ∙ ሺܿ, ܽ, ,ܫ ሻ൯ݎ ⊕ ݐ  ,ଵݎ ൌ ሺܶ, ܶ୘ ∙ ሻݕሺݏ ⊕ ߭, ݎ ሻ ൅  ,ଶݎ

Step 2:  

Step 2:  

www.intechopen.com



 
F-HB

+
: A Scalable Authentication Protocol for Low-Cost RFID Systems 267 

Overall, the update procedure can be divided into two stages. The first stage is to insert the 
new pseudonyms according to the above insertion procedure in an on-line mode, which 
runs concurrently with other transactions. The second stage is to delete the old pseudonyms 
according to the deletion procedure, which can be done in an off-line mode, in order to 
obtain optimal system performance. 

5. RFID privacy definition and proof 

5.1 Adversary assumptions 

In this chapter, an adversary ܣ is assumed to be a probabilistic polynomial algorithm that is 
allowed to perform oracle queries during attacks. The reader side is assumed to be secure. The 
tag and wireless communication channel are assumed to be insecure, which means that an 
adversary can intercept all the wireless communications between the reader and tags, and can 
corrupt a tag. The reader is assumed to have the ability to handle several authentication 
exchanges simultaneously, but a tag cannot. In order to model the majority of known attacks 
against authentication protocols in RFID systems, five oracles are defined as follows.  
i. ଵܱሺ࣬ሻ: It invokes the reader ࣬ to start a new session of the authentication protocol. This 

oracle returns the reader’s challenge message ܿ.  
ii. ܱଶሺ ௜࣮ , ܿሻ: It invokes a tag ௜࣮ to start an authentication session exchange related to 

challenge message ܿ. The tag ௜࣮ responds with the response message ܽ.  
iii. ܱଷሺ ௜࣮ , ܿ, ܽሻ: It returns the unmodified and modified challenge, ܿ, and response, ܽ, related 

to a tag ௜࣮.  
iv. ସܱሺ ௜࣮ሻ: It returns the final authentication result of a tag ௜࣮.  
v. ܱହሺ ௜࣮ሻ: It returns the current key and internal state information of a tag ௜࣮, and also 

updates the key and state information of tag ௜࣮ if necessary. 
For example, eavesdropping can be modelled as: first query ଵܱ to get ܿ, then query ܱଶ to get ܽ, and finally query ସܱ to get authentication results. The message interception can be 
modelled by ܱଷ. Any key compromised due to tag corruption, or side-channel attacks can be 
modelled by sending the ܱହ query to the tag.  
Definition 6. ሺݍ,  and ݐ ሻ-adversary. An adversary whose running time is upper-bounded byݐ
has the ability to disturb at most ݍ authentication exchanges in this interval is called a ሺݍ, -ሻݐ
adversary. The adversaries are assumed to only be able to attack the RFID system at a 
specific position and during a limited time period. The term “exposure period” (Vaudenay, 
2007) is used to name this specific attack time. During an exposure period, an adversary is 
able to observe and disturb all interactions involving a target tag ௜࣮ and a legitimate reader ࣬ using oracle ሺ ௜ܱሻଵஸ௜ஸହ according to the defined security model. After an exposure period, 
no adversary is allowed to continue his attack. But attacks do not need to be completed 
within only one exposure period, and can continue in several successive or discrete 
exposure periods.  

5.2 LPN problem characteristics 

From the protocol description, it can be found that in every authentication session, the tag 
needs to calculate multiple instances of ߨ௞,ఎ at the same time: the secret is a Toeplitz matrix 

rather than a vector, the noise is a vector rather than a single bit. The usage is the same as in 
the HB# protocol (Gilbert et al., 2008), but HB# reduces its security proof based on the 
hardness of the LPN problem. In this chapter, the security proof is based on the 
computational indistinguishability of the two oracles, ߨ௞,ఎ and ܷ௡ାଵ, in Lemma 1. 
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First of all, a new oracle returning multiple bits of ߨ௞,ఎ at the same time is defined as follows. 

For a fixed ሺ݈ ൈ ݊ሻ matrix ܭ, let ߎ௄,ఎ be the oracle returning an independent ሺ݊ ൅ ݈ሻ-bit string 

according to: 

 ൛ሺܽ, ሺܭ ⋅ ܽሻ ⊕ ߭ሻ|ܽ ∈ோ ሼͲ,ͳሽ௡, ߭ ← Ber௟,ఎൟ. (8) 

Theorem 1 below upper-bounds the probability that an adversary predicts the secret ሺ݈ ൈ ݊ሻ 
matrix ܭ given some instances of oracle ߎ௄,ఎ, so it implies that the two oracles, ߎ௄,ఎ and ܷ௡ା௟, are computationally indistinguishable. 
Theorem 1. Assume there exists an algorithm ܣ making ݍ oracle queries, running in time ݐ, 
and such that  

 |Prሾܣ௽಼,ആሺͳ௡ሻ ൌ ͳሿ െ Prሾܣ௎೙శ೗ሺͳ௡ሻ ൌ ͳሿ| ൒ ߳. (9) 

Let ݐగ be the time taken to calculate a ߨ௞,ఎ instance. Then there is an algorithm ܤ making ܱሺݍሻ oracle queries, running in time ݐ ൅ ௟ሺ௟ିଵሻଶ   గ, and such thatݐ

 |Prሾܤగೖ,ആሺͳ௡ሻ ൌ ͳሿ െ Prሾܤ௎೙శభሺͳ௡ሻ ൌ ͳሿ| ൒ ߳ ݈⁄ . (10) 

Proof. A hybrid argument technique is used to prove it. Let ܭ′ denote a ሺ݈ െ ݆ሻ ൈ ݊ binary 
matrix. Firstly, define the following hybrid distribution, ܦ௝ , with ݆ ∈ ሾͲ, ݈ሿ as  

 ሼሺܽ, ,ݎ ሺܭᇱ ⋅ ܽሻ ⊕ ߭ሻሽ, (11) 

where ܽ ∈ோ ሼͲ,ͳሽ௡, ݎ ∈ோ ሼͲ,ͳሽ௝ and ߭ ← Ber௟ି௝,ఎ. Upon receiving an ሺ݊ ൅ ͳሻ-bit input, ܤ 

gerneates a random value, ݆ ∈ ሾͲ, ݈ሿ to construct an ሺ݊ ൅ ݈ሻ-bit input as ܣ’s input. When ݆ ൏ ݈, 
it also needs to generate a random ሺ݈ െ ݆ሻ ൈ ݊ binary matrix ܭ′. It is clear that when ܤ’s input 
complies with ܷ௡ାଵ, ݆ ∈ ሾͳ, ݈ሿ; when ܤ’s input complies with ߨ௞,ఎ, then ݆ ∈ ሾͲ, ݈ െ ͳሿ. The 

distribution of ܦ௟ is the same as ܷ௡ା௟, and ܦ଴ the same as ߎ௄,ఎ. And ܤ uses ܣ’s outputs as its 

outputs. Thus  

 |Prሾܤగೖ,ആሺͳ௡ሻ ൌ ͳሿ െ Prሾܤ௎೙శభሺͳ௡ሻ ൌ ͳሿ|  

 ൌ ଵ௟ ห∑ ሺܣ஽ೕሺͳ௡ሻ ൌ ͳሻ௟ିଵ௝ୀ଴ െ ∑ ሺܣ஽ೕሺͳ௡ሻ ൌ ͳሻ௟௝ୀଵ ห   

     ൌ ଵ௟ |Prሾܣ௽಼,ആሺͳ௡ሻ ൌ ͳሿ െ Prሾܣ௎೙శ೗ሺͳ௡ሻ ൌ ͳሿ| ൒ ఢ௟ .  (12) 

A contradiction with the Lemma 1 is obtained, which concludes the proof. 
Defintion 7. Indistinguishability of Oracle ߎ௄,ఎ. The oracle ߎ௄,ఎ is said to be ሺݍ, ,ݐ ߳ሻ-secure if 

there is no ሺݍ,  .߳ ௄,ఎ from ܷ௡ା௟ with advantageߎ ሻ-adversary who can distinguishݐ

Secondly, due to the fact that Bernoulli random noise may exceed the acceptable threshold, 

even the legitimate tag may be rejected, which is called a false rejection. This property can 

also result in an adversary impersonating a tag successfully by simply guessing without any 

prior knowledge, which is called a false acceptance. According to probability theory, the 

false rejection probability	 ிܲோ, and false acceptance probability ிܲ஺ in every authentication 

session can be defined as follows: 

 	 ிܲோ ൌ ∑ ൫௟௜൯ߟ௜ሺͳ െ ሻ௟ି௜௟௜ୀఎ௟ାଵߟ , (13) 
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 ிܲ஺ ൌ ∑ ൫௟௜൯ʹି௟ఎ௟௜ୀ଴ .  (14) 

Thirdly, in the protocol, the universal hashing MAC code is used to protect the integrity of 

communication messages. If the adversary uses the GRS-MIM attack and its variants 

(Gilbert et al., 2008), the check for the universal hashing MAC code will fail, then, the reader 

will not continue to check the LPN problem as illustrated in Fig. 3. Therefore, the adversary 

cannot know whether or not his modification is successful according to the authentication 

result and the GRS-MIM attacks cannot succeed. Therefore, the GRS-MIM attack and its 

variants will not be considered in the following analysis. 

5.3 Security  

 

 

Fig. 6. Security Experiment 

An RFID authentication protocol is said to be secure if it resists impersonation attacks by 
any ሺݍ,  ሻ-adversary without using relay or corruption attacks. Consider the experiment inݐ
Fig. 6. This experiment proceeds in two phases: a learning phase and a guessing phase. In 
the learning phase, the adversary ܣ is given an RFID system ሺ࣬, ࣮ሻ as input. During a time 
interval at most ܣ ,ݐ is allowed to launch ሺ ௜ܱሻଵஸ௜ஸହ oracle queries in every authentication 
session without exceeding ݍ sessions. At the guessing phase, adversary ܣ only interacts with 
the reader, and uses the information obtained from the learning phase to impersonate the 
tag ௖࣮, but can no longer access any oracle. Therefore, the security of an authentication 
protocol is defined as the successful impersonation probability in the above experiment. 
Theorem 2. Let the oracle ߎ௄,ఎ in the F-HB+ protocol be ሺݍ, ,ݐ ߳௽ሻ-secure. Under the attack of a ሺݍ,  :ሻ-adversary, the security adversary’s advantage of F-HB+ protocol is upper-bounded byݐ

 ߳௦ ൌ ிܲ஺ ൅ ఢ೵ସ௟ . (15) 

Proof. The adversary may use two methods to impersonate a tag: (i) randomly guessing, 
and (ii) recovering the secret key (Toeplitz matrix). The successful probability of randomly 
guessing a response is ிܲ஺ as mentioned before. Let us start to analyse how the adversary 
can deduce the secret key. There are two ways to obtain useful information about the tag’s 
current key. 
The first way is to block the tag’s response message, as a result, the tag authentication is 
unsuccessful, and the current key cannot be updated. So the adversary can obtain valid 
instances of oracle ߎ௄,ఎ, which can help to reveal the current key. According to Lemma 1 

and Theorem 1, the probability of inferring the current key successfully is upper-bounded 

by 
ఢ೵ସ௟ .  

The second way is to block the reader’s acknowledge message, as a result, the tag cannot 
update its current key. So the adversary can obtain valid instances of oracle ߎ௄,ఎ, which can 

help to reveal the current key. Once again, the probability of inferring the current key is 

successfully is upper-bounded by 
ఢ೵ସ௟ .  

Experiment Exp஺ୗୣୡ୳୰ୣሺߢ, ܰ, ,ݍ  ሻݐ
1. Setup a reader ࣬ and a set of tags ࣮, |࣮| ൌ ܰ 

2. ሺ ௖࣮ , ଴ሻݐݏ ← ,ሺை೔ሻభರ೔ರఱሺ࣬ܣ ࣮ሻ //learning stage, ݍ sessions  

,ሺ࣬ܣ .3  ሻ //guessing phaseݐݏ
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It is impossible that the adversary can block the two messages in the same session, because 
the reader or tag will terminate the session if they do not receive the corresponding 
message. Therefore, combining the situations above, for a ሺݍ, -ሻ-adversary, the security of Fݐ

HB can be expressed as ߳௦ ൑ ிܲ஺ ൅ ఢ೵ସ௟ 	. This completes the proof. 

5.4 Correctness  

An authentication protocol exchange involving a legitimate tag and a legitimate reader is 
said to be undisturbed if all messages sent by both parties are correctly transmitted, received 
and neither modified nor lost in either direction.  
The correctness for RFID authentication protocols implies that the legitimate reader should 
always accept the legitimate tag for all undisturbed authentications between them. But it is 
observed that the undisturbed session may happen before or after an attack. Therefore the 
correctness of an authentication protocol is defined as the acceptable probability of an 
legitimate tag in an undisturbed authentication session, where the tag may have 
experienced an impersonation attack.  
Theorem 3. Let the oracle ߎ௄,ఎ in F-HB+ protocol be ሺݍ, ,ݐ ߳௽ሻ-secure. Under the attack of a ሺݍ,  :ሻ-adversary, the correctness of the F-HB+ protocol is at leastݐ

 ߳௖ ൌ ሺͳ െ ߳௦ଶሻሺͳ െ 	 ிܲோሻ ൅ ߳௦ଶ ிܲ஺. (16) 

Proof. According to the flow of the F-HB+ protocol, a reader only rejects a legitimate tag 
when the tag cannot answer the challenge with a correct response. The reasons are 
composed of (i) falsely rejecting a tag as mentioned before, and (ii) an adversary successfully 
impersonating a tag two times in succession such that both the old and current keys are 
updated, thus, this tag cannot be authenticated again. 
In the first situation, the correctness is at most (ͳ െ 	 ிܲோ) for a legitimate tag due to the 
inherent property of Bernoulli random noise, whenever this tag is under a synchronized 
(look-up table search) or desynchronized (brute-force search) state.      
In the second situation, the probability of occurrence is ߳௦ଶ. Once this situation becomes 
true, this tag cannot be authenticated like a legitimate tag. But it still could be falsely 
accepted. So the correctness is ߳௦ଶ ிܲ஺. 
Combining the two rejection situations, the correctness probability can be represented as ߳௖ ൌ ሺͳ െ ߳௦ଶሻሺͳ െ 	 ிܲோሻ ൅ ߳௦ଶ ிܲ஺. This concludes the proof. 

5.5 Forward privacy  

The unpredictable forward privacy experiment Exp஺୙୊୔ involving a ሺݍ,  is ܣ ሻ-adversaryݐ
illustrated in Fig. 7. During the learning phase, adversary ܣ chooses a random number ݎ ∈ோ ሾͲ, protocol sessions between ࣬ and tag set ࣮ with oracle ሺ ݎ ሿ, and disturbsݍ ௜ܱሻଵஸ௜ஸହ. 
Then adversary ܣ outputs useful information ݐݏ଴ and chooses one uncorrupted tag ௖࣮ as its 
challenge tag. On entering the guessing phase, the experiment chooses a random bit ܾ for 
adversary ܣ, and ܾ is concealed from ܣ. Then if ܾ ൌ ͳ, ܣ disturbs ݎ′ sessions involving ௖࣮ 
with oracle ሺ ௜ܱሻଵஸ௜ஸସ. These interactions happen during a single (or several) exposure period 
of each tag such that ݎ ൅ ′ݎ ൑ ܾ If .ݍ ൌ Ͳ, ܣ interacts with random strings rather than true 
protocol messages in ݎ′ protocol session exchanges. Then, ܣ is given the internal state, ݐݏଷ, of  ௖࣮ using oracle ܱହ. After this moment, ܣ is no longer able to access any oracle related to ௖࣮, 
but ܣ can access any other oracle. Then ܣ outputs useful information ݐݏଶ. Eventually, ܣ is 
asked to guess the random bit ܾ by accessing oracle ሺ ௜ܱሻଵஸ௜ஸହ to the tag set ࣮ᇱ. 
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Experiment Exp஺୙୊୔ሺߢ, ܰ, ,ݍ  ሻݐ
1. Setup a reader ࣬ and a set of tags ࣮, |࣮| ൌ ܰ 

ݎ chooses a random ܣ .2 ∈ோ ሾͲ,  ሿݍ
3. ሺ ௖࣮ , ଴ሻݐݏ ← ,ሺை೔ሻభರ೔ರఱሺ࣬ܣ ࣮ሻ //learning stage, ݎ sessions  

4. Set ࣮′ ൌ ࣮ െ ሼ ௖࣮ሽ 
5. ܾ ∈ோ ሼͲ,ͳሽ //guessing stage 

ݎ such that ′ݎ chooses a random ܣ .6 ൅ ′ݎ ൑  ݍ

7. If ܾ ൌ ͳ, then ݐݏଵ ← ,ሺை೔ሻభರ೔ರరሺ࣬ܣ ௖࣮ሻ; otherwise ܣ interacts with random 

strings and outputs ݐݏଵ //ݎ′ sessions  

ଶݐݏ .8 ← ைఱሺܣ ௖࣮ሻ 
9. ܾ′ ← ,ሺ࣬ܣ ࣮ᇱ, ,଴ݐݏ ,ଵݐݏ   ଶሻݐݏ
10. If ܾ′ ൌ ܾ output 1, otherwise output 0 

Fig. 7. Unpredictable Forward Privacy experiment 

Definition 8. The advantage of ሺݍ,  :in the experiment Exp஺୙୊୔ is defined as ܣ ሻ-adversaryݐ

 Adv஺୙୊୔ ൌ ቚPrൣExp஺୙୊୔ሺߢ, ܰ, ,ݍ ሻݐ ൌ ͳ൧ െ ଵଶቚ (17) 

where the probability is taken over the choice of tag set ࣮ and the coin tosses of the 
adversary	ܣ. An authentication protocol is said to be ሺݍ, ,ݐ ߳ሻ-forward-private if there exists 
no ሺݍ, ሻ-adversary able to break its unpredictable forward privacy with advantage Adv஺୙୊୔ݐ ൒ ߳. 
This unpredictable forward privacy experiment extends and improves upon the basis of the 

unpredictable privacy notion proposed by Ha et al.  (2008). Firstly, the previous model is 

designed for the general privacy notion in 3-pass and reader initiated protocols, but our 

experiment has no such limitation, can include any number of passes and protocols initiated 

by tags. Secondly, the security model presented here uses a variable to simulate the possible 

transition point between the learning phase and guessing phase. The previous model does 

not have this property. 
Theorem 4. Let the oracle ߎ௄,ఎ in the F-HB+ protocol be ሺݍ, ,ݐ ߳௽ሻ-secure, let ݃ be a ሺݐ, ߳௚ሻ-
secure PRNG, and let ሼ݄௨: ሼͲ,ͳሽ௟ → ሼͲ,ͳሽ௠ሽ௨⊂௎ be a strongly universal hash function family. 

Under the attack of a ሺݍ,  ሻ-adversary, the adversary advantage for the unpredictableݐ

forward privacy of the F-HB+ protocol can be upper-bounded by 

 ߳௨௣ ൌ ൝߳௽ ൅ ߳௨௣_௣,						successful	mutual	authentications	ଵଶ൅ ቀ߳௽ െ ଵଶቁ 	 ிܲோ ൅ ௦߳ݍ ൅ ߳௨௣_௣,					otherwise  (18) 

where ߳௨௣_௣ ൑ ሺ͵ݍ ൅ ʹሻሺʹݍ ൅ ͳሻ߳௚ ൅ ʹ݄ܶሺ݉ ൅ ͵ሻ൫߳௚ ൅ ʹି௟ ൅ ʹି௠ ൅  .ଶ௠ାଶ൯ିʹݍ
Proof. The protocol is composed of an LPN problem and a PRNG, so the forward privacy 
should be preserved for the LPN problem and PRNG at the same time.  
Let us first analyse the forward privacy of the LPN problem. The forward privacy proof of 

the LPN problem is discussed under two situations. The first situation is that the latest 

mutual authentication session of the F-HB+ protocol before the corruption query in the 

unpredictable forward privacy experiment is successful. The other one is that the latest 

session is unsuccessful.  
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Under the first situation, the tag and the reader can successfully authenticate each other and 
maintain synchronization. The exchanged messages are random strings and a series of ߎ௄,ఎ 

instances, thus, this protocol meets the demands of the unpredictable forward privacy 
experiment: the exchanged messages cannot be distinguished from random strings. The 
forward privacy adversary’s advantage is upper-bounded by ߳௽ according to Theorem 1.  
Under the second situation, the analysis is as follows.  
a. If the last tag authentication in the forward privacy experiment is successful, but the 

adversary uses a desynchronization attack on the reader’s acknowledge message, then 
the reader authentication is unsuccessful. The adversary can obtain the secret and valid 
LPN instances about this secret, thus he can use this information to check the protocol 
messages in the previous authentication session. Therefore, the adversary can 
accurately determine if the previous exchanged messages are random strings.  

b. If the last tag authentication in the experiment is unsuccessful, the adversary can obtain 
the secret and invalid LPN instances about this secret. But these failed instances cannot 
help him to check the authentication results in previous sessions, because in the LPN 
problem only the valid instances can help. Therefore, the probability of a correct guess 
is at most ሺͳ/ʹ ൅ ߳௽ሻ according to Theorem 1. 

c. If the adversary can use tag impersonation attacks in the experiment, then the 
adversary can guess right with probability of 1. The total impersonation probability is at 
most ߳ݍ௦. 

Therefore, the above situations are combined to illustrate that the forward privacy 
advantage of the LPN problem is at most 

߳௨௣_௟ ൑ ሺͳ െ 	 ிܲோሻ ൅ ൬ͳʹ ൅ ߳௽൰ 	 ிܲோ ൅ ௦߳ݍ െ ͳʹ
 

 ൑ ଵଶ൅ ቀ߳௽ െ ଵଶቁ 	 ிܲோ ൅  ௦.  (19)߳ݍ

Then, let us discuss the proof of the PRNG. When the authentication is successful, the secret 

keys of the PRNG cannot be recovered since the key is updated by adding the noise vector. 

So it is useless to consider the PRNG in this situation. When the authentication is 

unsuccessful, the secret key of the PRNG is not updated. The possible search length of the 

PRNG for each session is limited by ݄ܶ, and in each session the PRNG needs to generate ݉ ൅ ͵ strings (1 for the strong universal hashing, and ݉ ൅ ʹ for the LPN based MAC).  

In the PFP protocol (Berbain et al., 2009), a secure PRNG is used to update the key chain, and 

a strong universal hash function is used to generate the authentication response. This is 

similar to the look-up index generation in the F-HB+ protocol. The forward privacy of the 

PFP protocol can be expressed as in the following Lemma 2. 

Lemma 2 (Berbain et al., 2009). Let ݃ be a ሺݐ, ߳௚ሻ-secure PRNG, let ሼ݄௨ሽ௨⊂௎ be a strongly 

universal hash function family, and let ݍ ൏ min	ሺʹ௠ିଵ, ߱/ʹሻ where ߱ represents the possible 

search length of the PRNG. The PFP protocol is ሺݍ, ,௣ݐ ߳௣ሻ-forward-private with ߳௣ ൌሺ͵ݍ ൅ ʹሻሺʹݍ ൅ ͳሻ߳௚ ൅ ʹ߱൫߳௚ ൅ ʹି௟ ൅ ʹି௠ ൅  .ଶ௠ାଶ൯ିʹݍ
Therefore, according to Lemma 2, the forward privacy advantage of the PRNG in the 
proposed protocol when authentication fails can be expressed as: 

 ߳௨௣_௣ ൑ ሺ͵ݍ ൅ ʹሻሺʹݍ ൅ ͳሻ߳௚ ൅ ʹ݄ܶሺ݉ ൅ ͵ሻ൫߳௚ ൅ ʹି௟ ൅ ʹି௠ ൅  ଶ௠ାଶ൯,  (20)ିʹݍ
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where ݍ ൏ min	ሺʹ௠ିଵ, ݄ܶሺ݉ ൅ ͵ሻ/ʹሻ. 
Overall, the forward privacy advantage of the proposed protocol can be expressed as: 

 ߳௨௣ ൑ ߳௨௣_௟ ൅ ߳௨௣_௣. (21) 

Remark. Weak forward privacy in the unsuccessful sessions is as a result of (i) the false 
rejection probability of the HB related protocols and (ii) desynchronization attacks applied 
to the reader’s acknowledge message in the F-HB+ protocol. However, the false rejection 
probability 	 ிܲோ can be improved using the parameters proposed by Gilbert et al. (2008), and 
this weak forward privacy is only meaningful to two successive unsuccessful sessions. 
Therefore, this kind of attack is not very practical.  

6. Performance evaluation and comparison 

6.1 Re-Hash collision analysis 

In the proposed protocol, an appropriate look-up hash function for the Re-Hash feature 
must be chosen. The strong universal hash functions can be used due to their excellent 
collision resistant characteristics. The Toeplitz-based strongly universal hash function is 
used to analyze the collision performance of hash-table indices after Re-Hash is 
implemented. According to the random oracle model, the output of a cryptographic hash 
function can be seen as a random number with uniform distribution. Therefore the inputs to 
the Re-Hash function have uniform distribution. The collision performance for an output ݕ ∈ ሼͲ,ͳሽெ can be measured as follows: how many inputs ݔ ∈ ሼͲ,ͳሽெ (as described before, 
the number of truly usable pseudonyms in each authentication session is equal to the output 
range) are mapped to the output ݕ by the Re-Hash hash function. Let ܵ be the random 
variable representing the input number for the same output, then the expected number of ܵ 
is analyzed as follows:  

 Eሾܵሿ ൌ ∑ Prሾ݄௨ሺݔሻ ൌ ሿ௫ݕ ൌ ͳ. (22) 

The above analysis indicates that the average length in every slot of the hash-table is only 1. 
Therefore, this hash-table can be used to achieve constant-time performance. After every 
successful mutual authentication, there are at least Th hash-table slots updated, but the total 

number of true usable pseudonyms still is kept unchanged, ʹெ. So the above analysis is still 
valid.  

6.2 Storage case study 

The first case that will be examined is a static system with a fixed tag number. The 
parameters used by Alomair et al.  (2010) are adopted to illustrate the practical storage of the 
proposed protocol. It is assumed that the total number of tags ܰ is ͳͲଽ and the value of Th is ͳͲଷ. The storage cost of the hash-table is composed of address pointers to the 2nd level 
database. The storage of pointers is analyzed as follows. The number of elements in the 2nd 
level is ͳͲଽ (ൌ ܰ), so the bit-length of a pointer in the 1st level is no more than 30 bits 
(൒ Therefore, the total storage cost of the hash-table is no more than 4 TB (൒ .(ۀlogଶܰڿ ܰ ൈ݄ܶ ൈ  .(ۀlogଶܰڿ
The second case considered is a dynamic system where the tag number can change. Assume 
the maximum system tag number ܰெ஺௑ is ͳͲଵଶ, and the value of ݄ܶ is ͳͲଷ. Then the 
collision-free bit-length of pseudonyms	ܮ is 100 bits, and the output range of the Re-Hash 
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hash function ܮ′ is 50 bits. If the initial system tag number ܰ is ͳͲଽ, the initial hash-table slot 
number ܯ is ͳͲଵଶ. The storage cost can be obtained as follows: (i) the initial table size is 
upper-bounded to 7 TB (ܯ ൈ  when a new tag is added, ͳͲଷ slots are added (ii) ;(ۀlogଶܰெ஺௑ڿ
into the dynamic hash-table, and the additional storage is about 7 KB (݄ܶ ൈ  (iii) ;(ۀlogଶܰெ஺௑ڿ
when the system number ܰ increases to ܰெ஺௑, the largest table size is no more than 7,000 
TB.  

6.3 Implementation on the tag 

Firstly, the PRNG ݃ሺ∙ሻ can be implemented using any candidate in the eSTREAM project 

(Cid & Robshaw, 2009). If ݃ሺ∙ሻ is implemented using the Grain-v1, only 1,294 gates are 

required to achieve an 80-bit security level. Secondly, from equations (1) and (6), it can be 

seen that if the LPN problem is implemented using Toeplitz universal hashing, a linear 

feedback shift register (LFSR) is required for ௨ܶ, a 1-bit multiplier plus a 1-bit accumulator is 

needed for the “∙” operator, and an XOR operator is also required. Because the ݃ሺ∙ሻ (Grain-

v1) needs an LFSR structure, the LPN problem and ݃ሺ∙ሻ can share the LFSR, so ௨ܶ can be 

derived from the state variable of ݃ሺ∙ሻ. The two inputs, ݔ and ݕ of the LPN problem can be 

derived from the output of ݃ሺ∙ሻ. Therefore, the main hardware cost of ݃ሺ∙ሻ and the LPN 

problem equals the hardware cost of ݃ሺ∙ሻ plus a 1-bit “∙” operator and an XOR. Thus, the 

final estimate for the hardware cost of these functions is no more than 2,000 gates to achieve 

an 80-bit security level.  

Secondly, the overall hardware cost of the proposed protocol on a tag is 2,000 gates, in 
addition to the cost of a counter and non-volatile memory for storing the secret key and 
current value.  

6.4 Performance comparison 

In this section the proposed F-HB+ protocol is compared with previous protocols reported in 
the literature in terms of their forward privacy properties, the tag resource requirements and 
the database storage cost. The forward privacy properties are compared in Table 1. 
Although the proposed protocol cannot protect the forward privacy of failed authentication 
sessions, it can be observed that it not only supports forward privacy under the 
unpredictable privacy notion, but also provides a security proof under the standard model. 
 

 Le et al., 2007 Song, 2009 
Alomair et al., 

2010 
This work 

Forward 
Privacy 

For successful 
sessions 

For successful 
sessions 

For successful 
sessions 

For successful 
sessions 

Forward 
Privacy Notion 

Universal 
composable 

notion 

Indistinguishabl
e notion 

Indistinguishable 
notion 

Unpredictable 
notion 

Forward 
Privacy Proof 

Universal 
composable 

model 

Random oracle 
model 

Random oracle 
model 

Standard 
model 

Table 1. Forward Privacy Comparison Results 

The tag hardware cost and desynchronization resistance are compared in Table 2. Although 
the protocol proposed by Le et al. (2007) does not use a counter, it does not provide any 
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desynchronization resistance because the tag only has one index for a secret key.  This work 
requires only 2,000 gates by using a combination of the LPN problem and a PRNG. And 
among the three counter-related protocols, the proposed protocol consumes a reasonable 
non-volatile storage and requires simpler operations in the LPN problem.  
 

 Le et al., 2007 Song, 2009 Alomair et al., 2010 This work 

Crypto hardware 
1 PRF 

≈ 3,000 gates 
2 ݄஼  

> 5,000 gates 
1 ݄஼  

> 5,000 gates 
1 ݃ + 1 LPN 
≈ 2,000 gates 

Non-volatile 
storage 

1 key + 1 index 1 key + 1 ܿ2 ࣮ݐ key + 1 ܿ1 ࣮ݐ key + 1 ࣮ܿݐ 

Other hardware None 1 ࣮ܿݐܿ 1 ࣮ݐܿ 1 ࣮ݐ 

Desynchronization 
attack resistance 

None ݄ܶ ݄ܶ ݄ܶ 

Table 2. Tag Resource Comparison Results 

 

 Le et al., 2007 Song, 2009 
Alomair et al., 

2010 
This work 

Time complexity in 
synchronization / 

desynchronization 
ܱሺͳሻ / ܱሺܰሻ ܱሺͳሻ / ܱሺܰሻ ܱሺͳሻ / None ܱሺͳሻ / ܱሺܰሻ 

Hash-table storage 
with the example in 
(Alomair et al., 2010) 

None None 26 TB 4 TB 

Dynamic scalability – – – + 

Table 3. Database Performance Comparison Results  

The database cost is compared in Table 3. According to the case study for a static system 
described in section 6.2, the proposed protocol requires storage for the hash-table of no more 
than 4 TB, but the protocol proposed by Alomair et al. (2010) needs about 26 TB. The trade-
off in achieving a smaller storage cost is that the proposed protocol needs to compute a look-
up table hash function in on-line mode to retrieve the data in the hash-table. The data stored 
in the hash-table is pre-computed in off-line mode or dynamically inserted in on-line mode. 
But for the same tag, the look-up procedure and insertion procedure are unlikely to happen 
at the same time. Because the universal hash function is the fastest hash function in software 
(Black et al., 1999) and linear hashing is the fastest dynamic hash-table technique, this new 
look-up hash function will not affect the system performance. Additionally, this proposal is 
the only to support dynamic scalability. 

7. Conclusion 

In this chapter, the previous authentication protocols for low-cost RFID applications are 
introduced. In relation to the characteristics of low-cost tags, three important properties are 
highlighted: (i) hardware cost must be within 200 ~ 3,000 gates, (ii) forward privacy of a tag 
must be assured, and (iii) scalability of the entire system cannot be compromised.  
Therefore, a novel scalable and forward private authentication protocol, F-HB+, is proposed 
for low-cost RFID tags. The hardware-friendly LPN problem and PRNG are used to reduce 
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the protocol cost on the tag, which only requires about 2,000 gates plus a hardware counter 
and some non-volatile memory. A more efficient MAC code is utilized in comparison to the 
previous F-HB protocol. In the MAC code implementation implementation, a simplified 
pairwise independent permutation is used to accelerate the MAC code computation, and a 
PRNG is used to reduce the storage requirement. A new Re-Hash technique is proposed for 
hash-table based scalable protocols to effectively reduce the storage requirement. In 
addition, the Re-Hash technique is adapted to a linear-hashing technique, thus, the 
proposed protocol possesses dynamic scalability. The security proof of the proposed 
protocol is given under the standard model. It is proven that F-HB+ achieves unpredictable 
forward privacy for all its transactions before successful mutual authentication sessions.  
Finally, a comparison between the proposed protocol and previous protocols is provided. 
From a hardware perspective, the proposed protocol is among the smallest and it requires 
the smallest storage cost for its hash-table in addition to supporting dynamic scalability. It 
also provides unpredictable forward privacy. Overall, the proposed F-HB+ protocol achieves 
a new and practical balance between hardware cost, scalability and forward privacy.  
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