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1. Introduction  

RFID technology has received much attention both in industry and academia in recent years 
and it is seen as the leading ubiquitous computing technology. A typical RFID system 
consists of a reader, 疾, and a set of tags, 岫実沈岻怠丁沈丁朝. The reader 疾 is composed of a set of 
transceivers and a powerful backend database. Each tag 実沈 is a passive transponder 
identified by a unique ID. However, the fact that RFID tags can be read without line-of-sight 
results in security risks, especially in relation to the privacy of tag users. Therefore, 
developing privacy preserving authentication protocols for low-cost RFID tags is a major 
security challenge that needs to be addressed if RFID systems are to be widely deployed in 
the coming years.  
In previous research in this area the majority of authentication protocols use challenge-
response mutual authentication based on symmetric-key ciphers. In order to preserve 
privacy, on receiving a challenge from a reader, a tag uses pseudonyms, which are the result 
of using symmetric-key ciphers to process the secret key or ID, as authenticators to the 
reader. The reason symmetric-key ciphers are used is that the hardware cost of existing 
asymmetric-key ciphers is too expensive for low-cost tags. For example, ECC and RSA 
require more than 40,000 gates, which are too large for low-cost tags in which only 200 – 
2,000 gates out of 1,000 – 10,000 gates are available for security features (Juels, 2006). A 
lightweight algorithm known as the learning parity with noise (LPN) problem was first 
introduced in the HB protocol for human authentication by Hopper & Blum (2001). Juels & 
Weis (2005) first employed the LPN problem in the HB+ protocol for RFID authentication. 
The simplicity and novelty of the HB+ protocol has led to the proposal of other HB-related 
protocols (Jr et al., 2010). Gilbert et al. (2008) introduced a simple but effective man-in-the-
middle attack against these types of protocols, in which the adversary can derive the secret 
key of the LPN problem through modifying the tag’s response messages. This attack is 
known as a GRS-MIM attack. In the Trusted-HB protocol (Bringer & Chabanne, 2008), a 
universal hashing based message authentication code (MAC) is introduced to effectively 
resist GRS-MIM attacks. Although cryptographic attacks to the Trusted-HB protocol have 
been reported, they are impractical as they are too complex to implement (Frumkin & 
Shamir, 2009). Meanwhile, in the F-HB protocol (Cao & O’Neill, 2011), the LNP problem is 
first introduced to protect the forward privacy of low-cost tags. The operations in the LPN 
problem involve the calculation of inner products of binary vectors and Bernoulli noise bit 
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generation. Computing the binary inner product only requires bitwise AND and OR 
operations that can be computed on the fly. Therefore the LPN problem is a hardware-
friendly primitive, and very attractive for low-cost RFID security. The most recent progress 
in LPN-based protocols was reported by Kiltz et al. (2011). They introduced an 
authentication protocol based on a variant of the LPN problem, known as the Subspace LPN 
problem, and also proposed an efficient MAC construction based on the LPN problem. 
The rigorous definition and modelling of privacy in RFID systems has also been 
investigated in previous research (Avoine, 2005; Juels & Weis, 2007; Vaudenay, 2007; Ha et 
al., 2008). This research differs in how they treat the adversary’s ability to corrupt tags and 
their different privacy notions for corrupted tags. Compared to the general privacy notion 
that only considers adversaries that are unable to corrupt a tag, forward privacy is a 
stronger privacy notion because it also considers the privacy of a corrupted tag. Ma et al. 
(2009) prove that the unpredictable privacy notion (Ha et al.,  2008) is stronger than the 
indistinguishable privacy notion (Juels & Weis, 2007), and that the unpredictable privacy 
notion is equivalent to a pseudo random function (PRF). It can be observed that the majority 
of existing forward privacy schemes (Ohkubo et al.,  2003; Berbain et al.,  2009; Billet et al.,  
2010) are based on the indistinguishable privacy notion, and the F-HB protocol is based on 
the unpredictable privacy notion. 
Scalability must also be considered in forward private protocols based on symmetric-key 
ciphers. In order to protect a tag’s privacy, before the tag is authenticated by the reader, it 
must not reveal its identity (its secret key) to the reader. As a result, in order to locate the 
identity of a tag, the reader must perform a brute-force search of all the tags to check all the 
keys in its database. As the number of tags increases, this brute-force search will inevitably 
lead to scalability problems. Existing research into scalability protocols are composed of 
three categories. The first category comprises protocols that perform a brute-force search of 
all the tags in the database (Weis et al., 2003; Ohkubo et al., 2003), the time complexity of 
which is 頚岫軽岻, where 軽 is the number of tags in the system. This method is only suitable for 
systems with a small number of tags. The second category involves tree-based protocols 
(Molnar and Wagner, 2004; Molnar et al., 2005), with a time complexity of 頚岫log長軽岻 where 決 
represents the branch factor of the tree. These protocols consider each tag as a leaf in a 
balanced tree, and each tag needs to store 暁log長軽業 secrets corresponding to the path from the 
root to the tag leaf. The disadvantage of this method is that because this approach requires 
that each tag stores correlated keys, the system privacy is weakened when an adversary is 
able to corrupt at least one tag. The more tags that are corrupted, the more the privacy of 
this system is compromised. The advantage of this method is that it supports dynamic 
scalability, so that new tag entries can be easily added without affecting the operation of the 
protocol. The third category of scalable protocols are hash-table based protocols (Henrici 
and Muller, 2004; Dimitriou, 2005; Tsudik, 2006; Lim and Kwon, 2006; Le et al., 2007; Song, 
2009; Alomair et al., 2010; Cao & O’Neill, 2011). These protocols require only constant-time, 頚岫な岻, running time to identify a tag. These protocols need to store pre-computed hash-tables 
in the database associated with the reader. The reader uses pseudonyms from a tag as the 
indices of the hash-table to match a value, realizing constant-time tag identification. 
Compared to the tree-based protocols, hash-table based protocols need smaller storage on a 
tag and maintain a constant response time even when the number of tags increases. The 
disadvantage of these protocols is that the backend database needs a large storage to build a 
hash-table. Although, it is assumed that in RFID systems the database possesses infinite 
computational ability, from a practical viewpoint, all previously proposed protocols in this 
category require unrealistic large storage, and lack dynamic scalability (Avoine et al., 2010). 
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In this chapter, building on previous work in this area, a novel scalable and forward private 
authentication protocol, F-HB+, suitable for low-cost RFID applications is proposed. The 
contributions are as follows. Firstly, similar to the F-HB protocol, the proposed protocol uses 
an LPN problem and a pseudo random number generator (PRNG); however, a hardware 
counter is introduced to the tag to enhance its desynchronization resistance, and the MAC 
code generation based on the proposal of Kiltz et al. (2011) is more efficient than in the F-HB 
protocol. Secondly, a new Re-Hash technique is presented to effectively reduce the storage 
requirement of the hash-table over previous protocols. The Re-Hash technique is adapted to 
support dynamic scalability and it is used to construct the hash-table required in the F-HB+ 
protocol. Thirdly, the security proof of the F-HB+ protocol is derived under the standard 
model. Overall, the proposed protocol features: (i) from the tag’s perspective, low-cost 
implementation and forward privacy; (ii) from the reader’s perspective, constant-time 
scalability, small hash-table storage and dynamic scalability.   
The rest of the chapter is organized as follows. In section 2, the mathematical definitions and 
previous related work are introduced. In section 3, the Re-Hash technique is presented, and 
how it can be adapted to include dynamic scalability is discussed. The proposed F-HB+ 
scheme with the Re-Hash technique is described in section 4. The unpredictable forward 
privacy framework and security proof are derived in section 5. Section 6 presents a 
performance evaluation and comparison results, while Section 7 concludes the chapter. 

2. Preliminary  

2.1 Mathematical definitions 

Definition 1. LPN Problem (Hopper & Blum, 2001). Let Ber挺 denote the Bernoulli 

distribution with parameter 考 ∈ 岫ど,な/に岻. A bit 鉱 ← Ber挺 is such that Pr岷鉱 噺 な峅 噺 考 and Pr岷鉱 噺 ど峅 噺 な 伐 考, while an 健-bit vector 鉱 ← Ber鎮,挺 is such that each bit of 鉱 is independently 

drawn according to Ber挺. Let Hwt岫鉱岻 denote the hamming weight of vector 鉱. Let 劇 be a 

random 岫健 抜 券岻 binary matrix, let 捲 be a random 券-bit vector, let 考 ∈ 岫ど,な/に岻 be a noise 
parameter, and let 鉱 be a random 健-bit vector according to Ber鎮,挺, such that Hwt岫鉱岻 判 考健. 
Given 劇, 考 and 権 噺 岫劇 ∙ 捲岻 ⊕ 鉱, find an 券-bit vector 検 such that Hwt岫岫劇 ∙ 検岻 ⊕ 権岻 判 考健.  
For a fixed 券-bit string, 倦, let 講賃,挺 denote the oracle returning an independent 岫券 髪 な岻-bit 

string according to the LPN problem:  

 版岫欠, 岫倦 ⋅ 欠岻 ⊕ 鉱岻|欠 ∈眺 岶ど,な岼津, 鉱 ← Ber挺繁. (1) 

The following Lemma 1 upper-bounds the probability that an adversary predicts the secret 券-bit string 倦 given some instances of oracle 講賃,挺, which implies that the two oracles, 講賃,挺 

and 戟津袋怠, are computationally indistinguishable, where 戟津袋怠 denotes an oracle that returns 

an independent uniformly random 券 髪 な-bit string. 
Lemma 1. Indistinguishability of LPN Problem (Katz & Shin, 2006). Assume there exists an 
algorithm 畦 making 圏 oracle queries, running in time 建, and such that  

 |Pr岷畦訂入,俳岫な津岻 噺 な峅 伐 Pr岷畦腸韮甜迭岫な津岻 噺 な峅| 半 香. (2) 

Then there is an algorithm 稽 making 頚岫圏 ∙ 香貸態 log 券岻 oracle queries, running in time 頚岫建 ∙ 券香貸態 log 券岻, and such that  

 Pr岷稽訂入,俳岫な津岻 噺 倦|倦 ∈眺 岶ど,な岼津峅 半 香 ね⁄ . (3)  
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Definition 2. PRNG (Goldreich, 2001). A PRNG is a function 訣: 岶ど,な岼陳 → 岶ど,な岼津 that takes as 
input an 兼-bit hidden seed and returns an 券-bit string, where 券 伴 兼. The output of the 
PRNG is called a pseudo random number, which appears to be random. A 岫建, 香直岻-secure 

PRNG represents that the output of this PRNG cannot be discriminated with a true random 
string in time 建 with advantage at most 香直.   

The PRNG can be implemented using stream ciphers such as those proposed in the 
STREAM project (Cid & Robshaw, 2009) and a secure stream cipher is seen as a PRF (Billet et 
al., 2010).  

Definition 3. Universal Hash Functions (Wegman & Carter, 1981). A family of functions 岶月通: 岶ど,な岼鎮 → 岶ど,な岼陳岼通∈腸 is called a strongly universal hash family if ∀捲 ∈ 岶ど,な岼鎮, ∀検 ∈ 岶ど,な岼陳:  

 Pr岷月通岫捲岻 噺 検峅 噺 に貸陳, (4) 

and ∀捲怠 塙 捲態 ∈ 岶ど,な岼鎮, ∀検怠, 検態 ∈ 岶ど,な岼陳: 

 Pr岷月通岫捲態岻 噺 検態	&	月通岫捲怠岻 噺 検怠峅 噺 に貸態陳 (5) 

where any hash function is easily selected by 憲 ∈ 戟. 
An 岫健 抜 兼岻-bit Toeplitz matrix is a matrix for which the entries on every upper-left to lower-
left diagonal have the same value. Since the diagonal values of a Toeplitz matrix are fixed, 
the entire matrix is specified by the top row and the first column. Thus a Toeplitz matrix can 
be stored in 岫健 髪 兼 伐 な) bits rather than the (健 抜 兼岻 bits required for a truly random matrix. 
For any 岫健 髪 兼 伐 な岻-bit vector 憲, let 劇通 denote the Toeplitz matrix whose top row and first 
column are represented by 憲.  
Definition 4. Toeplitz based Universal Hash Function (Krawczyk, 1994). Let 岶劇通岼通∈腸 be the 

family of Toeplitz matrices where the 岫健 髪 兼 伐 な岻-bit vector 憲 is chosen at random, and 権 is a 

random 兼-bit vector. Then the following is a strongly universal hash function family:   

 岶月通岫捲岻 噺 岫劇通 ∙ 捲岻 ⊕ 権: 岶ど,な岼鎮 → 岶ど,な岼陳岼	通∈腸. (6) 

Meanwhile, according to the property in (5), the Toeplitz based universal hash function is 
also a pairwise independent hash function (Naor & Reingold, 1997). 

Definition 5. LPN based MAC (Kiltz et al., 2011). Let 月通: 岶ど,な岼鎮 → 岶ど,な岼陳 be a pairwise 

independent hash function, 貢岫∙岻 be a pairwise independent permutation on 岶ど,な岼鎮抜津袋津袋栂, 鉱 ← Ber津,挺, 嫌沈 ∈眺 岶ど,な岼鎮, 堅 ∈眺 岶ど,な岼栂, and 劇 ∈眺 岶ど,な岼鎮抜津. Given a secret key 盤岶嫌沈岼岫待丁沈丁陳岻, 月通, 講匪 
and a message 捲, the LPN based MAC for the message, 捲, can be defined as: 

 MAC岫鎚,朕,訂岻岫捲岻 噺 貢岫劇, 劇鐸 ∙ 嫌岫検岻 ⊕ 鉱, 堅岻, (7) 

where 検 噺 月通岫捲, 堅岻 and 嫌岫検岻 噺 嫌待 ⊕沈:槻岷沈峅退怠 嫌沈岫ど 判 件 判 兼岻.  
The verification steps of the LPN based MAC are as follows. Firstly, use 貢貸怠岫∙岻 to obtain 岫劇, 権, 堅岻; if rank岫劇岻 塙 券, then reject. Secondly, use 月通岫捲, 堅岻 to obtain 検 and 嫌岫検岻. Thirdly, if Hwt 岾権 ⊕ 劇鐸 ∙ 嫌岫検岻峇 判 券 岾怠替髪 挺態峇, accept the MAC, otherwise reject. 

One disadvantage of this MAC is that if the standard pairwise independent permutation 貢岫捲岻 噺 欠 抜 捲 髪 決 (where 欠 and 決 are random strings) is used, the computation for the 

multiplier will be a bottleneck for the LPN based MAC (Kiltz et al., 2011). But it can be 

observed that the function of 貢岫∙岻 prevents the adversary from directly choosing the input of 

a MAC. The protocol proposed in this chapter solves this limitation by using a simplified 
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pairwise independent permutation, 貢岫捲岻 噺 捲 髪 決, where 欠 噺 な. Another disadvantage is that 

the key 盤岶嫌沈岼岫待丁沈丁陳岻, 月通, 講匪 requires a large storage cost. The proposed protocol solves this by 

using a PRNG that is able to generate successive random strings.  

2.2 Related work 

In this section, a brief introduction and analysis of previous research is presented. The most 
relevant work for comparison is the hash-table based scalable and forward private 
protocols. These protocols can be divided into two classes according to their methods for 
generating pseudonyms. In the remainder of the chapter, the word “pseudonyms” is taken 
to mean indices used to look up a hash-table.  
In the first class of protocols, each tag stores a unique key, which can be used as the tag’s 
authenticator to the reader. The pseudonyms are derived from this secret key, and the 
pseudonym update method on the tag depends on a one-way secure hash function without 
interference from the reader. In the first hash-table based protocol proposed by Weis et al. 
(2003), on any query from a reader, a tag always replies with the fixed pseudonym of its 
unique secret key. Therefore, it is vulnerable to tracking attacks and tag impersonation. In 
the protocols proposed by Henrici and Muller (2004) and Dimitriou (2005), the tag’s 
response comprises a pseudonym and an authenticator. Due to the fixed pseudonym used 
between successful mutual authentications, these protocols fail to resist tag tracking. The 
protocols proposed by Lim and Kwon (2006) and Tsudik (2006) also use a response pair. But 
the pseudonyms in these protocols will recycle in a brute-force desynchronization attack, so 
they fail to provide forward privacy. 
In the second class of protocols, each tag needs to store two secrets, where one secret is used 
as the tag’s final authenticator key and the other one is used to generate the pseudonym 
chain. These protocols possess the advantage that pseudonyms are unrelated to the secret 
key, but they use more non-volatile memory on the tag. The O-FRAP protocol was proposed 
by Le et al., (2007) for RFID authentication under a universally composable framework and 
provides forward privacy. It updates pseudonyms using the same method as in the first 
class of protocols. The O-FRAP protocol constructs a hash-table using the output of a PRF 
implemented by a PRNG. But it is difficult to validate that the output of a PRF possesses the 
collision-free property. Two further protocols in this class (Song, 2009; Alomair et al., 2010) 
require the help of the reader to update pseudonyms and send the updated pseudonyms to 
tags, which does not relieve the burden on the tag and adds to the risk of desynchronization.  
The desynchronization threats in the above protocols can be alleviated by using more than 
one pseudonym for a secret key. There are two methods to achieve this purpose. One 
method is based on the time-stamp concept (Tsudik, 2006), and involves adding a hardware 
timer to the tag, inevitably increasing the cost of the tag. This technique is unsuitable for 
low-cost tags. Another technique relies on a hardware counter on the tag (Le et al., 2007; 
Song, 2009; Alomair et al., 2010). This counter is used to limit the maximum number of 
pseudonyms associated with a secret key. The maximum threshold value of this counter 
determines the ability to resist desynchronization attacks. Although the hardware counter 
also increases the cost of the tag, it is more practical than a hardware timer. Another 
problem of the above protocols is that they utilise cryptographic secure hash functions, the 
hardware cost of which exceeds the budget of low-cost tags. For example, according to the 
latest literature reports, the standard algorithm, SHA-1, requires at least 5,000 gates (O'Neill, 
2008).  
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The most recent progress in constant-time scalable protocols is presented by Alomair et al.  
(2010). It also uses a counter with threshold 劇月 to control the number of pseudonyms for 
each secret key. Compared to the previous proposals, this protocol considers a further step: 
how to build a hash-table with a reasonable storage in the database. This paper points out 
that impractically large hash tables are a result of the fact that the bit-length of a 
pseudonym, 詣, must be long enough to avoid collision. And in order to directly address the 
hash-table, the size of the hash-table must be 頚岫に挑岻 bits, which is unrealistic in practice. In 
order to reduce the storage requirement, a 2-level hash-table construction method is 
proposed. The 1st level is a hash-table with the 嫌 most significant bits (MSB) of the 詣-bit 
pseudonyms as its indices, and that stores the addresses of the 2nd level. The 2nd level is a 
linear table composed of the remainding (詣 伐 嫌) bits of the 詣-bit pseudonym, that stores the 
addresses of the actual information. Assuming that the number of pseudonyms is 軽′, the 
protocol recommends the use of the following parameters: the 1st level storage is 頚岫に鎚岻 bits, 
where 嫌 噺 暁log態岫軽′ 抜 劇月岻業, and the 2nd level storage is 頚岫軽′ 抜 劇月岻 bits. Using these 
parameters, constant-time authentication can be achieved with the 2-level hash-table. 
Avoine et al. (2010) noted that although this method is very efficient, its total storage 
requirement for the 2-level structure is still very large and does not support dynamic 
resizing.  

3. Proposed Re-Hash technique 

3.1 Basic Re-Hash technique 

As mentioned before, in the hash-table based protocols, a tag can be identified in constant-
time by its 詣-bit pseudonyms. The total number of valid pseudonyms for each tag in a 
synchronized state is controlled by a counter with a maximum threshold, 劇月. Firstly, let us 
take an example to show how much storage is required if these pseudonyms are directly 
used as look-up indices of a hash-table. The total number of tags, 軽, is assumed to be に戴待 
(greater than 1 billion) and the value of 劇月 is に怠待. Therefore に替待 (噺 軽 抜 劇月) indices are 
needed for the hash-table, so the collision-free bit-length of an index should be at least 40 
bits. According to Alomair et al. (2010), the bit-length of pseudonyms should be large 
enough to obtain a collision-free 40-bit index of a hash-table. Assuming 詣 噺	60 bits, the 
collision-free hash-table needs at least に怠胎 terabytes (TB) of storage with に滞待 slots (に滞待 抜 な 
bit, i.e., assume every slot in the hash-table stores 1 bit) to meet the demands of direct 
addressing. This storage requirement is too large for practical use.  
 

 

 

Fig. 1. The traditional Hash-table vs. basic Re-Hash hash-table 
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It can be observed that in the above example only に替待 slots out of the total に滞待 slots are used 
in each authentication session, so that the truly useful storage of all the indices during each 
authentication session is 0.125 TB (に替待 抜 な bit), which is practical. Therefore, of the total 頚岫に挑岻 bits of storage, the true requirement is at most 頚岫軽 抜 劇月岻 bits, which causes a huge 
storage waste.  
Therefore, in order to reduce the storage cost, a mathematical mapping is needed, 血: 岶ど,な岼滞待 → 岶ど,な岼替待, which is the essence of the Re-Hash technique proposed in this chapter. 
The function 血岫筏岻 can be implemented as a look-up table hash function 月張岫筏岻, which uses the 
60-bit pseudonyms of tags as its inputs and outputs 40-bit strings. These 40-bit outputs can 
then be used as look-up indices of a hash-table. If this technique is used, the storage cost of 
the directly addressed hash-table in the above example can be reduced to 0.125 TB (に替待 抜 な 
bit). Fig. 1 illustrates the difference between the traditional hash-table and the basic Re-Hash 
hash-table, where 荊 represents the pseudonym of a tag, and 喧 represents the address of the 
actual information related to the tag. 
The Re-Hash technique for hash-table construction can be generalized as follows: 
1. Determine the number of pseudonyms required during each authentication session, 軽 抜 劇月, in the RFID system. 
2. Determine the collision-free bit-length of a pseudonym, 詣.  

3. Select an appropriate look-up table hash function, 月張: 岶ど,な岼挑 → 岶ど,な岼朝抜脹朕, which uses 
the pseudonyms as its input values. 

4. Use the output of 月張 as indices to construct the hash-table, in which every slot stores a 
pointer to the address storing actual tag information. 

The important advantage of this technique is the storage cost saving. One possible 

disadvantage is that the collision probability among hash-table indices may increase, 

because the number of hash-table indices is equal to the number of pseudonyms in each 

authentication session. However in section 6.1 analysis shows that if an appropriate Re-

Hash hash function is used, constant-time look-up is maintained. 

3.2 Dynamic Re-Hash 

In this section it is illustrated that it is necessary to build a dynamic hash-table to 

accommodate frequent database changes, insertions and deletions. Firstly, dynamic table 

should effectively utilize the storage available. Assume a large-scale supermarket 

respectively sells and buys に態待 (greater than 1 million) items per month, the change in the 

number of indices for the hash-table is に戴怠 (に 抜 に態待 抜 に怠待). Thus, the change in storage will 

be at least 2 gigabytes (GB) (に戴怠 抜 な bit). If the hash-table is fixed, then this 2 GB storage may 

not be fully utilized. Secondly, a dynamic table should be able to process concurrent 

transactions without affecting the system response time. For example, merchandize is 

checked out in a supermarket at the same time. This would need many hash-table insertions 

and deletions at the same time.  

Linear-Hashing (Black, 2009) is a dynamically updateable hash-table construction method 
which implements a hash-table that grows or shrinks one slot at a time through splitting a 
current slot into two slots. In general, assuming the Linear-Hashing scheme has an initial 
hash-table with 警 slots, then it needs a family of look-up table hash functions 月張,珍岫筏岻 噺血岫筏岻	mod	岫に珍警岻. At any time, there is a value 倹(半 ど) that indicates the current splitting round 

and the current look-up hash functions; a pointer 喧 ∈ 岷ど,… , に珍警 伐 な峅 which points to the slot 

to be split next; a total of (に珍警 髪 p) slots, each of which consists of a primary page and 
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possibly some overflow pages; and two hash functions 月張,珍 and 月張,珍袋怠. The look-up process 

works as follows: If 月張,珍岫筏岻 半 喧, choose slot 月張,珍岫筏岻 since this slot has not been split yet in the 

current round; otherwise, choose slot 月張,珍袋怠岫筏岻, which can either be the slot 月張,珍岫筏岻 or its split 

image slot 月張,珍岫筏岻 髪 に珍警. 

The final proposed dynamic hash-table construction method, in which the Re-Hash 
technique is adapted to include the Linear-Hashing technique, can be described as follows: 
1. Determine the system capacity, i.e., the maximum tag number 軽暢凋諜 the system can 

accommodate, and the collision-free bit-length of a pseudonym 詣.  
2. Determine the output range of the Re-Hash hash function, 詣′, such that  詣′ 半 詣/に. 
3. Select an appropriate look-up table hash function, which is used as the Re-Hash hash 

function, 月張: 岶ど,な岼挑 → 岶ど,な岼挑′. 
4. Determine the initial tag number of this RFID system, 軽, and the initial dynamic hash-

table size, 警, such that 警 半 軽 抜 劇月. 

5. Determine the Linear-Hashing look-up hash function family, 月張,珍岫筏岻 噺 月張岫筏岻	mod	岫に珍警岻. 
6. Use the outputs of 月張,珍岫筏岻 as indices to construct the dynamic hash-table, in which every 

slot stores a pointer to the address storing actual tag information. 

4. F-HB
+
 protocol description 

4.1 Initialization 

The initialization steps involved in the proposed F-HB+ protocol are as follows.  

 Tag: Every tag is independently assigned a secret key 倦 ∈眺 岶ど,な岼陳, which is shared with 
the reader. Each tag can compute a PRNG 訣岫∙岻 as in Definition 2, multiple instances of 講賃,挺 at the same time, and an 兼-bit counter 潔建実 ← ど whose maximum threshold value is 劇月. They also have enough non-volatile memory to store the value of 倦 and 潔建実.  

 Reader: In the database, there is an old key 倦墜鎮鳥 ← 倦, a current key 倦頂通追 ← 倦, a counter 潔建疾 ← ど with threshold 劇月, and 劇月 hash-table entries {月張,珍岫荊沈)|ど 判 i 隼 劇月} for every tag, 

where 荊沈 噺 岫劇賃 ∙ 件岻 ⊕ 堅沈 and 堅沈 is the 件-th iteration result of 訣岫倦潔憲堅岻. The two secret keys 
are used to resist brute-force desynchronization attacks, and the 劇月 hash-table entries 
are used to enhance the desynchronization resistance. The variables for Linear Hashing 
are also initialized: the current splitting round indicator 倹 ← ど and the current splitting 
pointer 喧鎚 ← ど. All the information is organized into a pre-computed 2-level database 
structure, which is illustrated in Fig. 2. In addition, the database can compute a look-up 
hash function family 岶月張,珍岫筏岻岼珍兆待. The 1st level of the database is the pre-computed 

 

 

Fig. 2. The 2-level Database Structure with a Re-Hash Hash-table 
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dynamic hash-table. For every tag, there are 劇月 slots (maybe not successive) in this 

hash-table, which store the pointers 喧 indicating an address in the 2nd level table. The 
address of the 1st level hash-table is computed by 月張,珍岫荊沈岻. The 2nd level of the database 

is a pre-organized linear table. For each tag, there is only 1 slot in this level to store 倦墜鎮鳥, 倦頂通追, 潔建疾 and the actual information about each tag. 

4.2 Authentication interaction 

An overview of the proposed authentication protocol is illustrated in Fig. 3. It is a 3-pass 
mutual authentication protocol.  
 

 

Fig. 3. The Proposed F-HB+ Protocol 

Fig. 4 illustrates the tag’s operation after the tag receives the challenge message 潔 from the 

reader. It can be observed that the Toeplitz matrix 劇賃 is used in the LPN problem such that 欠 ← 盤劇賃 ∙ 岫潔, 荊岻匪 ⊕ 鉱, and in the strong universal hashing such that 荊 ← 岫劇賃 ∙ 潔建実岻 ⊕ 堅 at the 

same time. Meanwhile, the PRNG 訣 is also used in the strong universal hashing such that 

{	堅 ← 訣岫倦岻, 荊 ← 岫劇賃 ∙ 潔建実岻 ⊕ 堅}. More importantly, the PRNG is in charge of generating all the 

secret keys of the LPN based MAC, such that 盤岶嫌沈岼岫待丁沈丁陳岻, 堅怠, 堅態匪 ← 訣岫倦岻.   
Fig. 5 explains the reader’s key search method in detail after it receives the authentication 

message 岫荊, 欠, 建岻 from the tag. Only if both the MAC code 建 and authenticator 欠 pass the 

verification will the reader accept the tag and generates a confirmation message, 決. It can 

be observed that the reader does not use 倦頂通追 as the secret key for the LPN problem again, 

but uses the noise vector 鉱′ such that 決 ← 盤劇鄭嫗 ∙ 岫倦頂通追 , 欠, 建岻匪 ⊕ 鉱′′. This is to prevent GRS-

MIM attackers from recovering the secret key 倦頂通追. The difference between steps 1 and 2 is 

that (i) step 1 only involves the current key 倦頂通追 of one tag providing constant-time 

 

潔 

Reader 疾                                                                                                                                                  Tag 実   
[倦墜鎮鳥, 倦頂通追, 潔建疾, {月張,珍(荊沈) | ど 判 件 隼 劇月}]                                                                                                          [倦, 潔建実] 

荊, 欠, 建 
1. Use 月張,珍岫荊岻 as index to look up hash-table 

2. If ‘1’ fails, perform brute-force search ∃倦岌 ∈{倦墜鎮鳥, 倦頂通追} 

3. In both ‘1’ and ‘2’, first check 建, then check 欠. If  

‘1’ or ‘2’ succeed, calculate response 決, update the  

hash-table, accept the tag, respond with 決   
4. If both ‘1’ and ‘2’ fail, reject the tag 決 

  If Hwt 岾決 ⊕ 盤劇鄭 ∙ 岫倦, 欠, 建岻匪峇 判 考健 
        倦 ← 倦 ⊕ 鉱 
  Else  
        reject the reader 

1. Calculate the hash table index 荊  
    and the LPN response 欠 
2  Calculate the LPN based 

Generate a random challenge 
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scalability; but (ii) step 2 involves the secret key pair 岫倦墜鎮鳥 , 倦頂通追岻 of all the tags, and needs 

to try all keys.  

 

 

Fig. 4. Tag’s response operation in the Proposed F-HB+ Protocol 

 

 

Fig. 5. Reader’s authentication operation in the Proposed F-HB+ Protocol 

4.3 Hash-table update procedure 

This protocol supports dynamic update. The update procedure consists of insertion and 
deletion. Let us first to describe the insertion procedure. There are two insertion scenarios. 
One is when a tag is successfully authenticated, the old secret key is updated for this tag, 
therefore, the associated old 劇月 pseudonyms also need to be updated. The other scenario is 
when new tags are added into the system, new pseudonyms should also be included. 
Assuming that there is a new pseudonym called 荊津勅栂, and its corresponding hash-table 
index is 月張,珍(荊津勅栂). Therefore, 荊津勅栂 is inserted into the slot 月張,珍(荊津勅栂) as follows: 

 If no overflow occurs, its position is within the primary page of this slot. Insertion 
process is completed.  

 Otherwise 荊津勅栂 is put into the overflow page of the slot 月張,珍(荊津勅栂). The pseudonyms in 

the current splitting slot 喧鎚 are split into 2 slots: 喧鎚 and 喧鎚 髪 に珍警 using the look-up hash 
function 月張,珍袋怠(∙). The splitting pointer 喧鎚 moves to the next slot, 喧鎚 ← 喧鎚 髪 な. If 喧鎚 半 に珍警, increment the current splitting round indicator, 倹 ← 倹 髪 な, and reset the 
splitting pointer, 喧鎚 ← ど. Insertion process is completed. 

Deletion will cause the hash-table to shrink. Slots that have been split can be recombined. The 
operation of two slots merging together is the reverse of splitting a slot in the insertion process.  

Step 1:  

 検 ← 盤劇 ∙ 岫潔, 欠, 荊, 堅岻匪 ⊕ 堅怠 嫌岫検岻 噺 嫌待 ⊕沈:槻岷沈峅退怠 嫌沈岫ど 判 件 判 兼岻 
堅 ← 訣岫倦頂通追岻, 盤岶嫌沈岼岫待丁沈丁陳岻, 堅怠, 堅態匪 ← 訣岫倦頂通追岻 岫劇, 権, 堅	岻 ← 建 伐 堅態, if rank岫劇岻 塙 券, reject 

If Hwt盤権 ⊕ 劇鐸 ∙ 嫌岫検岻匪 判 券 岾怠替髪 挺態峇 

    鉱′ ← 岾劇賃迩祢認 ∙ 岫潔, 荊岻峇 ⊕ 欠 

    If 潔建疾 隼 劇月 and Hwt岫鉱嫗岻 判 考健 
        鉱′′ ← Ber鎮,挺, 潔建疾 ← ど 

        決 ← 盤劇鄭嫗 ∙ 岫倦頂通追 , 欠, 建岻匪 ⊕ 鉱′′ 
        岫倦墜鎮鳥 , 倦頂通追岻 ← 岫倦頂通追 , 倦頂通追 ⊕鉱′岻  
        update {月張,珍(荊沈)|ど 判 件 隼 劇月}  

        accept the tag 

嫌岫検岻 噺 嫌待 ⊕沈:槻岷沈峅退怠 嫌沈岫ど 判 件 判 兼岻 
堅 ← 訣岫倦岌 岻, 盤岶嫌沈岼岫待丁沈丁陳岻, 堅怠, 堅態匪 ← 訣岫倦岌 岻 岫劇, 権, 堅 岻 ← 建 伐 堅態, if rank岫劇岻 塙 券, reject 検 ← 盤劇 ∙ 岫潔, 欠, 荊, 堅岻匪 ⊕ 堅怠, 

If Hwt盤権 ⊕ 劇鐸 ∙ 嫌岫検岻匪 判 券 岾怠替髪 挺態峇 

    鉱′ ← 盤劇賃岌 ∙ 岫潔, 荊岻匪 ⊕ 欠 

    If 潔建疾 隼 劇月 and Hwt岫鉱嫗岻 判 考健 
         鉱′′ ← Ber鎮,挺, 潔建疾 ← ど 

         決 ← 岾劇鄭嫗 ∙ 盤倦岌 , 欠, 建匪峇 ⊕ 鉱′′ 
         岫倦墜鎮鳥 , 倦頂通追岻 ← 盤倦岌 , 倦岌 ⊕ 鉱′匪 
         update {月張,珍(荊沈)|ど 判 件 隼 劇月} 

         accept the tag 

欠 ← 盤劇賃 ∙ 岫潔, 荊岻匪 ⊕ 鉱 

鉱 ← Ber鎮,挺, 堅 ← 訣岫倦岻 
If 潔建実 隼 劇月  
     荊 ← 岫劇賃 ∙ 潔建実岻 ⊕ 堅, 潔建実 ← 潔建実 髪 な  
Else     
     荊 ∈眺 岶ど,な岼津, 潔建実 ← 潔建実  

Step 1:  

嫌岫検岻 噺 嫌待 ⊕沈:槻岷沈峅退怠 嫌沈岫ど 判 件 判 兼岻 
Generate random 堅 and 劇, 鉱 ← Ber津,挺, 盤岶嫌沈岼岫待丁沈丁陳岻, 堅怠, 堅態匪 ← 訣岫倦岻,  検 ← 盤劇 ∙ 岫潔, 欠, 荊, 堅岻匪 ⊕ 堅怠,  建 噺 岫劇, 劇鐸 ∙ 嫌岫検岻 ⊕ 鉱, 堅 岻 髪 堅態, 

Step 2:  

Step 2:  
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Overall, the update procedure can be divided into two stages. The first stage is to insert the 
new pseudonyms according to the above insertion procedure in an on-line mode, which 
runs concurrently with other transactions. The second stage is to delete the old pseudonyms 
according to the deletion procedure, which can be done in an off-line mode, in order to 
obtain optimal system performance. 

5. RFID privacy definition and proof 

5.1 Adversary assumptions 

In this chapter, an adversary 畦 is assumed to be a probabilistic polynomial algorithm that is 
allowed to perform oracle queries during attacks. The reader side is assumed to be secure. The 
tag and wireless communication channel are assumed to be insecure, which means that an 
adversary can intercept all the wireless communications between the reader and tags, and can 
corrupt a tag. The reader is assumed to have the ability to handle several authentication 
exchanges simultaneously, but a tag cannot. In order to model the majority of known attacks 
against authentication protocols in RFID systems, five oracles are defined as follows.  
i. 頚怠岫疾岻: It invokes the reader 疾 to start a new session of the authentication protocol. This 

oracle returns the reader’s challenge message 潔.  
ii. 頚態岫実沈 , 潔岻: It invokes a tag 実沈 to start an authentication session exchange related to 

challenge message 潔. The tag 実沈 responds with the response message 欠.  
iii. 頚戴岫実沈 , 潔, 欠岻: It returns the unmodified and modified challenge, 潔, and response, 欠, related 

to a tag 実沈.  
iv. 頚替岫実沈岻: It returns the final authentication result of a tag 実沈.  
v. 頚泰岫実沈岻: It returns the current key and internal state information of a tag 実沈, and also 

updates the key and state information of tag 実沈 if necessary. 
For example, eavesdropping can be modelled as: first query 頚怠 to get 潔, then query 頚態 to get 欠, and finally query 頚替 to get authentication results. The message interception can be 
modelled by 頚戴. Any key compromised due to tag corruption, or side-channel attacks can be 
modelled by sending the 頚泰 query to the tag.  
Definition 6. 岫圏, 建岻-adversary. An adversary whose running time is upper-bounded by 建 and 
has the ability to disturb at most 圏 authentication exchanges in this interval is called a 岫圏, 建岻-
adversary. The adversaries are assumed to only be able to attack the RFID system at a 
specific position and during a limited time period. The term “exposure period” (Vaudenay, 
2007) is used to name this specific attack time. During an exposure period, an adversary is 
able to observe and disturb all interactions involving a target tag 実沈 and a legitimate reader 疾 using oracle 岫頚沈岻怠丁沈丁泰 according to the defined security model. After an exposure period, 
no adversary is allowed to continue his attack. But attacks do not need to be completed 
within only one exposure period, and can continue in several successive or discrete 
exposure periods.  

5.2 LPN problem characteristics 

From the protocol description, it can be found that in every authentication session, the tag 
needs to calculate multiple instances of 講賃,挺 at the same time: the secret is a Toeplitz matrix 

rather than a vector, the noise is a vector rather than a single bit. The usage is the same as in 
the HB# protocol (Gilbert et al., 2008), but HB# reduces its security proof based on the 
hardness of the LPN problem. In this chapter, the security proof is based on the 
computational indistinguishability of the two oracles, 講賃,挺 and 戟津袋怠, in Lemma 1. 
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First of all, a new oracle returning multiple bits of 講賃,挺 at the same time is defined as follows. 

For a fixed 岫健 抜 券岻 matrix 計, let 梗懲,挺 be the oracle returning an independent 岫券 髪 健岻-bit string 

according to: 

 版岫欠, 岫計 ⋅ 欠岻 ⊕ 鉱岻|欠 ∈眺 岶ど,な岼津, 鉱 ← Ber鎮,挺繁. (8) 

Theorem 1 below upper-bounds the probability that an adversary predicts the secret 岫健 抜 券岻 
matrix 計 given some instances of oracle 梗懲,挺, so it implies that the two oracles, 梗懲,挺 and 戟津袋鎮, are computationally indistinguishable. 
Theorem 1. Assume there exists an algorithm 畦 making 圏 oracle queries, running in time 建, 
and such that  

 |Pr岷畦鶴凪,俳岫な津岻 噺 な峅 伐 Pr岷畦腸韮甜如岫な津岻 噺 な峅| 半 香. (9) 

Let 建訂 be the time taken to calculate a 講賃,挺 instance. Then there is an algorithm 稽 making 頚岫圏岻 oracle queries, running in time 建 髪 鎮岫鎮貸怠岻態 建訂, and such that  

 |Pr岷稽訂入,俳岫な津岻 噺 な峅 伐 Pr岷稽腸韮甜迭岫な津岻 噺 な峅| 半 香 健⁄ . (10) 

Proof. A hybrid argument technique is used to prove it. Let 計′ denote a 岫健 伐 倹岻 抜 券 binary 
matrix. Firstly, define the following hybrid distribution, 経珍 , with 倹 ∈ 岷ど, 健峅 as  

 岶岫欠, 堅, 岫計嫗 ⋅ 欠岻 ⊕ 鉱岻岼, (11) 

where 欠 ∈眺 岶ど,な岼津, 堅 ∈眺 岶ど,な岼珍 and 鉱 ← Ber鎮貸珍,挺. Upon receiving an 岫券 髪 な岻-bit input, 稽 

gerneates a random value, 倹 ∈ 岷ど, 健峅 to construct an 岫券 髪 健岻-bit input as 畦’s input. When 倹 隼 健, 
it also needs to generate a random 岫健 伐 倹岻 抜 券 binary matrix 計′. It is clear that when 稽’s input 
complies with 戟津袋怠, 倹 ∈ 岷な, 健峅; when 稽’s input complies with 講賃,挺, then 倹 ∈ 岷ど, 健 伐 な峅. The 

distribution of 経鎮 is the same as 戟津袋鎮, and 経待 the same as 梗懲,挺. And 稽 uses 畦’s outputs as its 

outputs. Thus  

 |Pr岷稽訂入,俳岫な津岻 噺 な峅 伐 Pr岷稽腸韮甜迭岫な津岻 噺 な峅|  

 噺 怠鎮 弁∑ 岫畦帖乳岫な津岻 噺 な岻鎮貸怠珍退待 伐 ∑ 岫畦帖乳岫な津岻 噺 な岻鎮珍退怠 弁   

     噺 怠鎮 |Pr岷畦鶴凪,俳岫な津岻 噺 な峅 伐 Pr岷畦腸韮甜如岫な津岻 噺 な峅| 半 敵鎮 .  (12) 

A contradiction with the Lemma 1 is obtained, which concludes the proof. 
Defintion 7. Indistinguishability of Oracle 梗懲,挺. The oracle 梗懲,挺 is said to be 岫圏, 建, 香岻-secure if 

there is no 岫圏, 建岻-adversary who can distinguish 梗懲,挺 from 戟津袋鎮 with advantage 香. 

Secondly, due to the fact that Bernoulli random noise may exceed the acceptable threshold, 

even the legitimate tag may be rejected, which is called a false rejection. This property can 

also result in an adversary impersonating a tag successfully by simply guessing without any 

prior knowledge, which is called a false acceptance. According to probability theory, the 

false rejection probability	鶏庁眺, and false acceptance probability 鶏庁凋 in every authentication 

session can be defined as follows: 

 	鶏庁眺 噺 ∑ 盤鎮沈匪考沈岫な 伐 考岻鎮貸沈鎮沈退挺鎮袋怠 , (13) 
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 鶏庁凋 噺 ∑ 盤鎮沈匪に貸鎮挺鎮沈退待 .  (14) 

Thirdly, in the protocol, the universal hashing MAC code is used to protect the integrity of 

communication messages. If the adversary uses the GRS-MIM attack and its variants 

(Gilbert et al., 2008), the check for the universal hashing MAC code will fail, then, the reader 

will not continue to check the LPN problem as illustrated in Fig. 3. Therefore, the adversary 

cannot know whether or not his modification is successful according to the authentication 

result and the GRS-MIM attacks cannot succeed. Therefore, the GRS-MIM attack and its 

variants will not be considered in the following analysis. 

5.3 Security  

 

 

Fig. 6. Security Experiment 

An RFID authentication protocol is said to be secure if it resists impersonation attacks by 
any 岫圏, 建岻-adversary without using relay or corruption attacks. Consider the experiment in 
Fig. 6. This experiment proceeds in two phases: a learning phase and a guessing phase. In 
the learning phase, the adversary 畦 is given an RFID system 岫疾, 実岻 as input. During a time 
interval at most 建, 畦 is allowed to launch 岫頚沈岻怠丁沈丁泰 oracle queries in every authentication 
session without exceeding 圏 sessions. At the guessing phase, adversary 畦 only interacts with 
the reader, and uses the information obtained from the learning phase to impersonate the 
tag 実頂, but can no longer access any oracle. Therefore, the security of an authentication 
protocol is defined as the successful impersonation probability in the above experiment. 
Theorem 2. Let the oracle 梗懲,挺 in the F-HB+ protocol be 岫圏, 建, 香鶴岻-secure. Under the attack of a 岫圏, 建岻-adversary, the security adversary’s advantage of F-HB+ protocol is upper-bounded by: 

 香鎚 噺 鶏庁凋 髪 敵膿替鎮 . (15) 

Proof. The adversary may use two methods to impersonate a tag: (i) randomly guessing, 
and (ii) recovering the secret key (Toeplitz matrix). The successful probability of randomly 
guessing a response is 鶏庁凋 as mentioned before. Let us start to analyse how the adversary 
can deduce the secret key. There are two ways to obtain useful information about the tag’s 
current key. 
The first way is to block the tag’s response message, as a result, the tag authentication is 
unsuccessful, and the current key cannot be updated. So the adversary can obtain valid 
instances of oracle 梗懲,挺, which can help to reveal the current key. According to Lemma 1 

and Theorem 1, the probability of inferring the current key successfully is upper-bounded 

by 
敵膿替鎮 .  

The second way is to block the reader’s acknowledge message, as a result, the tag cannot 
update its current key. So the adversary can obtain valid instances of oracle 梗懲,挺, which can 

help to reveal the current key. Once again, the probability of inferring the current key is 

successfully is upper-bounded by 
敵膿替鎮 .  

Experiment Exp凋託奪達探嘆奪岫腔, 軽, 圏, 建岻 
1. Setup a reader 疾 and a set of tags 実, |実| 噺 軽 

2. 岫実頂 , 嫌建待岻 ← 畦岫潮日岻迭敦日敦天岫疾, 実岻 //learning stage, 圏 sessions  

3. 畦岫疾, 嫌建岻 //guessing phase 
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It is impossible that the adversary can block the two messages in the same session, because 
the reader or tag will terminate the session if they do not receive the corresponding 
message. Therefore, combining the situations above, for a 岫圏, 建岻-adversary, the security of F-

HB can be expressed as 香鎚 判 鶏庁凋 髪 敵膿替鎮 	. This completes the proof. 

5.4 Correctness  

An authentication protocol exchange involving a legitimate tag and a legitimate reader is 
said to be undisturbed if all messages sent by both parties are correctly transmitted, received 
and neither modified nor lost in either direction.  
The correctness for RFID authentication protocols implies that the legitimate reader should 
always accept the legitimate tag for all undisturbed authentications between them. But it is 
observed that the undisturbed session may happen before or after an attack. Therefore the 
correctness of an authentication protocol is defined as the acceptable probability of an 
legitimate tag in an undisturbed authentication session, where the tag may have 
experienced an impersonation attack.  
Theorem 3. Let the oracle 梗懲,挺 in F-HB+ protocol be 岫圏, 建, 香鶴岻-secure. Under the attack of a 岫圏, 建岻-adversary, the correctness of the F-HB+ protocol is at least: 

 香頂 噺 岫な 伐 香鎚態岻岫な 伐 	鶏庁眺岻 髪 香鎚態鶏庁凋. (16) 

Proof. According to the flow of the F-HB+ protocol, a reader only rejects a legitimate tag 
when the tag cannot answer the challenge with a correct response. The reasons are 
composed of (i) falsely rejecting a tag as mentioned before, and (ii) an adversary successfully 
impersonating a tag two times in succession such that both the old and current keys are 
updated, thus, this tag cannot be authenticated again. 
In the first situation, the correctness is at most (な 伐 	鶏庁眺) for a legitimate tag due to the 
inherent property of Bernoulli random noise, whenever this tag is under a synchronized 
(look-up table search) or desynchronized (brute-force search) state.      
In the second situation, the probability of occurrence is 香鎚態. Once this situation becomes 
true, this tag cannot be authenticated like a legitimate tag. But it still could be falsely 
accepted. So the correctness is 香鎚態鶏庁凋. 
Combining the two rejection situations, the correctness probability can be represented as 香頂 噺 岫な 伐 香鎚態岻岫な 伐 	鶏庁眺岻 髪 香鎚態鶏庁凋. This concludes the proof. 

5.5 Forward privacy  

The unpredictable forward privacy experiment Exp凋濁題沢 involving a 岫圏, 建岻-adversary 畦 is 
illustrated in Fig. 7. During the learning phase, adversary 畦 chooses a random number 堅 ∈眺 岷ど, 圏峅, and disturbs 堅 protocol sessions between 疾 and tag set 実 with oracle 岫頚沈岻怠丁沈丁泰. 
Then adversary 畦 outputs useful information 嫌建待 and chooses one uncorrupted tag 実頂 as its 
challenge tag. On entering the guessing phase, the experiment chooses a random bit 決 for 
adversary 畦, and 決 is concealed from 畦. Then if 決 噺 な, 畦 disturbs 堅′ sessions involving 実頂 
with oracle 岫頚沈岻怠丁沈丁替. These interactions happen during a single (or several) exposure period 
of each tag such that 堅 髪 堅′ 判 圏. If 決 噺 ど, 畦 interacts with random strings rather than true 
protocol messages in 堅′ protocol session exchanges. Then, 畦 is given the internal state, 嫌建戴, of  実頂 using oracle 頚泰. After this moment, 畦 is no longer able to access any oracle related to 実頂, 
but 畦 can access any other oracle. Then 畦 outputs useful information 嫌建態. Eventually, 畦 is 
asked to guess the random bit 決 by accessing oracle 岫頚沈岻怠丁沈丁泰 to the tag set 実嫗. 
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Experiment Exp凋濁題沢岫腔, 軽, 圏, 建岻 
1. Setup a reader 疾 and a set of tags 実, |実| 噺 軽 

2. 畦 chooses a random 堅 ∈眺 岷ど, 圏峅 
3. 岫実頂 , 嫌建待岻 ← 畦岫潮日岻迭敦日敦天岫疾, 実岻 //learning stage, 堅 sessions  

4. Set 実′ 噺 実 伐 岶実頂岼 
5. 決 ∈眺 岶ど,な岼 //guessing stage 

6. 畦 chooses a random 堅′ such that 堅 髪 堅′ 判 圏 

7. If 決 噺 な, then 嫌建怠 ← 畦岫潮日岻迭敦日敦填岫疾, 実頂岻; otherwise 畦 interacts with random 

strings and outputs 嫌建怠 //堅′ sessions  

8. 嫌建態 ← 畦潮天岫実頂岻 
9. 決′ ← 畦岫疾, 実嫗, 嫌建待, 嫌建怠, 嫌建態岻  
10. If 決′ 噺 決 output 1, otherwise output 0 

Fig. 7. Unpredictable Forward Privacy experiment 

Definition 8. The advantage of 岫圏, 建岻-adversary 畦 in the experiment Exp凋濁題沢 is defined as: 

 Adv凋濁題沢 噺 嵳Pr範Exp凋濁題沢岫腔, 軽, 圏, 建岻 噺 な飯 伐 怠態嵳 (17) 

where the probability is taken over the choice of tag set 実 and the coin tosses of the 
adversary	畦. An authentication protocol is said to be 岫圏, 建, 香岻-forward-private if there exists 
no 岫圏, 建岻-adversary able to break its unpredictable forward privacy with advantage Adv凋濁題沢 半 香. 
This unpredictable forward privacy experiment extends and improves upon the basis of the 

unpredictable privacy notion proposed by Ha et al.  (2008). Firstly, the previous model is 

designed for the general privacy notion in 3-pass and reader initiated protocols, but our 

experiment has no such limitation, can include any number of passes and protocols initiated 

by tags. Secondly, the security model presented here uses a variable to simulate the possible 

transition point between the learning phase and guessing phase. The previous model does 

not have this property. 
Theorem 4. Let the oracle 梗懲,挺 in the F-HB+ protocol be 岫圏, 建, 香鶴岻-secure, let 訣 be a 岫建, 香直岻-
secure PRNG, and let 岶月通: 岶ど,な岼鎮 → 岶ど,な岼陳岼通⊂腸 be a strongly universal hash function family. 

Under the attack of a 岫圏, 建岻-adversary, the adversary advantage for the unpredictable 

forward privacy of the F-HB+ protocol can be upper-bounded by 

 香通椎 噺 班香鶴 髪 香通椎_椎,						successful	mutual	authentications	怠態髪 岾香鶴 伐 怠態峇 	鶏庁眺 髪 圏香鎚 髪 香通椎_椎,					otherwise  (18) 

where 香通椎_椎 判 岫ぬ圏 髪 に岻岫に圏 髪 な岻香直 髪 に劇月岫兼 髪 ぬ岻盤香直 髪 に貸鎮 髪 に貸陳 髪 圏に貸態陳袋態匪. 
Proof. The protocol is composed of an LPN problem and a PRNG, so the forward privacy 
should be preserved for the LPN problem and PRNG at the same time.  
Let us first analyse the forward privacy of the LPN problem. The forward privacy proof of 

the LPN problem is discussed under two situations. The first situation is that the latest 

mutual authentication session of the F-HB+ protocol before the corruption query in the 

unpredictable forward privacy experiment is successful. The other one is that the latest 

session is unsuccessful.  
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Under the first situation, the tag and the reader can successfully authenticate each other and 
maintain synchronization. The exchanged messages are random strings and a series of 梗懲,挺 

instances, thus, this protocol meets the demands of the unpredictable forward privacy 
experiment: the exchanged messages cannot be distinguished from random strings. The 
forward privacy adversary’s advantage is upper-bounded by 香鶴 according to Theorem 1.  
Under the second situation, the analysis is as follows.  
a. If the last tag authentication in the forward privacy experiment is successful, but the 

adversary uses a desynchronization attack on the reader’s acknowledge message, then 
the reader authentication is unsuccessful. The adversary can obtain the secret and valid 
LPN instances about this secret, thus he can use this information to check the protocol 
messages in the previous authentication session. Therefore, the adversary can 
accurately determine if the previous exchanged messages are random strings.  

b. If the last tag authentication in the experiment is unsuccessful, the adversary can obtain 
the secret and invalid LPN instances about this secret. But these failed instances cannot 
help him to check the authentication results in previous sessions, because in the LPN 
problem only the valid instances can help. Therefore, the probability of a correct guess 
is at most 岫な/に 髪 香鶴岻 according to Theorem 1. 

c. If the adversary can use tag impersonation attacks in the experiment, then the 
adversary can guess right with probability of 1. The total impersonation probability is at 
most 圏香鎚. 

Therefore, the above situations are combined to illustrate that the forward privacy 
advantage of the LPN problem is at most 

香通椎_鎮 判 岫な 伐 	鶏庁眺岻 髪 磐なに 髪 香鶴卑 	鶏庁眺 髪 圏香鎚 伐 なに 

 判 怠態髪 岾香鶴 伐 怠態峇 	鶏庁眺 髪 圏香鎚.  (19) 

Then, let us discuss the proof of the PRNG. When the authentication is successful, the secret 

keys of the PRNG cannot be recovered since the key is updated by adding the noise vector. 

So it is useless to consider the PRNG in this situation. When the authentication is 

unsuccessful, the secret key of the PRNG is not updated. The possible search length of the 

PRNG for each session is limited by 劇月, and in each session the PRNG needs to generate 兼 髪 ぬ strings (1 for the strong universal hashing, and 兼 髪 に for the LPN based MAC).  

In the PFP protocol (Berbain et al., 2009), a secure PRNG is used to update the key chain, and 

a strong universal hash function is used to generate the authentication response. This is 

similar to the look-up index generation in the F-HB+ protocol. The forward privacy of the 

PFP protocol can be expressed as in the following Lemma 2. 

Lemma 2 (Berbain et al., 2009). Let 訣 be a 岫建, 香直岻-secure PRNG, let 岶月通岼通⊂腸 be a strongly 

universal hash function family, and let 圏 隼 min	岫に陳貸怠, 降/に岻 where 降 represents the possible 

search length of the PRNG. The PFP protocol is 岫圏, 建椎, 香椎岻-forward-private with 香椎 噺岫ぬ圏 髪 に岻岫に圏 髪 な岻香直 髪 に降盤香直 髪 に貸鎮 髪 に貸陳 髪 圏に貸態陳袋態匪. 
Therefore, according to Lemma 2, the forward privacy advantage of the PRNG in the 
proposed protocol when authentication fails can be expressed as: 

 香通椎_椎 判 岫ぬ圏 髪 に岻岫に圏 髪 な岻香直 髪 に劇月岫兼 髪 ぬ岻盤香直 髪 に貸鎮 髪 に貸陳 髪 圏に貸態陳袋態匪,  (20) 
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where 圏 隼 min	岫に陳貸怠, 劇月岫兼 髪 ぬ岻/に岻. 
Overall, the forward privacy advantage of the proposed protocol can be expressed as: 

 香通椎 判 香通椎_鎮 髪 香通椎_椎. (21) 

Remark. Weak forward privacy in the unsuccessful sessions is as a result of (i) the false 
rejection probability of the HB related protocols and (ii) desynchronization attacks applied 
to the reader’s acknowledge message in the F-HB+ protocol. However, the false rejection 
probability 	鶏庁眺 can be improved using the parameters proposed by Gilbert et al. (2008), and 
this weak forward privacy is only meaningful to two successive unsuccessful sessions. 
Therefore, this kind of attack is not very practical.  

6. Performance evaluation and comparison 

6.1 Re-Hash collision analysis 

In the proposed protocol, an appropriate look-up hash function for the Re-Hash feature 
must be chosen. The strong universal hash functions can be used due to their excellent 
collision resistant characteristics. The Toeplitz-based strongly universal hash function is 
used to analyze the collision performance of hash-table indices after Re-Hash is 
implemented. According to the random oracle model, the output of a cryptographic hash 
function can be seen as a random number with uniform distribution. Therefore the inputs to 
the Re-Hash function have uniform distribution. The collision performance for an output 検 ∈ 岶ど,な岼暢 can be measured as follows: how many inputs 捲 ∈ 岶ど,な岼暢 (as described before, 
the number of truly usable pseudonyms in each authentication session is equal to the output 
range) are mapped to the output 検 by the Re-Hash hash function. Let 鯨 be the random 
variable representing the input number for the same output, then the expected number of 鯨 
is analyzed as follows:  

 E岷鯨峅 噺 ∑ Pr岷月通岫捲岻 噺 検峅掴 噺 な. (22) 

The above analysis indicates that the average length in every slot of the hash-table is only 1. 
Therefore, this hash-table can be used to achieve constant-time performance. After every 
successful mutual authentication, there are at least Th hash-table slots updated, but the total 

number of true usable pseudonyms still is kept unchanged, に暢. So the above analysis is still 
valid.  

6.2 Storage case study 

The first case that will be examined is a static system with a fixed tag number. The 
parameters used by Alomair et al.  (2010) are adopted to illustrate the practical storage of the 
proposed protocol. It is assumed that the total number of tags 軽 is など苔 and the value of Th is など戴. The storage cost of the hash-table is composed of address pointers to the 2nd level 
database. The storage of pointers is analyzed as follows. The number of elements in the 2nd 
level is など苔 (噺 軽), so the bit-length of a pointer in the 1st level is no more than 30 bits 
(半 暁log態軽業). Therefore, the total storage cost of the hash-table is no more than 4 TB (半 軽 抜劇月 抜 暁log態軽業). 
The second case considered is a dynamic system where the tag number can change. Assume 
the maximum system tag number 軽暢凋諜 is など怠態, and the value of 劇月 is など戴. Then the 
collision-free bit-length of pseudonyms	詣 is 100 bits, and the output range of the Re-Hash 
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hash function 詣′ is 50 bits. If the initial system tag number 軽 is など苔, the initial hash-table slot 
number 警 is など怠態. The storage cost can be obtained as follows: (i) the initial table size is 
upper-bounded to 7 TB (警 抜 暁log態軽暢凋諜業); (ii) when a new tag is added, など戴 slots are added 
into the dynamic hash-table, and the additional storage is about 7 KB (劇月 抜 暁log態軽暢凋諜業); (iii) 
when the system number 軽 increases to 軽暢凋諜, the largest table size is no more than 7,000 
TB.  

6.3 Implementation on the tag 

Firstly, the PRNG 訣岫∙岻 can be implemented using any candidate in the eSTREAM project 

(Cid & Robshaw, 2009). If 訣岫∙岻 is implemented using the Grain-v1, only 1,294 gates are 

required to achieve an 80-bit security level. Secondly, from equations (1) and (6), it can be 

seen that if the LPN problem is implemented using Toeplitz universal hashing, a linear 

feedback shift register (LFSR) is required for 劇通, a 1-bit multiplier plus a 1-bit accumulator is 

needed for the “∙” operator, and an XOR operator is also required. Because the 訣岫∙岻 (Grain-

v1) needs an LFSR structure, the LPN problem and 訣岫∙岻 can share the LFSR, so 劇通 can be 

derived from the state variable of 訣岫∙岻. The two inputs, 捲 and 検 of the LPN problem can be 

derived from the output of 訣岫∙岻. Therefore, the main hardware cost of 訣岫∙岻 and the LPN 

problem equals the hardware cost of 訣岫∙岻 plus a 1-bit “∙” operator and an XOR. Thus, the 

final estimate for the hardware cost of these functions is no more than 2,000 gates to achieve 

an 80-bit security level.  

Secondly, the overall hardware cost of the proposed protocol on a tag is 2,000 gates, in 
addition to the cost of a counter and non-volatile memory for storing the secret key and 
current value.  

6.4 Performance comparison 

In this section the proposed F-HB+ protocol is compared with previous protocols reported in 
the literature in terms of their forward privacy properties, the tag resource requirements and 
the database storage cost. The forward privacy properties are compared in Table 1. 
Although the proposed protocol cannot protect the forward privacy of failed authentication 
sessions, it can be observed that it not only supports forward privacy under the 
unpredictable privacy notion, but also provides a security proof under the standard model. 
 

 Le et al., 2007 Song, 2009 
Alomair et al., 

2010 
This work 

Forward 
Privacy 

For successful 
sessions 

For successful 
sessions 

For successful 
sessions 

For successful 
sessions 

Forward 
Privacy Notion 

Universal 
composable 

notion 

Indistinguishabl
e notion 

Indistinguishable 
notion 

Unpredictable 
notion 

Forward 
Privacy Proof 

Universal 
composable 

model 

Random oracle 
model 

Random oracle 
model 

Standard 
model 

Table 1. Forward Privacy Comparison Results 

The tag hardware cost and desynchronization resistance are compared in Table 2. Although 
the protocol proposed by Le et al. (2007) does not use a counter, it does not provide any 
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desynchronization resistance because the tag only has one index for a secret key.  This work 
requires only 2,000 gates by using a combination of the LPN problem and a PRNG. And 
among the three counter-related protocols, the proposed protocol consumes a reasonable 
non-volatile storage and requires simpler operations in the LPN problem.  
 

 Le et al., 2007 Song, 2009 Alomair et al., 2010 This work 

Crypto hardware 
1 PRF 

≈ 3,000 gates 
2 月寵  

> 5,000 gates 
1 月寵  

> 5,000 gates 
1 訣 + 1 LPN 
≈ 2,000 gates 

Non-volatile 
storage 

1 key + 1 index 1 key + 1 潔建実 2 key + 1 潔建実 1 key + 1 潔建実 

Other hardware None 1 潔建実 1 潔建実 1 潔建実 

Desynchronization 
attack resistance 

None 劇月 劇月 劇月 

Table 2. Tag Resource Comparison Results 

 

 Le et al., 2007 Song, 2009 
Alomair et al., 

2010 
This work 

Time complexity in 
synchronization / 

desynchronization 
頚岫な岻 / 頚岫軽岻 頚岫な岻 / 頚岫軽岻 頚岫な岻 / None 頚岫な岻 / 頚岫軽岻 

Hash-table storage 
with the example in 
(Alomair et al., 2010) 

None None 26 TB 4 TB 

Dynamic scalability – – – + 

Table 3. Database Performance Comparison Results  

The database cost is compared in Table 3. According to the case study for a static system 
described in section 6.2, the proposed protocol requires storage for the hash-table of no more 
than 4 TB, but the protocol proposed by Alomair et al. (2010) needs about 26 TB. The trade-
off in achieving a smaller storage cost is that the proposed protocol needs to compute a look-
up table hash function in on-line mode to retrieve the data in the hash-table. The data stored 
in the hash-table is pre-computed in off-line mode or dynamically inserted in on-line mode. 
But for the same tag, the look-up procedure and insertion procedure are unlikely to happen 
at the same time. Because the universal hash function is the fastest hash function in software 
(Black et al., 1999) and linear hashing is the fastest dynamic hash-table technique, this new 
look-up hash function will not affect the system performance. Additionally, this proposal is 
the only to support dynamic scalability. 

7. Conclusion 

In this chapter, the previous authentication protocols for low-cost RFID applications are 
introduced. In relation to the characteristics of low-cost tags, three important properties are 
highlighted: (i) hardware cost must be within 200 ~ 3,000 gates, (ii) forward privacy of a tag 
must be assured, and (iii) scalability of the entire system cannot be compromised.  
Therefore, a novel scalable and forward private authentication protocol, F-HB+, is proposed 
for low-cost RFID tags. The hardware-friendly LPN problem and PRNG are used to reduce 
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the protocol cost on the tag, which only requires about 2,000 gates plus a hardware counter 
and some non-volatile memory. A more efficient MAC code is utilized in comparison to the 
previous F-HB protocol. In the MAC code implementation implementation, a simplified 
pairwise independent permutation is used to accelerate the MAC code computation, and a 
PRNG is used to reduce the storage requirement. A new Re-Hash technique is proposed for 
hash-table based scalable protocols to effectively reduce the storage requirement. In 
addition, the Re-Hash technique is adapted to a linear-hashing technique, thus, the 
proposed protocol possesses dynamic scalability. The security proof of the proposed 
protocol is given under the standard model. It is proven that F-HB+ achieves unpredictable 
forward privacy for all its transactions before successful mutual authentication sessions.  
Finally, a comparison between the proposed protocol and previous protocols is provided. 
From a hardware perspective, the proposed protocol is among the smallest and it requires 
the smallest storage cost for its hash-table in addition to supporting dynamic scalability. It 
also provides unpredictable forward privacy. Overall, the proposed F-HB+ protocol achieves 
a new and practical balance between hardware cost, scalability and forward privacy.  
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