We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

6,900 186,000 200M

ailable International authors and editors Downloads

among the

154 TOP 1% 12.2%

Countries deliv most cited s Contributors from top 500 universities

Sa
S

BOOK
CITATION
INDEX

Selection of our books indexed in the Book Citation Index
in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.
For more information visit www.intechopen.com

Y



4

Towards a Biologically Plausible
Stereo Approach

José R.A. Torredao and Silvia M.C. Victer
Universidade Federal Fluminense
Brazil

1. Introduction

A computational model for stereoscopic disparity estimation has been recently introduced
which reformulates, in neurophysiologically plausible terms, the traditional image matching
approach (Torredo, 2007). The left and right stereo images are assumed viewed through the
receptive fields of cortical simple cells, modeled as Gabor functions (Marcelja, 1980). The
Green’s functions of a matching equation (whose uniform solutions are also Gabor functions)
are used to filter the receptive-field modulated inputs, introducing different relative shifts
between them. A measure of the local degree of matching of such shifted inputs can then
be used for the estimation of stereoscopic disparities, in a way which is reminiscent of the
energy model for the responses of cortical complex cells (Adelson & Bergen, 1985; Ohzawa et
al., 1997).

Although based on well-established neurophysiological concepts, the Green’s function
approach is still far from being biologically plausible. For instance, it assumes as cortical
inputs the original irradiance images, disregarding the transformations performed by the
earlier stages of the visual pathway — namely, the retina and the lateral geniculate nucleus. As
a further step towards a fully biological stereo, we here introduce an improved version of the
algorithm in (Torredo, 2007), incorporating a new concept of signal coding by input-dependent
receptive fields (Torredo et al., 2009).

The classical receptive field description, which assumes a fixed, stimulus-independent
spatial organization, has recently been challenged by neurophysiological indications that the
receptive-field structure does change with neuronal input (Allman et al., 1985; Bair, 2005;
David et al., 2004). In (Torredo et al., 2009), a signal coding scheme has been introduced,
where the parameters of the coding functions are obtained from the Fourier transform of the
coded signal, and, in (Torredo & Victer, 2010), such scheme has been taken up as a model for
stimulus-dependent center-surround (CS) receptive fields, such as those found in the retina
and in the lateral geniculate nucleus. Assuming that the role of the CS structures is that of
decorrelating natural images, as suggested in (Attick & Redlich, 1992) and (Dan et al., 1996),
center-surround receptive fields which code whitened versions of the input signals have been
obtained. We show that, by incorporating a similar center-surround coding module into the
Green’s function stereo algorithm, we are able to obtain better quality disparity estimates,
through an approach which is closer to the neurophysiological situation.
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58 Advances in Stereo Vision

This chapter is organized as follows. In Section 2, we review the Green’s function disparity
estimation approach. Next, we present the stimulus-dependent model for cortical and
center-surround receptive fields (Section 3), and in Section 4 we couple the latter with the
Green’s function stereo. The chapter ends with our concluding remarks.

2. Green’s function stereoscopy

The estimation of binocular disparities is a key issue for stereo processing, both in natural
and in artificial vision. Binocular disparities arise from positional differences of scene features
projected in the two retinae, or in the two cameras of a binocular system. The computational
approach for disparity estimation which seems more firmly grounded on neurophysiological
findings is the one based on the energy model for cortical cells (Ohzawa et al.,, 1997).
According to this model, a quadrature pair of simple cells responsive to the stimulation of
either eye (binocular cells) filter the stereo images through their receptive fields, modeled by
Gabor functions (Marcelja, 1980). The squared magnitude of the output of the quadrature pair
is then assumed to constitute the stereo response of the complex cortical cell feeding on the
pair. By considering a population of such model complex cells, it has been possible to obtain
disparity estimates both from synthetic and from real-world stereograms (Chen & Qian, 2004;
Qian, 1994).

In (Torredo, 2007), an alternative approach for disparity estimation, preserving most of the
neurophysiologically plausible features of the energy model, has been introduced, starting
from an image matching equation. In stereoscopy, assuming that the epipolar geometry is
known, the matching equation takes a one-dimensional form, such as

Li(x+UWy) = I (xy) 1)

where U = U(x,y) denotes the disparity field, and where [; and I, stand for the left and
the right input images. Typically, an equation such as (1) is employed for the estimation
of U(x,y), given the stereo pair, but in (Torredo, 2007) it was taken as a constraint over the
matching images, such that, given I, its perfect match is to be found, for simple forms of the
disparity field.

2.1 Uniform disparity field
For instance, assuming uniform disparity, U(x) = u, where u is a constant, we can take a
second-order Taylor series expansion of Eq. (1), to obtain

12

)+ ul] () + 1(x) = () @
where the primes denote differentiation with respect to x (for simplicity, we henceforth omit
the dependences on y). Eq. (2) can then be solved via the Green’s function approach (Torredo
et al., 2007), to yield

L(x)~L(x—u)= /_ Gu(x,x0) I (x0)dxg 3)
where
2 o; X—X - rjlxo .
Gu(x/XO) = Gu(x — X()) = u SN (To)e ( )’ if x> X0 (4)
0/ if x < X0
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Towards a Biologically Plausible Stereo Approach 59

is the Green’s function of Eq. (2), which amounts to the solution to that equation when its
right-hand side is the impulse function, é(x — xg) (we are here assuming an unbounded image
domain: x € [—o0, c0]).

From Eq. (3) we then find that, to second order in u, convolving the right image, I,(x), with
the Green’s function G, (x) effects a shift of that image, to the right, by the fixed amount
u. Similarly, the convolution with G, (—x) (keeping u as a positive parameter) would effect
a similar shift to the left. More generally, we can consider a complex Green’s kernel, by
introducing the quadrature pair to G, (x — x¢), given as

2 cos (m)e_«i“m), if x> xq

Hy(x —xg) = 5)

0, if x <xg

which yields a homogeneous solution to Eq. (2) — that is to say, a solution to that equation
when its right-hand side is identically zero.

Thus, being
Ky (x —x0) = Gu(x — x0) + iHy(x — xq) (6)
the complex Green’s kernel, we would obtain, for the rightwards shifted version of I,(x),
L—u) = [ K= xo)l (xo)dxo )

up to second order in u.

2.2 Linear disparity field

The disparity estimation approach of (Torredo, 2007) is based on a similar Green’s kernel as
that of Eq. (6), but for a differential equation which approximates a linear matching constraint,
that is to say, one for which the disparity field takes the form U(x) = u + vx, for u and v
constants. More specifically, a rightwards shift is there performed by the complex kernel

' _ |:(x+a)2—(2x0+a)2:|
K(x,xq) = 2kelik(x—x0)] o , if x > xp (8)

0, if x < xp

where o and a are positive constants, and k = a/c?. The kernel K(x, xg) is the complex Green’s
function to the equation

2
1 /o2 2 o2 x% + 2ax + o2
3 (7)o (T )i (1 T i =k o)
(x+a)2

whose homogeneous solution is the Gabor function e/**e™ 22~
When |x| and ¢ are both much smaller than a, Eq. (9) can be approximated as

2 ()

2 2 2

I (x) + (% + Z—2x> I[(x) + Ij(x) = I(x) (10)
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which, up to first order in 02 /a, corresponds to an image matching equation for the linear
displacement field

U(x) = —t (11)
Similarly as in the uniform case, a leftwards image shift would be effected, in this linear
disparity model, by the kernel K(~) (x, x) = K(—x, —xp).

2.3 Green'’s function disparity estimation

Disparity estimation, in the Green’s function approach, proceeds thus: the input images, I
and I, are each multiplied by a Gabor function, yielding complex signals. These are then
filtered, respectively, by the K(x,xg) and the K(~)(x,xo) kernels, which effect spatial shifts
and phase changes in the Gabor-modulated inputs (see below). The optimal spatial shift
at each image location can thus be obtained by evaluating the match of the filtered images
when different values of the kernel parameters are employed. This yields an estimate of the
disparity map encoded by the stereo pair.

The relation of the Green’s function approach to the neurophysiological models of stereoscopy
stems from the following property of the Green’s kernels: when filtering a Gabor-function
modulated signal, they yield similarly modulated outputs, but for spatially shifted versions
of the signal. For instance, let us consider the result of filtering the complex signal

2

Li(x) = ei"xefz'r?b(x) (12)

by the kernel K(x, xg). This can be shown to yield (Torredo, 2007)

2

L(x) = el (3 t9) o~ 22 I(x —u) (13)

where I,(x — u) is given by Eq. (7), for u = ¢?/a, and where ¢ = xu. Thus, filtering
signal I;(x) by the kernel K(x,xg) essentially preserves its Gabor modulating factor (with
the introduction of a phase), but spatially shifts the modulated image.

Assuming that, locally — i.e., under the Gaussian window of the Gabor modulating function
—, the disparity between the right and left input images is well approximated by u, such that
I;(x) = I;(x — u), we would be able to rewrite Eq. (13) as

) 2
I(x) = e T2 Iy (x) (14)

Together with Eq. (12), this would then mean that I1(x) and I(x) correspond, respectively,
to a right and a left stereo images, as seen through the receptive fields of a quadrature pair of
simple cortical cells, according to the so-called phase-shift model of stereo responses (Fleet et
al., 1991).

Thus, operating on the equivalent to the right-eye cortical input (viz., the right-eye retinal image
as seen through the simple cell right-eye receptive field), the Green’s kernel K(x, x) produces
the equivalent to the left-eye cortical input (viz., the left-eye retinal image as seen through the
simple cell left-eye receptive field).
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If we change right for left and left for right in the foregoing development, it also becomes
valid for the Green’s kernel K(=) (x, xg). Namely, being

2

Il(_) (x) = e 27 (x) (15)
the Gabor-modulated signal to be filtered by K(~) (x, x), we obtain

. 2
Ié_) (x) = e (K =Y) ™52 I(x+u) (16)

where, once again, u = 0?/a. And Eq. (16) can also be rewritten, similarly to Eq. (14), as

2

12(—)<x) _ ei(Kx*¢)g_;?Ir(x) (17)

Thus, operating on the equivalent to the left-eye cortical input (viz., the left-eye retinal image as
seen through the simple cell left-eye receptive field), the Green’s kernel K(~)(x, xo) produces
the equivalent to the right-eye cortical input (viz., the right-eye retinal image as seen through
the simple cell right-eye receptive field).

Therefore, if we now compute the local match between the signals I>(x) and Ié_) (x) — for
instance, through the measure

R(x) = |L(x) — I, ) (x)? (18)

— we will be effectively assessing the match between a left- and a right- cortical images, under
the assumption that the local disparity is 2u (recall Egs. (13) and (16)). Different u values can
be obtained by changing the parameter a of the Green’s kernels, while keeping ¢ and « fixed,
as proposed in (Torredo, 2007). This allows the estimation of the local disparity, for instance,
as

d(x) = —— 19
where 7 is that a value for which the measure R(x) is minimized.

Incidentally, the measure R(x) affords the comparison of the Green’s function approach with
the energy model for disparity estimation (Qian, 1994; Qian & Miakelian, 2000). Using Egs.
(13) and (16), we can rewrite it as

2

R(x) = e |I(x — u) — ™I (x + u) |2 (20)

where Ay = —2xu. When considered for x = 0, Eq. (20), apart from the minus sign in front
of the phase factor (which can be easily accomodated by assuming a phase difference of 7
between the Gabor modulating functions in Egs. (12) and (15)), is similar to what is predicted
for the complex cell response, by the phase-and-position-shift energy model. In the present case,
the position shift is given by the disparity measure, d = 2u, and the phase shift, by A.

3. Stimulus-dependent receptive fields

The receptive field (RF) of a visual neuron defines the portion of the visible world where
light stimuli evoke the neuron’s response, and describes the nature of such response,
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62 Advances in Stereo Vision

distinguishing, for instance, excitatory and inhibitory subfields (Hubel & Wiesel, 1962). In the
standard description, the spatial organization of the RF remains invariant, and the neuronal
response is obtained by filtering the input through a fixed receptive field function. Lately, this
classical view has been challenged by neurophysiological experiments which indicate that the
receptive field organization changes with the stimuli (Allman et al., 1985; Bair, 2005; David
et al., 2004). Motivated by such findings, we have proposed a model for stimulus-dependent
receptive field functions — initially for cortical simple cells (Torredo et al., 2009), and later
for center-surround (CS) structures, such as found in the retina and in the lateral geniculate
nucleus (Torredo & Victer, 2010). In what follows, we present a brief description of the model
as originally proposed for simple cells — which is mathematically easier to handle —, later
extending it to the CS structures.

3.1 Cortical receptive fields
Let us first consider a one-dimensional model. Being I(x) any square-integrable signal, it can
be expressed as

o . a2 .
I(x) :/ ez[wx+(p(W)]e 202(w) % 'Y o (21)

where the aterisk denotes a spatial convolution, and where o(w) and ¢(w) are related,
respectively, to the magnitude and the phase of the signal’s Fourier transform, I(w), as

[(w) = 2n)% 20 (w)e'?@) = / eI OX T (x)dx (22)
Eq. (21) can be verified by rewriting the integral on its right-hand side in terms of the variable
w’, and taking the Fourier transform (FT) of both sides. Using the linearity of the FT, and the
property of the transform of a convolution, we obtain

o2 2

I(w) = (27)3/? /oo o(w')e?@W)e= 7 (W=e')

—00

S(w —dd' (23)
and, by making use of the sampling property of the delta,
[(w) = 27)3 20 (w)el? ) (24)

which is exactly the definition in Eq. (22).
Also, if we make the convolution operation explicit in Eq. (21), it can be formally rewritten as

2

I(x) = /oo - pllwx+o(w)] ™ 202(w) ’eiwx > 9%, (25)
where the angle brackets denote an inner product,

< f@)80) >= [ f)g(dx 26)

with ¢*(x) standing for the complex conjugate of ¢(x). Comparing Eq. (25) to a signal
expansion on the Fourier basis set,

I(x) = / < I(x),e“* > e “%dw (27)

—00
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we conclude that, in so far as the frequency w is concerned, the Gabor function

2
eiloxto(@)], " 220 (28)

is equivalent to the signal I(x). Thus, we have found a set of signal-dependent functions,
localized in space and in frequency, which yield an exact representation of the signal, under
the form

oo oo . _g?
I(x) = /_oo /_oo elwrto(w)] )™ 202 (w) dédw (29)

which amounts to a Gabor expansion with unit coefficients (the above result can be easily
verified, again by making the spatial convolution explicit in Eq. (21)).

In (Torredo et al., 2009), the above development has been extended to two dimensions, and
proposed as a model for image representation by cortical simple cells, whose receptive fields
are well described by Gabor functions (Marcelja, 1980). In the 2D case, Eq. (21) becomes

I(x’y) = /700 /700 ¢C(X,y;wx,wy) *ei(wxerwyy)dwxdwy (30)
where
) _ (24
Ve (x, 5wy, wy) = WXt wyy+ (W wy)] o 202 (wxwy) @31)

is the model receptive field, with ¢(wy, wy) being the phase of the image’s Fourier transform,
and with o, (wy, wy) being related to its magnitude, as

1

2n)p2 [I(wsx, wy)| (32)

U-C (wx, wy) —

The validity of Eq. (30) can be ascertained similarly as in the one-dimensional case. Moreover,
as shown in (Torredo et al., 2009), the same expansion also holds with good approximation
over finite windows, with different 0. and ¢ values computed locally at each window. Under
such approximation, it makes sense to take the coding functions 9. (x, y; wx, wy) as models for
signal-dependent, Gabor-like receptive fields.

3.2 Center-surround receptive fields

A similar approach can be followed for neurons with center-surround organization, as
presented in (Torredo & Victer, 2010). The role of the center-surround receptive fields —
as found in the retina and in the lateral geniculate nucleus (LGN) — has been described as
that of relaying decorrelated versions of the input images to the higher areas of the visual
pathway (Attick & Redlich, 1992; Dan et al., 1996). The retina- and LGN-cells would thus
have developed receptive field structures ideally suited to whiten natural images, whose
spectra are known to decay, approximately, as the inverse of the frequency magnitude — i.e.,
~ (w2 + wﬁ) ~1/2 (Ruderman & Bialek, 1994). In accordance with such interpretation, we have
introduced circularly symmetrical coding functions which yield a similar representation as Eq.
(30) for a whitened image, and which have been shown to account for the neurophysyiological
properties of center-surround cells.
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Specifically, we have

whzte X, ]/ / / r wx/wy * e i(wy x—i—wyy)dwxdwy (33)

where I, (x,y) is a whitened image, and where §(r; wy,wy) is the CS receptive field

function, with r = /x? + y2. Following the usual approach (Attick & Redlich, 1992; Dan
et al., 1996), we have modeled the whitened image as the result of convolving the input image
with a zero-phase whitening filter,

Lpnite (X, y) = W(x,y) * I(x,y) (34)

where W(x,y) is such as to equalize the spectrum of natural images, at the same time
suppressing high-frequency noise. The whitening filter spectrum has thus been chosen under
the form

W(ws,wy) = 7 —l—prz (35)

where « is a free parameter, and p = /w2 + wﬁ.
On the other hand, the signal-dependent receptive field has been taken under the form

ip(wy,wy)
P(r; wy, wy) = —E(PT {1 — cos[o(wx, wy)mr] — sinfo(wy, wy)mr] } (36)

where ¢ is the phase of the Fourier transform of the input signal, as already defined, while
0(wy, wy) is related to the magnitude of that transform, as

~ ~ -2
oW (wy, wy) [[(wy, wy) |

1
N 47

(37)

Eq. (37) can be verified by introducing the above 9(r; wx,wy) into Eq. (33), and taking the
Fourier transform of both sides of that equation.

We remark that the most commonly used model of center-surround receptive fields, the
difference of Gaussians (Enroth-Cugell et al., 1983), has not been considered in the above
treatment, since it would have required two parameters for the definition of the coding
functions, while our approach provides a single equation for this purpose.

Fig. 1 shows plots of the coding functions obtained from a 3 x 3 fragment of a natural image,
for different frequencies. The figure displays the magnitude of ¢ (r; wx, wy) divided by ¢, such
that all functions reach the same maximum of 1, at r = 0. Each coding function displays a
single dominant surround, whose size depends on the spectral content of the coded image at
that particular frequency (when the phase factor in Eq. (36) is considered, we obtain both
center-on and center-off organizations). For p = 0, ¢ vanishes, and the coding function
becomes identically zero, meaning that the proposed model does not code uniform inputs.
At low frequencies, the surround is well defined (Fig. 1a), becoming less so as the frequency
increases (Fig. 1b), and all but disappearing at the higher frequencies (Fig. 1c). All such
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(©)

Fig. 1. Plots of the magnitude of the coding functions of Eq. (36), obtained from a 3 x 3
fragment of a natural image. The represented frequencies, (wy, wy), in (a), (b) and (c), are
(0,1), (2,0), and (3,1), respectively.

properties are consistent with the behavior of retinal ganglion cells, or of cells of the lateral
geniculate nucleus.

Fig. 2 shows examples of image coding by the signal-dependent CS receptive fields. The
whitened representation is obtained, for each input, by computing Eq. (33) over finite
windows. As shown by the log-log spectra in the figure (the vertical axis plots the rotational
average of the log magnitude of the signal’s FT, and the horizontal axis is log p), the approach
tends to equalize the middle portion of the original spectra, yielding representations similar
to edge maps which code both edge strength and edge polarity. We have observed that the
effect of the x parameter in Eq. (35) is not pronounced, but, consistent with its role as a noise
measure, larger « values usually tend to enhance the low frequencies.

In the following section, we will use the whitened representation of stereo image pairs as input
to the Green’s function algorithm of Section 2, showing that this allows improved disparity
estimation through an approach which is closer to the neurophysiological situation.

4. Green’s function stereo with whitened inputs

We have incorporated a whitening routine into the stereo matching algorithm of Section 2,
such that the Green'’s function procedure is now performed over signals which emulate the
neurocortical input from the lower visual areas. Thus, what we have identified as retinal
images, in Section 2.3, become the whitened representations of the stereo pair, obtained,
through Eq. (33), by means of center-surround, signal-dependent receptive field functions.
Disparity estimation proceeds as described, with the proviso that, similarly as in (Torredo,
2007), instead of choosing precisely that disparity which minimizes the matching measure
R(x) (Eq- (18)), we take, as our estimate, the sum of all disparities considered, each
weighted by the inverse of the corresponding R(x) value. This yields a dense disparity map,
avoiding the need of interpolation. The preprocessing alignment of the stereo pair, through
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[

oa e

(b)

Fig. 2. a) Left: input image and its log-log spectrum. Right: whitened image and its log-log
spectrum. Similarly for b). We have used 3 x 3 windows, with x = 0.05.

uniform-disparity matching, has also been followed (Torredo, 2007), as a means for handling
large overall disparities.

Figs. 3 to 6 depict some results of the whitened Green’s function stereo, along with those
yielded by the original approach. It is apparent that the former generally affords better spatial
resolution, as well as sharper disparity definition. Being based on whitened inputs, the new
algorithm proves less sensitive to image features not depth related, as can be seen in the
background region of the meter stereo pair (Fig. 6), more uniformly captured by the whitened
approach than by the original one, which is biased by the complex edge structure in the region.

5. Conclusion

In this chapter, we have reviewed the Green’s function stereoscopy (Torredo, 2007) — a
neurophyisiologically-inspired stereo matching approach —, along with a recently introduced
model for signal-dependent receptive fields (Torredo et al., 2009; Torredo & Victer, 2010).
By coupling the Green’s function algorithm with a whitening representation of the stereo
inputs, based on center-surround, signal-dependent receptive field functions, we have
been able to obtain better disparity estimates, through an approach which is closer to the
neurophysiological situation. We are presently working on the incorporation, into our stereo
algorithm, of the Gabor-like, signal-dependent receptive model of Section 3.1. This will allow
a more realistic parallel with the cortical mechanisms of biological stereo vision.
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Fig. 3. Top: Pentagon stereo pair. Bottom: Disparity maps obtained through the whitened
Green’s function approach (left) and through the original approach of (Torreao, 2007) (right).

Fig. 4. Top: Tree stereo pair. Bottom: Disparity maps obtained through the whitened Green’s
function approach (left) and through the original approach of (Torredo, 2007) (right).
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68 Advances in Stereo Vision

Fig. 5. Top: Shrub stereo pair. Bottom: Disparity maps obtained through the whitened
Green’s function approach (left) and through the original approach of (Torredo, 2007) (right).

l

Fig. 6. Top: Meter stereo pair. Bottom: Disparity maps obtained through the whitened
Green’s function approach (left) and through the original approach of (Torreao, 2007) (right).
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