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1. Introduction

A robot is expected to provide a service to us in our daily-life environment. Thus, it is

easy to find robots that can achieve a task, such as home cleaning performed by the iRobot

Roomba1 or entertainment provided by the Sony Aibo. Unlike the situation in a plant, the

daily-life environment changes sequentially. Before performing a task, it is necessary to

observe the environment. Since the motion and manipulation done by a robot occur in a

3D world, gathering 3D information and not 2D information is inevitable. For example, such

information helps us achieve semi-automatic robot programming (Ikeuchi & Suehiro (1994);

Kuniyoshi et al. (1994)).

There are many kinds of devices to obtain 3D information. They are roughly classified into

two types: active sensors and passive sensors. What distinguishes these two types is the

capacity of the sensor to output energy (e.g., emit light) to the outer world. As an example

of active sensors, a laser sensor measures the distance using the duration since the light is

emitted until it captures the reflected light.

Among the passive sensors, stereo vision is the simplest device to obtain 3D information.

A stereo vision system employs at least two separate imaging devices, as in the case of

human vision. Generally, the active sensors are better in accuracy than the passive sensors2.

Although this may mean that human stereo vision suffers from inaccuracy of the obtained 3D

information, we unconsciously employ prior knowledge to compensate for this.

Les us consider estimation of a 6-DOF object trajectory, which is required in various kinds of

robotic manipulation, such as pick-and-place and assembly. To reduce the inaccuracy in the

estimation, some constraints about the trajectory are necessary. For example, if it is previously

known that the trajectory is a straight line, we reduce the inaccuracy by minimally deforming

the trajectory to align it to the line. We will introduce prior knowledge into an actual robot

application.

In this chapter, we will first present an overview of the stereo vision system and a method for

localization using 3D data (Section 2). We will describe a method for using the contact relation

(Section 3) as prior knowledge; in real world, rigid objects do not penetrate each other. Also,

1 http://www.irobot.com
2 However, the progress of the computer vision technology and a better benchmark data set fill the gap

between them. See http://vision.middlebury.edu/stereo/.
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we will describe a method for using constraints by some mechanical joint (Section 4); the

type of mechanical joint defines the type of trajectory. Besides, we will introduce 3D modeling

using implicit polynomials, which is robust to noise in modeling of primitive shape (Section 5).

Finally we will present a conclusion for this chapter (Section 6).

2. Reviews

2.1 Stereo vision

Generally, an image represents the 3D world by projecting it onto a 2D image plane. In this

sense, 3D shape reconstruction from a single image is an ill-posed problem. To simply solve

this problem, it is possible to use at least two images captured from different viewpoints, i.e.,

stereo vision. If the simple pin-hole camera model is assumed and the location of an object

on both images is known, the triangulation technique outputs the 3D position or depth of

the object. Note that geometric properties of both cameras are calibrated (Tsai (1986); Zhang

(2000)).

Usually, it is required to obtain depths in all pixels of one image. Which means that is

necessary to estimate the correspondence among all pixels. Unfortunately, this task is quite

difficult. Assuming that the photometric properties of the camera are already calibrated3,

the corresponding pixels tend to have the same pixel values. In other words, the difference

between these values is regarded as the degree of correspondence. If the range of depth is

assumed, the candidates of the correspondences are restricted by searching the minimum

differences within the range.

It is difficult to estimate the correspondence only from the single pixel observation. There are

two types of solution methods. The first method consists of estimating the correspondence

from the observation of a small region around the pixel. The other method consists of using

prior knowledge, such as depths on the image that are usually smooth except on occluding

boundaries of objects. Although these two methods are efficient for resolving the ambiguity

in the correspondence, it is necessary to pay attention to the handling of the occluding

boundaries. Further, the first method suffers from poor estimation of the correspondences

in the texture-less region.

In summary, the depth image is estimated by the following steps (Scharstein & Szeliski

(2002)):

1. matching cost computation

2. cost (support) aggregation

3. disparity computation or optimization

4. disparity refinement

The first step corresponds to calculating the difference in pixel values and the second step

corresponds to the first method for solving the ambiguity. The second method is included in

Step 3. Generally, the use of the second method achieves better performance in stereo vision.

Please see the details in Scharstein & Szeliski (2002).

3 Roughly speaking, when two calibrated cameras capture the same Lambertian object under the same
illumination, the pixel values of the two images are the same.
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When estimating the correspondences by the second method, it is necessary to minimize the

following energy function:

E = min
d

∑
i∈I

C1(i, d(i)) + ∑
i,j∈I,i �=j

C2(i, j, d(i), d(j)), (1)

where the term d(i) represents the depth in the pixel i, and the set I represents the image

region. The term C1 is determined by one pixel. On the other hand, the term C2 is determined

by the relationship of two pixels. It is possible to think about the relationship of more than

two pixels (referred to as higher order term).

Graph cuts (Boykov & Kolmogorov (2004)) and belief propagation

(Felzenszwalb & Huttenlocher (2006)) are very interesting methods for minimizing the

function as shown in Eq. (1). Although both methods suffer from difficulties in handling

the higher order terms, recently these difficulties have been circumvented (Ishikawa

(2009); Lan et al. (2006); Potetz (2007)). Although the Graph cuts may achieve a better

performance in the optimization, it is very useful to take advantage of parallel computing

by a Graphic Processing Unit (GPU) in the belief propagation since it easily accelerates the

calculation (Brunton et al. (2006)).

2.2 Localization

Although the methods described in Section 2.1 provide us with the 3D information of the

world, it is further needed to localize the target objects in order to estimate the interaction of

the objects, which is very important especially in robotics applications. We assume that the

3D model of the target object is previously given.

There are two kinds of localization: rough localization and fine localization. The rough

localization includes object detection and estimates rough correspondence between the model

and the observed 3D data. The result of the rough localization is usually used as the input

of the fine localization. The fine localization obtains the location of the object by precisely

aligning the model and the observed 3D data.

The rough localization can be classified into two types: one that uses local descriptors and

the other one that uses global descriptors. The first method calculates a descriptor of a

point to distinguish it from the other points based on its local shape. The descriptor should

be invariant to rigid transformation. The correspondence is estimated by comparing two

descriptors. The idea is very similar to the descriptors in 2D images, such as SIFT (Lowe

(2004)) and SURF (Bay et al. (2008)). For example, geometric hashing (Wolfson & Rigoutsos

(1997)) calculates the descriptors from the minimum number of neighborhood points to

satisfy the invariant. Spin images (Johnson & Hebert (1999)) uses point distribution in polar

coordinates as descriptors. Once the correspondences are given, the rigid transformation is

calculated by Umeyama (1991). Also, RANSAC (Fischler & Bolles (1981)) is useful to detect

the erroneous correspondences.

The latter methods calculate one descriptor in each object. From the definition, a change

of the descriptor by the rigid transformation is easily calculated. The rough localization is

estimated by matching two descriptors. Geometric moment (Flusser & Suk (1994)) aligns the

two objects by matching principal axes. Extended Gaussian Image (EGI) (e.g.. Kang & Ikeuchi

(1997)) uses the distribution of the surface normal directions as a descriptor. The use of the

spherical harmonics accelerates the localization (Makadia et al. (2006)). Spherical Attribute

105Stereo Vision and its Application to Robotic Manipulation
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Fig. 1. Types of displacement. Considering the horizontal translation in the upper row,
translation from left to right columns are unconstrained, partially constrained, and fully
constrained. Considering the rotation in the lower row, rotation from left to right columns
are unconstrained, partially constrained, and fully constrained as similar to the upper case.
To reduce the vision errors while avoiding drastic changes in the original data, these three
types should be distinguished.

Image (SAI) (Hebert et al. (1995)) represents the distribution of curvatures on the spherical

coordinates.

In the fine localization, the key is how to estimate the correspondences in a fine resolution.

The iterative closest point (Besl & McKay (1992); Chen & Medioni (1991)) is a pioneer work

on the fine localization and regards the closest point as the correspondence. There are many

variants with respect to the calculation of the correspondence and the evaluation function for

the registration. Please see Rusinkiewicz & Levoy (2001). The output from the stereo vision

system is relatively inaccurate, it is very important to make the fine localization robust to

noise. To do so, a robust estimator, such as M-estimator (Huber (1981)), is normally used,

such as Wheeler & Ikeuchi (1995).

3. Vision error correction using contact relations

Consider a moving object that comes into contact with another object or the environment.

Due to the vision errors, in the imaginary world of the robot, the object possibly penetrates

another object. The difference between the real world and the imaginary world makes more

difficult to estimate the interaction of the objects. We introduce the use of contact information

to reduce the vision errors. We assume that all the objects are polyhedral and concentrate on

the two-object relationship; one object (referred to as moving object) moves and the other object

(referrer to as fixed object) is fixed. Even by such simplification, the vision error correction is

difficult due to the non-linearity (Hirukawa (1996)).

However, as shown in Fig. 1, local displacement along one direction (horizontal translation

in the upper row and rotation in the lower row) is classified into three types: no constraint,

partially constraint, and fully constraint. In order to reduce the vision errors while avoiding

drastic changes in the original data, it would be better to keep the information corresponding

to unconstrained direction.

106 Advances in Stereo Vision
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We propose two types of methods for vision error correction using the contact relations. The

contact relation represents a set of pairs of contacting elements (vertex, edge, and face). One

method (Takamatsu et al. (2007)) relies on the non-linear optimization and often contaminates

the unconstrained displacement. The other method (Takamatsu et al. (2002)) employs only the

linear method. Although at least one solution which satisfies the contact relation is required,

the optimality holds in this method.

The overview of the method is as follows:

1. Calculate the object configuration which satisfies the constraint on the contact relation

using the non-linear optimization method (Takamatsu et al. (2007)). Note that we accept

any configurations.

2. Formulate the equation of feasible infinitesimal displacement using the

method (Hirukawa et al. (1994))

3. Calculate the optimum configuration by removing the redundant displacement that is

derived from the non-linear optimization.

Hirukawa et al. proposed a method for introducing the constraint on the contact relation

between two polynomial objects (Hirukawa et al. (1994)). They proved that the infinitesimal

displacement that maintains the contact relation can be formulated as Eq. (2), where N is the

number of pairs of contacting elements, pi is the position of the i-th contact in the world

coordinates, fij (∈ R3) is the normal vector of the separate plane4, M(i) is the number

of separate planes of the i-th contact, and the 6D vector [s0, s1] represents infinitesimal

displacement in the screw representation (Ohwovoriole & Roth (1981)).

N⋂

i

M(i)⋂

j

fij · s1 + (pi × fij) · s0 = 0. (2)

In the screw representation, the vector s0 represents the rotation axis. Introducing the

constraint only about the term s0 gives us the range of the feasible rotation axis as Eq. (3).

n⋂

i

gi · s0 = 0. (3)

The non-linearity is only derived from the non-linearity in the orientation. If the optimum

orientation is already known, the issue on the vision error correction is simply solved using

the least linear minimization. The method for calculating the optimum orientation varies

according to the rank of Eq. (3), because the constraint is semantically varied. If the rank is

three, the optimum orientation is uniquely determined. We only use the orientation obtained

by the non-linear optimization. If the rank is zero, the original orientation is used.

Figure 2 shows the case where the rank is two. The upper left and the upper right

images represent the orientation before and after the vision error correction by the non-linear

optimization, respectively. The rotation about the axis shown in the lower right image is the

redundant displacement, because this displacement does not change the contact relation. The

optimum orientation is obtained by removing this displacement.

4 For example, in the case where some vertex on the moving object make contact with some face on the
fixed object, the vector fij is equal to the outer normal of the face.

107Stereo Vision and its Application to Robotic Manipulation
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Fig. 2. Redundant orientation in the case where the rank is two. The upper left and the upper
right images represent the orientation before and after the vision error correction by the
non-linear optimization, respectively. The lower right image represents the optimum
orientation; the rotation about the axis shown in the lower right image is the redundant
displacement, because this displacement does not change the contact relation.

We define the local coordinates A, where the z-axis is defined as the axis of the redundant

displacement, which is obtained from Eq. (3). Let AΘE and AΘS be the orientation before and

after the vision-error correction in the local coordinates. The orientation AΘE is translated to

the orientation AΘS by the following two steps:

1. rotation about the z-axis while maintaining the contact relation

2. rotation about the axis m which is on the xy-plane.

These two steps are formulated as Eq. (4), where R∗(θ) (∈ SO(3)) is a θ [rad] rotation about

∗-axis, R(m, α) is a α [rad] rotation about the axis m.

R(m, α)AΘS = Rz(β)AΘE. (4)

By solving this equation, the terms α, β, m are calculated. The first rotation is the redundant

displacement and the optimum orientation AΘopt in the local coordinates is obtained by

AΘopt = R(m, α)AΘS. (5)

Figure 3 shows the case where the rank is one. We define the local coordinates A, where the

z-axis is the constrained DOF in rotation, which is obtained from Eq. (3). Let AΘE and AΘS be

the orientation before and after the vision-error correction in the local coordinates. Similarly

in the case where the rank is two, the orientation is translated to the orientation AΘS by the

following two steps:

108 Advances in Stereo Vision
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Fig. 3. Redundant displacement in the case where the rank is one. The upper left and the
upper right images represent the orientation before and after the vision error correction by
the non-linear optimization, respectively. The lower right image represents the optimum
orientation; the rotation about the axis shown in the lower right image is the redundant
displacement, because this displacement does not change the contact relation.

1. rotation while maintaining the contact relation

2. rotation about the z-axis

These two steps are formulated as Eq. (6),

Rz(α)
AΘS = Rm(β, γ)AΘE, (6)

where Rm(β, γ) is the rotation to maintain the contact relation and has two DOF. The DOF of

Eq. (6) is three and thus is solvable. The optimum orientation AΘopt in the local coordinates is

obtained by
AΘopt = Rz(α)

AΘS. (7)

Unfortunately, the formulation of Rm(β, γ) varies case-by-case and there is no general rule.

We assume that the rank becomes two, only when (1) some edge of the moving object makes

contact with some face of the fixed object or when (2) some face of the moving object makes

contact with some edge of the fixed object. These are common cases.

Consider the case 1 (see Fig. 4), a β [rad] rotation about the axis 1 followed by a γ [rad] rotation

about the axis 2 maintains the contact relation. Thus the term Rm(β, γ) is formulated as:

Rm(β, γ) = R(n, γ)R(l, β), (8)

where n is the surface normal and l is the edge direction.

Consider the case 2 (see Fig. 5), a β [rad] rotation about the axis I followed by a γ [rad] rotation

about the axis II maintains the contact relation. Thus the term Rm(β, γ) is formulated as:

Rm(β, γ) = R(l, γ)R(n, β). (9)

109Stereo Vision and its Application to Robotic Manipulation
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Fig. 4. Case 1: some edge of the moving object makes contact with some face of the fixed
object

Fig. 5. Case 2: some face of the moving object makes contact with some edge of the fixed
object

Fig. 6. Vision system and the overview of the vision algorithm

In both cases, Eq. (6) can be solved.

Result In experiments in this section, we use the vision system in Fig. 6. Since the depth

image is obtained in real-time, this vision system uses only the first method to solve the

110 Advances in Stereo Vision
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Fig. 7. Tracking result

Fig. 8. Vision error correction by the non-linear methods. Left and right images show the
result before and after the correction.

ambiguity mentioned in Section 2.1 and the calculation is implemented on the hardware.

Using background subtraction and color detection, we only extract the target objects. By

histogram of depths in each pixel, we roughly distinguish the moving and the fixed objects.

We employ the method by Wheeler & Ikeuchi (1995) to extract the 6-DOF trajectory of the

moving object. Figure 7 shows the results. And Figure 8 shows one example of the vision

error correction by the non-linear method.

Figure 9 shows the result of applying the optimum vision error correction to the tracking

result. The upper right and lower right graphs show the vision-error correction by the

non-linear optimization (Takamatsu et al. (2007)) and the combination of the non-linear and

linear optimization. Since translational displacement along the vertical direction is not

constrained by any contacts, it is optimum that the displacement along the direction by the

vision error correction is zero. In other words, the projected trajectories before and after the

error correction should be the same. It is difficult to obtain the optimum error correction

by using only the non-linear optimization, but it is possible to obtain it by combining the

non-linear and linear methods. The lower left graph shows the trajectory projected on the

xy-plane. The trajectory during the insertion is correctly adjusted as a straight line.

4. Estimating joint parameters

We often find the objects with several rigid parts which are connected by joints as shown in

Fig. 10. These objects range from human body to daily-life artificial objects, such as door knobs

and taps. Even in the constraint-free space, motion which seems to be virtually constrained by

a joint can be seen. A constraint generated by a joint is useful for reducing vision errors. Even

if the type of joint is known, the vision error correction involves estimation of joint parameters

from a noise-contaminated observation. In this section, we describe the estimation of the

111Stereo Vision and its Application to Robotic Manipulation
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Optimal correction

Nonlinear optimization

Fig. 9. Result of the vision error correction. The upper right and lower right graphs show the
vision-error correction by the non-linear optimization (Takamatsu et al. (2007)), and
combination of the non-linear and linear optimization. Displacement along the
unconstrained direction is zero after the vision error correction (see the lower right graph),
while trajectory during the insertion is correctly adjusted as the straight line (see the lower
left graph).

revolute joint parameters as well as the vision error corrections. The estimation in the other

types of joints is seen in Takamatsu (2004).

The trajectory of Link A with respect to coordinates of Link B, (BtA(t),
B ΘA(t)), is given

as input, where the term BtA(t) (∈ R3) is the location and the term BΘA(t) (∈ SO(3)) is

the orientation at time t. As shown in Fig. 11, the joint parameters in the revolute joint are

composed of the direction of revolute axis in coordinates of both Link A and Link B, Al, Bl,

and their location, Ac, Bc. Note that |Al| = |Bl| = 1 holds. These terms must satisfy the

following conditions:

Bl = BΘA(t)
Al, (10)

Bc = BΘA(t)
Ac + BtA(t). (11)

Considering the observation noise ∆Θ(t) in orientation, Eq. (10) is reformulated as

Bl = ∆Θ(t) BΘA(t)
Al. (12)

112 Advances in Stereo Vision
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Fig. 10. Examples of joints
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Fig. 11. Coordinates in revolute joint

We estimate the parameters in the least square manner, i.e., estimate the parameters while

minimizing the sum of the norm of ∆Θ(t). The rotational displacement ∆Θ is represented as

a θ [deg] rotation about some axis l, i.e.. ∆Θ = R(l, θ). Then, we define its norm as 1 − cos θ.

Note that θ is small enough, 1 − cos θ is approximated as θ2

2 .

We decompose the noise term ∆Θ(t) into a multiplication of two rotation matrices as shown

in Eq. (13). One is a θ1(t) [deg] rotation about the axis Bl and the other is a θ2(t) [deg] rotation

about the axis l(t), where ∀t,B l · l(t) = 0 holds.

∆Θ(t) = R(Bl, θ1(t))R(l(t)θ2(t)). (13)

By substituting Eq. (13) into Eq. (12), Eq. (14) is obtained.

R(Bl, θ1(t))
Bl = R(l(t), θ2(t))

BΘA(t)
Al. (14)

The left part of this equation is constant for any θ1(t), since Bl does not change after the

rotation about the axis Bl. Following the least square manner, we assume that θ1(t) = 0.

113Stereo Vision and its Application to Robotic Manipulation
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Thereafter, by multiplying the term BlT on the both sides from the right in Eq. (14), Eq. (15) is

obtained. Note that we simply denote θ2(t) as θ(t).

R(−l(t), θ(t))Bl BlT = BΘA(t)
Al BlT. (15)

The left side of Eq. (15) is written as follows:

(I − sin θ(t)[l(t)]× + (1 − cos θ(t))[l(t)]2×)
Bl BlT,

where the matrix [(x, y, z)]× is the skew symmetry matrix and is defined as

[(x, y, z)]× =

⎛

⎝
0 −z y

z 0 −x

−y x 0

⎞

⎠ .

Through the actual calculation, it is proved that the following equations always hold:

Tr(Bl BlT) = 1,

Tr([l(t)]×
Bl BlT) = 0,

Tr([l(t)]2×
Bl BlT) = (Bl · l(t))2 − 1 = −1,

where Tr(M) returns the trace of the matrix M. By using them, we obtain the following

equation:

Tr(R(−l(t), θ(t))Bl BlT) = cos θ(t) (16)

When the sum of 1 − cos θ(t) is minimized, the sum of the norm of the noise term ∆Θ(t) is

minimized. We estimate the direction by minimizing the following equation.

(A l̂,B l̂) = argmin
Al,Bl

∑
t

(1 − Tr(BΘA(t)
Al BlT)). (17)

After estimating the direction, the orientation after the vision error correction BΘ̂A(t) is

obtained from the outer product of BΘA(t)
Al and Bl. The displacement for the vision error

correction corresponds to the matrix with minimum norm that matches the vector BΘA(t)
Al

with the vector Bl.

After estimating the corrected orientation, the location is estimated by the linear least square

method, where A(t) =
(
−BΘ̂A(t) I

)
.

(

∑
t

A(t)T A(t)

)(
Ac
Bc

)
= ∑

t

A(t)T BtA(t). (18)

Since the matrix ∑
i

A(t)T A(t) is not a full-rank matrix, the singular value decomposition is

used to solve this equation.

Result We showed the estimation result from the observation using a real-time stereo vision

system in Section 3. In this experiment, we used two LEGO parts, which are connected by the

revolute joint. Figure 12 shows the tracking result.

114 Advances in Stereo Vision
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Fig. 12. Tracking result

Fig. 13. Estimation result

Figure 13 shows the estimation result. The red line indicates the estimated revolute axis.

The joint parameter of the blue LEGO block (corresponds to the white block in Fig. 13) is

relatively accurate. If the noise distribution is accurately modeled, the maximum likelihood

(ML) inference may improve the estimation. Unfortunately, it is difficult, perhaps impossible,

to model the noise distribution. Outlier detection dissolves this poor estimation.

5. Modeling by implicit polynomial

To recognize the interaction of the objects, the differential properties of the object surface are

often required. Generally, the differential operation amplifies the noise, and thus the object

modeling method robust to the noise is highly demanded. Although we did not directly use

the method mentioned in this section for the 3D data obtained from the stereo vision system,

we would like to introduce modeling using an implicit polynomial which is very robust to

noise.

Representation in implicit polynomial (IP) is advantageous in robustness against noise and

occlusion, compactness of representation, and differentiability. And thus, many applications

using IP’s exist (e.g.Taubin & Cooper (1992)). Unlike the other parametric representations,

115Stereo Vision and its Application to Robotic Manipulation
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such as B-spline and NURBS, it is very easy to estimate the parameters of IP, given the target

model.

IP with n-degree can be defined as follows:

fn(x) = ∑
0≤i,j,k;i+j+k≤n

aijkxiyjzk

= (1 x . . . zn
︸ ︷︷ ︸

m(x)T

)(a000 a100 . . . a00n︸ ︷︷ ︸
a

)T , (19)

where x = (x y z) represents coordinates in 3D space. In the IP representation, the object

surface is modeled by a zero level set of the IP, i.e., {x| fn(x) = 0}. The IP’s parameter

corresponds to the coefficient a. Given the target model in point cloud representation, such as

{xi}, the parameters are estimated by the following steps:

1. manually assign the IP’s degree.

2. solve the following simultaneous linear system, where M is the matrix whose i-th row

corresponds to m(xi)
5:

Ma = b. (20)

3. Compare the modeling result to the target object. If it is not so accurate, change the degree

and go back to Step 1.

Since it is not intuitive to select the appropriate degree n for the complicated shapes, this

selection wastes time unnecessarily. Further, instability in higher degree IP is also problematic.

We propose a method to adaptively select the appropriate degree by incrementally increasing

the degree, while keeping the computational time. Incrementability of QR decomposition

by the Gram-Schmidt orthogonalization plays a very important role in the proposed

method (Zheng et al. (2010)). QR decomposition decomposes the given matrix M into two

matrices Q, R as M = QR, where QTQ = I holds and the matrix R is an upper triangle matrix.

Since the Gram-Schmidt orthogonalization is conducted in an inductive manner, it offers

the incrementability to the proposed method. To solve the coefficient a in each degree, we

simply solve the upper triangle linear system, resulting in reducing the computational time.

Eigenvalues provide information about stability in the calculation. Fortunately, eigenvalues

of the upper triangle matrix are simply obtained by just checking the diagonal elements of the

matrix.

We convert Eq. (20) to fit the QR decomposition. In the linear least square manner, the

coefficient a should satisfy the following condition:

MT Ma = MT
b. (21)

By substituting M = QR, the following equation is obtained:

RT QTQRa = RT QT
b ⇒ Ra = QT

b
def
= b̃. (22)

5 Generally, the condition about the zero level set generates a constraint where b = 0. Thus, the eigen
method is used for the estimation (e.g., Taubin (1991)). In order to increase calculation stability, other
additional constraints are added (e.g., M. Blane & Cooper (2000)), resulting in b �= 0. This can be solved
using a simple linear solver.
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Fig. 14. Necessary calculation for going from the i-th step to the i + 1-th step. Calculation
results are reusable, except for the shaded part.
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Fig. 15. Result of IP modeling. First row: original data. Second row: IP model.

As described above, QR decomposition is done by gradually applying the Gram-Schmidt

orthogonalization to columns of the matrix M from left to right. When going from the i-th

step to the i + 1-th step, we only need to calculate the shaded part in Fig. 14; the other part is

kept constant from the previous calculation. As a result, the calculation is totally accelerated.

Regarding the numerical stability, we pay attention to the case where the conditional number

of the matrix R becomes worse. The conditional number is usually defined as the ratio

between the maximum and the minimum eigenvalues. Since the eigenvalues of the matrix R

corresponds to the diagonal elements themselves, we simultaneously evaluate the numerical

stability. If it tunes to be unstable, we ignore the corresponding column, which is added at

this step, or partially apply the RR method (Sahin & Unel (2005); Tasdizen et al. (2000)). We

increase the IP’s degree until the modeling accuracy is sufficient.

Result Figure 15 shows the result of IP modeling. The cube consists of six planes so an IP with

six degrees is appropriate. The paper (Zheng et al. (2010)) includes other IP modeling results.

Since an IP models the shape considering global consistency, the model is useful for object

recognition.
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6. Conclusion

In this chapter, we described the vision error correction using various constraints, such as

contact relation and mechanical joint. Further, we introduced the modeling method using

an implicit polynomial which is very robust to noise. Stereo vision is simple, but potential

technique to obtain 3D information. One disadvantage is the accuracy. We believe that vision

error correction using prior knowledge becomes necessary research stream in real-world robot

applications.

7. Acknowledgment

We would like to thank members of Ikeuchi laboratory (http://www.cvl.iis.u-tokyo.ac.jp) for

providing the software, the experimental environment, and the fruitful comments. We would

like to thank Mr. Garcia Ricardez Gustavo Alfonso for his useful feedback on this document.

8. References

Bay, H., Ess, A., Tuytelaars, T. & Gool, L. V. (2008). SURF: Speeded up robust features, Comp.

Vis. and Image Understanding 110(3): 346–359.

Besl, P. J. & McKay, N. D. (1992). A method for registration of 3-d shapes, IEEE Trans. on Patt.

Anal. and Mach. Intell. 14(2): 249–256.

Boykov, Y. & Kolmogorov, V. (2004). An experimental comparison of min-cut/max-flow

algorithms for energy minimization in vision, IEEE Trans. on Patt. Anal. and Mach.

Intell. 26(9): 1124–1137.

Brunton, A., Shu, C. & Roth, G. (2006). Belief propagation on the gpu for stereo vision, Proc.

of Canadian Conf. on Comp. and R. Vis.

Chen, Y. & Medioni, G. (1991). Object modeling by registration of multiple range images, Proc.

of IEEE Int’l Conf. on R. and Auto. (ICRA).

Felzenszwalb, P. & Huttenlocher, D. (2006). Efficient belief propagation for early vision, Int’l

J. of Comp. Vis. 70: 41–54.

Fischler, M. A. & Bolles, R. C. (1981). Random sample consensus: A paradigm for model fitting

with applications to image analysis and automated cartography, Communications of

the ACM 24: 381–395.

Flusser, J. & Suk, T. (1994). A moment-based approach to registration of images with affine

geometric distortion, IEEE Trans. on Geoscience and Remote Sensing 32(2): 382–387.

Hebert, M., Ikeuchi, K. & Delingette, H. (1995). A spherical representation for recognition of

free-form surface, IEEE Trans. on Patt. Anal. and Mach. Intell. 17(7): 681–690.

Hirukawa, H. (1996). On motion planning of polyhedra in contact, WAFR .

Hirukawa, H., Matsui, T. & Takase, K. (1994). Automatic determination of possible velocity

and applicable force of frictionless objects in contact from a geometric model, IEEE

Trans. on Robotics and Automation 10(3): 309–322.

Huber, P. J. (1981). Robust statistics, Wiley-Interscience.

Ikeuchi, K. & Suehiro, T. (1994). Toward an assembly plan from observation part i:

Task recognition with polyhedral objects, IEEE Trans. on Robotics and Automation

10(3): 368–385.

Ishikawa, H. (2009). Higher-order clique reduction in binary graph cut, Proc. of Comp. Vis. and

Patt. Recog. (CVPR).

118 Advances in Stereo Vision

www.intechopen.com



Stereo Vision and its Application to

Robotic Manipulation 17

Johnson, A. E. & Hebert, M. (1999). Using spin images for efficient object recognition in

cluttered 3d scenes, IEEE Trans. on Patt. Anal. and Mach. Intell. 21(5): 433–449.

Kang, S. B. & Ikeuchi, K. (1997). The complex egi: New representation for 3-d pose

determination, IEEE Trans. on Patt. Anal. and Mach. Intell. 15(7): 707–721.

Kuniyoshi, Y., Inaba, M. & Inoue, H. (1994). Learning by watching: Extracting reusable task

knowledge from visual observation of human performance, IEEE Trans. on Robotics

and Automation 10(6): 799–822.

Lan, X., Roth, S., Huttenlocher, D. P. & Black, M. J. (2006). Efficient belief propagation with

learned higher-order markov random fields, Proc. of Euro. Conf. on Comp. Vis. (ICCV).

Lowe, D. (2004). Distinctive image features from scale-invariant key points, Int’l J. of Comp.

Vis. 60(2): 91–110.

M. Blane, Z. L. & Cooper, D. (2000). The 3l algorithm for fitting implicit polynomial curves

and surfaces to data, IEEE Trans. on Patt. Anal. and Mach. Intell. 22(3): 298–313.

Makadia, A., IV, A. P. & Daniilidis, K. (2006). Fully automatic registration of 3d point clouds,

Proc. of Comp. Vis. and Patt. Recog. (CVPR).

Ohwovoriole, M. S. & Roth, B. (1981). An extension of screw theory, J. of Mechanical Design

103: 725–735.

Potetz, B. (2007). Efficient belief propagation for vision using linear constraint nodes, Proc. of

Comp. Vis. and Patt. Recog. (CVPR).

Rusinkiewicz, S. & Levoy, M. (2001). Efficient variants of the icp algorithm, Proc. of Int’l Conf.

on 3-D Digital Imaging and Modeling.

Sahin, T. & Unel, M. (2005). Fitting globally stabilized algebraic surfaces to range data, Proc.

of Int’l Conf. on Comp. Vis. (ICCV).

Scharstein, D. & Szeliski, R. (2002). A taxonomy and evaluation of dense two-frame stereo

correspondence algorithm, Int’l J. of Comp. Vis. 47(1/2/3): 7–42.

Takamatsu, J. (2004). Abstraction of Manipulation Tasks to Automatically Generate Robot Motion

from Observation, PhD thesis, the University of Tokyo.

Takamatsu, J., Kimura, H. & Ikeuchi, K. (2002). Calculating optimal trajectories from contact

transitions, Proc. of IEEE Int’l Conf. on Intell. R. and Sys. (IROS).

Takamatsu, J., Ogawara, K., Kimura, H. & Ikeuchi, K. (2007). Recognizing assembly tasks

through human demonstration, Int’l J. of Robotics Research 26(7): 641–659.

Tasdizen, T., Tarel, J.-P. & Cooper, D. B. (2000). Improving the stability of algebraic curves for

applications, IEEE Trans. on Image Proc. 9(3): 405–416.

Taubin, G. (1991). Estimation of planar curves, surfaces and nonplanar space curves defined

by implicit equations with applications to edge and range image segmentation, IEEE

Trans. on Patt. Anal. and Mach. Intell. 13(11): 1115–1138.

Taubin, G. & Cooper, D. (1992). Symbolic and Numerical Computation for Artificial Intelligence,

Computational Mathematics and Applications, Academic Press, chapter 6.

Tsai, R. Y. (1986). An efficient and accurate camera calibration technique for 3d machine vision,

Proc. of Comp. Vis. and Patt. Recog. (CVPR).

Umeyama, S. (1991). Least-squares estimation of transformation parameters between two

point patterns, IEEE Trans. on Patt. Anal. and Mach. Intell. 13(4).

Wheeler, M. D. & Ikeuchi, K. (1995). Sensor modeling, probabilistic hypothesis generation,

and robust localization for object recognition, IEEE Trans. on Patt. Anal. and Mach.

Intell. 17(3): 252–265.

119Stereo Vision and its Application to Robotic Manipulation

www.intechopen.com



18 Will-be-set-by-IN-TECH

Wolfson, H. J. & Rigoutsos, I. (1997). Geometric hashing: An overview, Computing in Science

and Engineering 4(4): 10–21.

Zhang, Z. (2000). A flexible new technique for camera calibration, IEEE Trans. on Patt. Anal.

and Mach. Intell. 22(11): 1330–1334.

Zheng, B., Takamatsu, J. & Ikeuchi, K. (2010). An adaptive and stable method for fitting

implicit polynomial curves and surfaces, IEEE Trans. on Patt. Anal. and Mach. Intell.

32(3): 561–568.

120 Advances in Stereo Vision

www.intechopen.com



Advances in Stereo Vision

Edited by Prof. Jose R.A. Torreao

ISBN 978-953-307-837-3

Hard cover, 120 pages

Publisher InTech

Published online 19, July, 2011

Published in print edition July, 2011

InTech Europe

University Campus STeP Ri 

Slavka Krautzeka 83/A 

51000 Rijeka, Croatia 

Phone: +385 (51) 770 447 

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai 

No.65, Yan An Road (West), Shanghai, 200040, China 

Phone: +86-21-62489820 

Fax: +86-21-62489821

Stereopsis is a vision process whose geometrical foundation has been known for a long time, ever since the

experiments by Wheatstone, in the 19th century. Nevertheless, its inner workings in biological organisms, as

well as its emulation by computer systems, have proven elusive, and stereo vision remains a very active and

challenging area of research nowadays. In this volume we have attempted to present a limited but relevant

sample of the work being carried out in stereo vision, covering significant aspects both from the applied and

from the theoretical standpoints.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Jun Takamatsu (2011). Stereo Vision and Its Application to Robotic Manipulation, Advances in Stereo Vision,

Prof. Jose R.A. Torreao (Ed.), ISBN: 978-953-307-837-3, InTech, Available from:

http://www.intechopen.com/books/advances-in-stereo-vision/stereo-vision-and-its-application-to-robotic-

manipulation



© 2011 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.


