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1. Introduction 

Stereoscopic vision systems have been used manually for decades to capture three-
dimensional information of the environment in different applications. With the growth 
experienced in recent years by the techniques of computer image processing, stereoscopic 
vision has been increasingly incorporating automated systems of different nature. The 
central problem in the automation of a stereoscopic vision system is the determination of the 
correspondence between pixels of the pair of stereoscopic images that come from the same 
point in three-dimensional scene. 
The research undertaken in this work comprises the design of a global strategy to solve the 
stereoscopic correspondence problem for a specific kind of hemispherical image from forest 
environments. The images are obtained through an optical system based on the lens known 
as fisheye because this optic system can recover 3D information in a large field-of-view 
around the camera; in our system it is 183º×360º. This is an important advantage because it 
allows one to image the trees in the 3D scene close to the system from the base to the top, 
unlike in systems equipped with conventional lenses where close objects are partially 
mapped (Abraham & Förstner, 2005). 
The focus is on obtaining this information from tree trunks using stereoscopic images. The 

technicians carry out forest inventories which include studies on wood volume and tree 

density as well as the evolution and growth of the trees with the measurements obtained. 

Because the trees appear completely imaged, the stereoscopic system allows the calculation 

of distances from the device to significant points into the trees in the 3D scene, including 

diameters along the stem, heights and crown dimensions to be measured, as well as 

determining the position of the trees. These data may be used to obtain precise taper 

equations, leaf area or volume estimations (Montes et al., 2009). As the distance from the 

device to each tree can be calculated, the density of trees within a determined area can be 

also surveyed and growing stock; tree density, basal area (the section of stems at 1.30 m 

height in a hectare) and other interesting variables may be estimated at forest stand level 

using statistical inference (Gregoire, 1998). 
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This work stems from the interest generated by the Spanish Forest Research Centre (CIFOR) 
part of the National Institute for Agriculture and Food Research and Technology (INIA) to 
automate the process of extracting information through the measurement mechanism with 
patent number MU-200501738. 
The main contribution of this chapter is the proposal of a strategy that combines the two 
essential processes involved in artificial stereo vision: segmentation and correspondence of 
certain structures in the dual images of the stereoscopic pair. The strategy is designed 
according the type of images used and lighting conditions from forest environments. These 
refers to Scots pine forests (Pinus sylvestris L.) where images were obtained on sunny days and 
therefore they exhibit highly variable intensity levels due to the illuminated areas. Due to the 
characteristics of this environment - in terms of light and the nature of trees themselves and 
textures that surround them - the segmentation and correspondence processes are specifically 
designed according to this type of forest environment. This sets the trend for future research 
when analyzing other forest environments. The segmentation process is approached from the 
point of view of isolating the trunks by excluding the textures that surround them (pine 
needles, ground and sky). For this reason, we propose the use of the specific techniques of 
texture identification for the pine needles (Pajares & Cruz, 2007) and of classification for the 
rest (Pajares et al. 2009; Guijarro et al. 2008, 2009). The correspondence problem can be defined 
in terms of finding pairs of true matches, as explained below, pixels in two images that are 
generated by the same physical element in the space. These true matches generally satisfy 
some constraints (Scharstein & Szeliski, 2002): 1) epipolar, given a pixel in an image, the 
matched pixel in the second image must lie following the called epipolar line; 2) similarity, 
matched pixels must have similar properties or attributes; 3) ordering, the relative position 
between two pixels in an image is preserved in the other image for the corresponding matches; 
4) uniqueness, each pixel in one image should be matched to a unique pixel in the other image, 
although a pixel could not be matched because of occlusions. The proposed matching process 
identifies the homogeneous pixels in separate stereo pair images, by means of the combination 
of similarity measurements calculated from a set of attributes extracted of each pixel. 
The proposed strategy based on segmentation and correspondence processes can be 
favourably compared from the perspective of the automation of the process and we suggest 
it can be applied to any type of forest environment, with the appropriate adaptations 
inherent to the segmentation and correspondence processes in accordance with the nature of 
the forest environment analyzed. 
This chapter is organized as follows. In section 2 we describe the procedures applied for the 
image segmentation oriented to the identification of textures. Section 3 describes the design 
of the matching process by applying the epipolar, similarity and uniqueness constraints. 
Section 4 presents the conclusions and future work. 

2. Segmentation 

In our approach, the interest is focused on the trunks of the trees because they contain the 
higher concentration of wood. These are our features of interest in which the matching process 
is focused. Figure 1 displays a representative hemispherical stereo pair captured with a fisheye 
lens from the forest. As one can see, there are three main groups of textures without interest, 
such as grass in the soil, sky in the gaps and leaves of the trees. Hence, the first step consists on 
the identification of the textures out the interest to be excluded during the matching process. 
This is carried out through a segmentation process which uses both: a) methods for texture 
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analysis (Gonzalez & Woods, 2008) and b) a classification approach based on the combination 
of two single classifiers, they are the parametric Bayesian estimator and the Parzen’s window 
(Duda et al., 2001). The first tries to isolate the leaves based on statistical measures and the 
second classifies the other two kinds of textures. The performance of combined classifiers has 
been reported as a promising approach against individual classifiers (Kuncheva, 2004; Guijarro 
et al., 2008, 2009; Pajares et al., 2009; Herrera et al., 2011a). 
One might wonder why not to identify the textures belonging to the trunks. The response is 
simple. This kind of textures displays a high variability of tonalities depending on the 
orientation of the trunks with respect the sun. Therefore, there is not a unique type of 
texture (dark or illuminated trunks and even though alternatively in bits), as we can see in 
Figure 1. Observing the textures we can also see the following: a) the areas covered with 
leaves display high intensity variability in a pixel and the surrounding pixels in its 
neighbourhood; therefore methods based on detecting this behaviour could be suitable; b) 
on the contrary, the sky displays homogeneous areas, where a pixel is surrounded of pixels 
with similar intensity values where the dominant spectral visible component is blue; c) the 
grass in the soil also tend to fall on the category of homogeneous textures although with 
some variability coming from shades, in both shaded and sunny areas the pixels belonging 
to the grass have the green spectral component as the dominant one; d) the textures coming 
from the trunks are the most difficult as we said above; indeed due to the sun position, the 
angle of the incident rays from the sun produce strong shades in the part of the trunks in the 
opposite position of the projection (west part in the images of Figure 1); the trunks receiving 
the direct projection display a high degree of illumination (east part in the images of Figure 
1); there are a lot of trunks where the shades produce different areas. 
Based on the above, for identifying the textures coming from leaves, we use texture analysis 
techniques based on statistical measures that can cope with the high intensity variability. 
This is explained in section 2.1. Because of the homogeneity of grass and sky textures, we 
can use methods based on learning approaches as explained in section 2.2. Finally, the 
textures coming from the trunks are not specifically identified during the segmentation 
phase and they are processed during the stereovision matching process, described in section 3. 
 

(a) 
 

(b) 

Fig. 1. A representative hemispherical stereo pair; (a) left image; (b) right image. 
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2.1 Identification of high contrasted textures 
The textures produced by the leaves of the trees under analysis do not display spatial 
distributions of frequencies nor textured patterns; they are rather high contrasted areas 
without any spatial orientation. Hence, we have verified that the most appropriate texture 
descriptors are those capturing the high contrast, i.e. statistical second-order moments. One 
of the simplest is the variance. It is a measure of intensity contrast defined in our approach 
as in (Gonzalez & Woods, 2008; Herrera, 2010). The criterion for identifying a high textured 
area is established by considering that it should have a value for the intensity contrast 
coefficient R, normalized in the range [0, +1], greater than a threshold T1, set to 0.8 in this 
chapter after experimentation. This value is established taking into account that only the 
areas with large values should be considered, otherwise a high number of pixels could be 
identified as belonging to these kinds of textures because the images coming from outdoor 
environments (forests) display a lot of areas with different levels of contrast. 

2.2 Identification of homogeneous textures: combining classifiers 
Any classification process in general and in particular the identification of textures in 
natural images has associated two main phases: training and decision. We refer to the first 
phase as learning phase also, by identifying both concepts in the literature. By the nature of 
processing in the time sometimes appear as off-line and on-line processes respectively. This 
is due to the fact that the training phase is usually carried out during system downtime, 
being at this time when the parameters involved in the process are estimated or learned. 
However, the decision phase is performed for a fully operational system, using the 
parameters learned in the training phase. 
Figure 2 shows an overview of a training-decision system particularized to the case of 
natural texture images. Both phases consist of both common and different processes. Indeed, 
the processes of image capture, segmentation and coding information are common, while 
learning and decision processes are different. We briefly describe each of them. Then in each 
method the appropriate differentiation is provided. 
 

 

Fig. 2. General scheme of a training-decision process 

This scheme is valid for both the individual nature and combined classifiers. 

• Image capture: it consists in obtaining the images, either obtained from a databank or 
directly from the scene by the corresponding sensor. 
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• Segmentation: segmentation is the process involving the extraction of structures or 
features in the images. From the point of view of image treatment, a feature can be a 
region or an edge that belongs to any object. A feature can also be a pixel belonging to a 
border, a point of interest or simply a pixel of the image regardless of inside or outside 
any of the aforementioned structures. In the case of a region can be its area, perimeter, 
intensity average or any other property describing the region. The pixels are the 
features used in this work. In our case, the attributes or properties of the pixels will be 
their spectral components. Consequently, the segmentation process includes both, 
feature extraction and properties. 

• Coding information: This phase includes the structuring of the information to be 

subsequently used by both methods learning and classification. Each feature taken during 

the previous phase are the samples represented by vectors, whose components are the 

properties of the feature under analysis. As mentioned previously, the features to consider 

are the pixels. Given a pixel in the spatial location (i, j), if it is labelled as k we have 

( ),k i j≡ , being xk the vector whose components are the representative spectral values of 

that pixel in the RGB colour model, i.e. { } { }
1 2 3

3, , , ,k k kx x x R G B= ≡ ∈ℜ
k

x  and therefore, in 

this case, the vector belongs to the three-dimensional space. The samples are coded for 

both the training process and the decision process; then we will have training samples 

and classification samples according to the stage where they are processed.  

• Learning/Training: with the available samples properly encoded, the training process is 
carried out according to the method selected. The learning resulting parameters are 
stored in the Knowledge Base (KB), Figure 2, for being used during the decision phase. 

• Identification/Decision: at this stage we proceed to identify a new feature or sample, 
which has not yet been classified as belonging to one of the existing classes of interest. 
To do that the previously learned and stored parameters in KB are retrieved, thereafter 
through the corresponding decision function, inherent to each method, the class to 
which it belongs is identified. This process is also called recognition or classification. It 
is sometimes common that the classified samples can be incorporated back into the 
system, now as training samples to proceed to a new learning process and therefore to 
carry out a new updating of the parameters associated to each method, that are stored 
again in the KB. This is known as incremental learning. 

As mentioned before, in our approach there are other two relevant textures that must be 
identified. They are specifically the sky and the grass. For a pixel belonging to one of such 
areas the R coefficient should be low because of its homogeneity. This is a previous criterion 
for identifying such areas, where the 'low' concept is mapped assuming that R should be less 
than the previous threshold T1.  Nevertheless, this is not sufficient because there are other 
different areas which are not sky or grass fulfilling this criterion. Therefore, we apply a 
classification technique based on the combination of the parametric Bayesian estimator (PB) 
and Parzen window (PZ) approaches. The choice of these classifiers is based on its proven 
effectiveness when applied individually in various fields of application, including image 
classification. According to (Kuncheva, 2004), if they are combined the results improve. Both 
PB and PZ consist of two phases: training and decision. 

2.2.1 Training phase 

We start with the observation of a set X of n training patterns, i.e. { } q
n21X ℜ∈= xxx ,...,, . 

Each sample is to be assigned to a given cluster cj, where the number of possible clusters is c, 
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i.e. j = 1, 2,…,c. In our approach the number of clusters is two, corresponding to grass and 

sky textures, i.e. c = 2. For simplicity, in our experiments, we identify the cluster c1 with the 

sky and the cluster c2 with the grass. The xi patterns represent pixels in the RGB colour 

space. Their components are the R,G,B spectral values. This means, that the dimension of the 

space ℜ  is q = 3. 
a. Parametric Bayesian Classifier (PB) 

This method has traditionally been identified within the unsupervised classification 

techniques (Escudero, 1977). Given a generic training sample qℜ∈x , the goal is to estimate 

the membership probabilities to each class cj, i.e. ( )1 |jP c x . This technique assumes that the 

density function of conditional probability for each class is known, resulting unknown the 

parameters. A widespread practice, adopted in our approach, is to assume that the shape of 

these functions follows the law of Gaussian or Normal distribution, according to the 

following expression, 

 ( )
( )

( ) ( )1
1 1

22

1 1
| , exp

22

T

j j j j jq

j

p C C
Cπ

−⎧ ⎫= − − −⎨ ⎬
⎩ ⎭

x m x m x m  (1) 

where mj and Cj are, respectively, the mean and covariance matrix of class cj, i.e. statistical or 
unknown parameters to be estimated, T denotes the transposed matrix and q express the 

dimensionality of the data by q∈ℜx . 

The hypotheses assumed by the unsupervised classification techniques are: 
1. There are c classes in the problem. 
2. The sample x comes from these c classes, although the specific class to which it belongs 

is unknown. 

3. The a priori probability that the sample belongs to class cj, ( )jP c  is in principle 

unknown. 
4. The density function associated with each class has a known form, being unknown the 

parameters of that function. 
With this approach it is feasible to implement the Bayes rule to obtain conditional 
probability that xs belongs to class cj, by the following expression (Huang & Hsu, 2002), 

 ( ) ( ) ( )
( )

1

1

| ,
|

| ,

s j j j

j s c

s j j
j

p C P c
P c

p C
=

=

∑

x m

x

x m

 (2) 

Knowing the shapes of probability density functions, the parametric Bayesian method seeks 
to estimate the best parameters for these functions. 
b. Parzen window (PZ) 

In this process, as in the case of parametric Bayesian method, the goal remains the 

estimation of the membership probabilities of sample x to each class cj, that is ( )2 |jP c x . 

Therefore, the problem arises from the same point of view, making the same first three 

hypotheses and replacing the fourth by a new more general:  “the shape of the probability 

density function associated with each class is not known”. This means that in this case there 

are no parameters to be estimated, except the probability density function (Parzen, 1962; 

Duda et al. 2001). The estimated density function turns out to be that provided by equation 
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(3), where ( ) ( ) 21
2)(

jkj

T

k
hCD xxxx −−=⋅ − , q represents the dimension of the samples in the 

space considered, T indicates the vector transpose operation. 

 ( ) ( ){ }
( )

2 1 22
1

exp , ,1
|

2

j

j

n
k j

j nq
j k

j j

D x x h
p x c

n h Cπ=

⎧ ⎫−⎪ ⎪= ⎨ ⎬
⎪ ⎪⎩ ⎭

∑  (3) 

According to equation (3), this classifier estimates the density function probability given the 

training samples associated with each class, requiring that the samples are distributed, i.e. 

the partition must be available. Also the covariance matrices associated with each of the 

classes are used. The full partition and covariance matrices are the parameters that this 

classifier stored in the KB during the training phase. In fact, the covariance matrices are the 

same as those obtained by PB. 

During the decision phase, PZ extracts from KB both the covariance matrices Cj and the 

available training samples are distributed in their respective classes. With them the 

probability density function given in equation (3) is generated. Thus, from a new sample xs 

conditional probabilities are obtained according to this equation, ( )
js

cP |x
2

. The probability 

that the sample xs belongs to the class wj can be obtained by again applying Bayes rule, 
 

 ( ) ( ) ( )
( )

2

2

2
1

|
|

|

s j j

j s c

s j
j

p x c P c
P c x

p x c
=

=

∑
 (4) 

2.2.2 Decision phase 

After the training phase, a new unclassified sample q
s ∈ℜx must be classified as belonging to 

a cluster cj. Here, each sample, like each training sample, represents a pixel at the image 

with the R,G,B components. PB computes the probabilities that xs belong to each cluster 

from equation (2) and PZ computes the probabilities that xs belong to each cluster from 

equation (4). Both probabilities are the outputs of the individual classifiers ranging in [0,1]. 

They are combined by using the mean rule (Kuncheva, 2004). (Tax et al., 2000) compare 

performances of combined classifiers by averaging and multiplying. As reported there, 

combining classifiers which are trained in independent feature spaces result in improved 

performance for the product rule, while in completely dependent feature spaces the 

performance is the same for the product and the average. In our RGB feature space high 

correlation among the R, G and B spectral components exists (Littmann & Ritter, 1997; 

Cheng et al., 2001). High correlation means that if the intensity changes, all the three 

components will change accordingly. Therefore we chose the mean for the combination, 

which is computed as: ( ) ( )( ) 2|| 21 sjsjsj cPcPm xx += . The pixel represented by xs is classified 

according to the following decision rule: s jc∈x  if 
shsj

mm >  and 2sjm T>  otherwise the pixel 

remains unclassified. We have added, to the above rule, the second term with the logical and 

operator involving the threshold T2 because we are only identifying pixels belonging to the 

sky or grass clusters. This means that the pixels belonging to textures different from the 
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previous ones remain unclassified, and they become candidates for the stereo matching 

process. The threshold T2 has been set to 0.8 after experimentation. This is a relative high 

value, which identifies only pixels with a high membership degree in either c1 or c2. We have 

preferred to exclude only pixels which belong clearly to one of the above two textures. 

Figure 3(b) displays the result of applying the segmentation process to the left image in 

Figure 3(a). The white areas are identified either as textures belonging to sky and grass or 

leaves of the trees. On the contrary, the black zones, inside the circle defining the image, are 

the pixels to be matched. As one can see the majority of the trunks are black, they really 

represent the pixels of interest to be matched through the corresponding correspondence 

process. There are white trunks representing trees very far from the sensor. They are not 

considered because are out of our interest from the point of view of forest inventories. 

 

 

Fig. 3. (a) Original left image; (b) segmented left image where white areas are textures 
without interest (sky, grass and leaves) and the black ones the pixels to be matched. 

It is difficult to validate the results obtained by the segmentation process, but we have 

verified that without this process, the error for stereovision matching strategies is increased 

by a quantity that represents on average about 9-10 percentage points. In addition to this 

quantitative improvement it is easy to deduce the existence of a qualitative improvement by 

the fact that some pixels belonging to textures not excluded by the absence of segmentation, 

they are incorrectly matched with pixels belonging to the trunks, this do not occur when 

these textures are excluded because they were not offered this possibility. This means that 

the segmentation is a fundamental process in our stereovision system and justifies its 

application. 

3. Stereovision matching 

Once the image segmentation process is finished, we have identified pixels belonging to 

three types of textures which are to be discarded during the next stereovision matching 

process, because they are without interest. Hence, we only apply the stereovision matching 
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process to the pixels that do not belong to any of the previous textures. As we explained 

before, due to the different locations of the tree’s crowns there exists an important lighting 

variability between both images of the stereoscopic pair; this makes the matching process a 

difficult task. 

As mentioned in section 1, in stereovision there are several constraints that can be applied. 

In our approach we apply three of them: epipolar, similarity and uniqueness. Given a pixel 

in the left image, we apply the epipolar constraint for determining a list of candidates, 

which are potential matches in the right image. Each candidate becomes an alternative for 

the first pixel. Through the combination of similarity measurements computed from a set of 

attributes extracted of each pixel (similarity constraint), we obtain the final decision about 

the best match among candidates by applying the uniqueness constraint. Epipolar constraint 

is explained in section 3.1 and similarity and uniqueness constraints in section 3.2. 

3.1 Epipolar constraint: system geometry 

Figure 4 displays the stereovision system geometry (Abraham & Förstner, 2005). The 3D 

object point P with world coordinates with respect to the systems (X1, Y1, Z1) and (X2, Y2, Z2) 

is imaged as (xi1, yi1) and (xi2, yi2) in image-1 and image-2 respectively in coordinates of the 

image system; 1α and 2α are the angles of incidence of the rays from P; y12 is the baseline 

measuring the distance between the optical axes along the y-axes with respect to the two 

positions of the camera; r is the distance between the image point and the optical axis; R is 

the image radius, identical in both images. 
According to (Schwalbe, 2005), the following geometrical relations can be established, 

 2 2
1 1

r x y
i i

= + ; ( ) Rr º901 =α ; ( )1
1 1i itg y xβ −=   (5) 

Now the problem is that the 3D world coordinates (X1, Y1, Z1) are unknown. They can be 
estimated by varying the distance d as follows, 

 1 cosX d β= ; βsin 1 dY = ; 2 2
1 1 1 1tanZ X Y α= +  (6) 

From (6) we transform the world coordinates in the system O1X1Y1Z1 to the world 
coordinates in the system O2X2Y2Z2 taking into account the baseline as follows, 

 2 1X X= ; 1212 yYY += ; 2 1Z Z=   (7) 

Assuming that the lenses have no radial distortion, we can find the imaged coordinates of 

the 3D point in image-2 as (Schwalbe, 2005), 

 
( )

( ) 1

arctan 2

2

22

2
2

2
2
2

2

+

+
=

XY

ZYXR
xi

π
; 

( )
( ) 1

arctan 2

2

22

2
2

2
2
2

2

+

+
=

YX

ZYXR
yi

π
 (8) 

Using only a camera or a camera position, we capture a unique image and the 3D points 

belonging to the line 1O P are all imaged in the unique point ( )1 1,i ix y . So, the 3D coordinates 

cannot be obtained from a single image. When we try to match the imaged point 

( )
11

,
ii
yx into the image-2 we follow the epipolar line, i.e. the projection of 1O P over the 
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image-2. This is equivalent to varying the parameter d in the 3-D space. So, given the imaged 

point ( )
11

, ii yx in image-1 (left) and following the epipolar line, we obtain a list of m potential 

corresponding candidates represented by ( )2 2,i ix y in image-2 (right). 
 
 

 
 
 

Fig. 4. Geometric projections and relations for the fisheye based stereo vision system. 

3.2 Similarity and uniqueness constraints 
Each pixel l in the left image is characterized by its attributes; one of such attributes is 
denoted as Al. In the same way, each candidate i in the list of m candidates is described by 
identical attributes, Ai. So, we can compute differences between attributes of the same type 
A, obtaining a similarity measure for each attribute as, 

 ( )1 1 ;      1,...,iA l is A A i m= + − =  (9) 

[ ]1,0∈iAs , 0=iAs  if the difference between attributes is large enough (minimum similarity), 

otherwise if they are equal ( 1iAs = , maximum similarity). 
In this chapter, we use the following five attributes for describing each pixel (feature): a) 
Gabor filter; b) variance as a measure of the texture; c) RGB color; d) CIE lab color and e) 

gradient magnitude. The first two are area-based computed on a 3 3× neighborhood around 

each pixel (Pajares & Cruz, 2007). The latter three are considered as feature-based (Lew et 
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al., 1994). Gabor filter is basically a bi-dimensional Gaussian function centered at origin (0,0) 
with variance S modulated by a complex sinusoid with polar frequency (F,W) and phase P. 
The RGB color involves the three Red-Green-Blue spectral components and the absolute 

value in equation (9) is extended as: l i l iH
A A H H− = −∑ , H = R,G,B. In the same way, the 

CIE lab color involves the three l-a-b components and the absolute value in equation (9) is 

extended as: l i l iH
A A H H− = −∑ , H = l,a,b. Gradient magnitude is computed by applying 

the first derivative (Pajares & Cruz, 2007), over the intensity image after its transformation 
from the RGB plane to the HSI (hue, saturation, intensity) one.  
Other attributes have been unsuccessfully used in previous works in the same forest 

environment, e.g. correlation, gradient direction and Laplacian (Herrera, 2010; Herrera et al., 
2011a, 2011b). While gradient magnitude, RGB color and texture obtained the best 
individual results, respectively. For this reason they are used in this work. 

Given a pixel in the left image and the set of m candidates in the right one, we compute the 
following similarity measures for each attribute A: sia (Gabor filter), sib (texture), sic (RGB 
color), sid (CIE lab color) and sie (gradient magnitude). The identifiers in the sub-indices 
identify the attributes according to the above assignments. 

Now we must match each pixel l in the left image with the best of the potential candidates 
(uniqueness constraint). This is based on a majority voting criterion (MVC). So, given l and 
its i candidates, we have available sia, sib, sic, sid and sie, so that we can make individual 

decisions about the best candidate i based on maximum similarity measurements among the 
set of candidates. We determine the best match by choosing the candidates with the 
maximum similarity for each individual attribute and select the one which has been chosen 
according to the majority of attributes. Each one of the five attributes, used separately, 

allows determining a disparity map for comparison purposes.  
The sexagesimal system is used in measuring angles. The practical unit of angular measure 
is the degree, of which there are 360 in a circle. The disparity value at each pixel location is 

the absolute difference value in sexagesimal degrees between the angle for the pixel in the 
left image and the angle of its matched pixel in the right one. Each pixel is given in polar 
coordinates with respect the centre of the image. 
Given a stereo pair of the twenty used for testing, for each pixel we obtain its disparity as 

follows. Considering the five attributes separately, used as criteria in the MVC, and 
applying a maximum similarity criterion according to equation (9) among the m candidates, 
we obtain a disparity map for each attribute. So, for comparative purposes we show for the 
area in Figure 5(b), the disparity maps obtained by Gabor Filter, texture, RGB and CIE lab 

colors, and gradient magnitude in Figures 5(c) to 5(g), respectively. By applying the MVC 
approach based on maximum similarity, we obtain the disparity map displayed in Figure 
5(h). The color bar in Figure 5(i) shows the disparity level values according to the color for 

each disparity map. 
An important observation comes from the main trunk in the Figure 5(b); indeed, in the 
corresponding disparity maps obtained by Gabor filter and texture, the disparity values 
range from 1.5 to 5.5, but in RGB and CIE lab colors, and gradient magnitude they range 

from 3.5 to 5.5. In the disparity map obtained by MVC strategy, the low level values have 
been removed, such that the disparities range from 4.5 to 5.5. Although there are still several 
disparity levels, this is correct because the trunk is very thick and it is placed near the 

sensor.  This assertion is verified by the expert human criterion. 
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The best individual results, according to the five attributes, are obtained through the 
similarities provided by the gradient magnitude (sie). This implies that it is the most relevant 
attribute. Nevertheless, the main relevant results are obtained by the proposed MVC 
approach in terms of less percentage of error. This together with the qualitative 
improvement provided by this approach, as explained above, allows us to conclude that this 
is a suitable method for computing the disparity map in this kind of images. 
 
 

 
(a) 

 
(b) 

 
(i) 

(c) (d) 
 

(e) 

(f) (g) 
 

(h) 

 

Fig. 5. (a) Hemispherical left image; (b) left expanded area corresponding to the blue signed 
area in (a); disparity maps obtained by (c) Gabor filter, (d) texture, (e) RGB color, (f) CIE lab 
color, (g) gradient magnitude, (h) MVC; (i) color bar shows the disparity level values 
according to the color for each disparity map. 

Other combined decision making approaches have been successfully used in previous 

works in the same forest environment, where the final decision about the correct match, 
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among the candidates in the list, is made according to techniques used for combining 

classifiers conveniently adapted in our approach to be applied for the stereovision matching 

(Herrera et al., 2009a, 2009b, 2009c, 2011b; Herrera, 2010; Pajares et al., 2011). In (Herrera et 

al., 2011a) the similarity and uniqueness constraints are mapped through a decision making 

strategy based on a weighted fuzzy similarity approach. 

4. Conclusions 

This chapter presents segmentation and matching strategies for obtaining a disparity map 

from hemispherical stereo images captured with fisheye lenses. This is carried out through a 

segmentation process which uses the combination of the parametric Bayesian estimator and 

the Parzen’s window classifiers and the variance as method for texture analysis. The goal of 

the image segmentation process is to classify and exclude the pixels belonging to one of the 

three kinds of textures without interest in the images: sky, grass in the soil and leaves. The 

combined classification strategy classifies sky and grass textures and the variance tries to 

isolate the leaves based on statistical measures. The exclusion of these textures is useful 

because the errors that they could introduce during the correspondence can be considerably 

reduced. While others individual classifiers might have been chosen as a different combined 

strategy, as the Fuzzy Clustering, the Generalized Lloyd algorithm and the Self-Organizing 

Maps (Pajares & Cruz, 2007), the combination of both in relation to the improvement of the 

results according to the set of images used shows its promising possibilities. All this does 

not preclude the future use of new classifiers and the combination of other strategies for the 

type of images analyzed. 

Once the image segmentation process is finished, an initial disparity map is obtained by 

applying three stereovision matching constraints (epipolar, similarity and uniqueness). For 

each pixel in the left image, a list of possible candidates in the right one is obtained for 

determining its correspondence. This is carried out through a majority voting criterion, 

which is a decision strategy based on combining similarity measurements from five 

attributes extracted of each pixel. The proposed combined strategy outperforms the 

methods that use similarities separately. Based on this, some optimization approaches could 

be used, such as simulated annealing or Hopfield neural networks, where the smoothness 

constraint and the Gestalt’s principles could be applied under an energy minimization based 

process.  

The method proposed can be applied for similar forest environments where pixels are the 

key features to be matched. Applications using this sensor are based on identical geometry 

and image projection, although the matching strategy could be completely different. This 

occurs in (Herrera et al., 2009d), based on region segmentation where the images are very 

different and captured under different illumination conditions in Rebollo oak forests. 
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