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1. Introduction 

The key causes of mortality today include cardiovascular disease, infectious diseases, cancer 
and diabetes.  Figure 1, from the World Health Organisation’s Global Burden of Disease 
Report (World Health Organisation [WHO], 2006), illustrates the proportion of deaths due 
to the major causes.  When these statistics are taken together with the age at death data as 
shown in Figure 2 (WHO, 2006) it can be seen that in the higher income countries, the 
burden of caring for the ageing population with chronic conditions will dominate healthcare 
needs and budgets. In the lower income countries there are still significant problems with 
childhood illness and infectious diseases and the challenge here is to protect the health of 
their younger populations. 
 

 

 

Fig. 1. Distribution of deaths by leading cause groups, male and female, worldwide, 2004 
(WHO, 2006, reprinted with permission). 

Whilst there are differences in the nature of the healthcare challenges between high and 
low-income countries, it is clear that both groups must find more effective ways of 
delivering healthcare into their populations at reasonable cost.  This is critically important if 
countries are going to continue to provide effective healthcare for their citizens, whether this 
is privately or publicly funded.  This presents challenges to pharmaceutical research, drug 
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delivery, medical devices, hospital care, community care and community medicine. Chronic 
disease takes many people out of the community and workplace and creates an enormous 
and unseen group of patients requiring long term intervention and care. Secondary effects 
of chronic conditions generate problems in wound care, nutrition, provision of home-based 
medical equipment and community treatment, creating additional burdens for healthcare 
systems. As an example, in the UK alone the cost of chronic wounds is estimated to be £2.6 
billion per annum, with 200,000 patients experiencing a chronic wound at any one time 
(Posnett & Franks, 2008). 
 
 

 
Fig. 2. Percentage deaths by age group in different global regions, 2004 (WHO, 2006, 
reprinted with permission) 

Diagnostics and monitoring have key roles to play in optimising care, and the expectation in 
the biosensors community that developed in the 1980s and 1990s was that biosensors would 
be deployed extensively to address some of these needs. It is clear however, that despite the 
widespread (and frequently ingenious) development of new sensor types and technology, 
and the advances in device miniaturisation, there is still a notable gap between laboratory 
biosensing and commercially viable medical or consumer diagnostic devices. The biosensor 
community needs to find ways of bringing its work to the wider population for telemedicine 
or telehealthcare. To do this some of the fundamental problems in biosensors, which have 
impeded their useful deployment in healthcare, must be overcome.  Some of the key 
challenges for practical use of clinical biosensors will now be highlighted. It is proposed that 
further use of minimally invasive sampling techniques for patient monitoring will allow 
flexibility in biosensor selection, and provide a wider range of diagnostic systems for use in 
the home, community or clinic. 

2. Home or frequent monitoring via wearable or minimally invasive sensors 

The field of wearable sensors that report via wireless systems is advancing, but biosensors 
are notably missing from current systems. Pantelopoulos & Bourbakis, (2010) have recently 
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surveyed this area and report the potential for wearable sensors for mainly ECG, EEG, blood 
pressure, and pO2, but glucose sensing is the only biosensor application mentioned 
(Pantelopoulos & Bourbakis, 2010). Consideration of wearable sensors highlights two 
different clinical questions. Firstly, what are the types of parameters that would be useful to 
monitor, and secondly, why are there so few clinical ‘on body’ biosensors?  
In addressing the first question, what parameters are useful for wearable sensors, there are 
several important factors to consider. The answer to this question requires an 
interdisciplinary approach. There is a question to be put to healthcare providers on what 
would be useful as a wearable, disposable sensor for home monitoring. Working with 
clinical groups, it is possible to create a profile of what would be most beneficial to their 
patient groups in terms of medical technology and monitoring. At present, the three leading 
causes of death worldwide are cancer, ischaemic heart disease, and cerebrovascular disease.  
It is projected that deaths attributable to these diseases will continue to rise between now 
and 2030, with the increase in cancer deaths being most marked (WHO, 2006).  In each case, 
early identification of the disease has been shown to improve survival rates.  High blood 
pressure is strongly correlated with increased risk of heart disease and stroke, and therefore 
technologies to enable better monitoring and early identification of these conditions may 
have a positive impact on reducing cardiovascular related deaths.  Similarly, it has been 
shown in several studies that survival rates from cancer are linked to time of diagnosis. 
Diagnostic technologies for this purpose have been developed and are being applied in 
home testing kits for bowel cancer (Walsh & Terdiman, 2003).  Of great relevance to any 
analysis of potential parameters are the changes in lifestyle that have occurred in recent 
years and which are expected to continue.  Most notably, obesity is an emerging problem 
across many developed and developing societies.  It has been linked to a variety of 
metabolic disorders, including Type II Diabetes, cardiovascular diseases, and certain 
cancers.  With increasingly sedentary lifestyles, it is likely to remain a major issue, and is 
therefore receiving considerable focus as a target for the preventative healthcare strategies 
increasingly being adopted.  Similarly, Hospital Acquired Infections (HAI) remain an 
unfortunate feature across many healthcare systems, with their impact not only being felt by 
the affected patients, but also in driving up the treatment costs to healthcare providers.  
There is considerable debate about the best preventative measures to adopt to reduce HAI 
but any technology that proves capable of rapidly detecting such infections, or the bacteria 
that cause them, would be a powerful tool in such preventative strategies.  
The above discussion is not comprehensive but its purpose is to provide a background to 
common issues facing healthcare systems across the world, and to stimulate thoughts on 
what parameters might usefully be measured.  Looking ahead, and accepting that home 
monitoring is set to become a major feature of healthcare systems, what parameters could be 
usefully checked at home and used to adjust lifestyle or medication? As an example, if some 
of the key health challenges and medical conditions identified by the WHO are mapped to 
relevant clinical parameters, then a selection of parameters that would be useful to measure 
regularly and locally emerges, as shown in Table 1. 
Whichever field of health is considered, a key component of any parameter analysis must be 
a market evaluation.  The financial investment that is required to take a biosensor concept to 
a final product is substantial and may in itself be an explanation as to the lack of available 
biosensors for home settings or continuous monitoring.  In this context, the question that 
Kissinger posed in 2005 remains key: “Do enough people want or need to have a sensor for 
the analyte of interest?” (Kissinger, 2005).  When one considers the size of the diabetic 
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market for glucose monitoring, around $7bn (with a small but growing segment of this 
given to continuous monitoring) (HSBC,  2006), it is perhaps not surprising that the glucose 
biosensor is the most successful of all known biosensors today, representing around 85% of 
the biosensors’ market.  In addressing the question of what type of parameter to measure 
the answer must clearly come from an analysis of the population base for the parameter, the 
clinical need, the advantages to the patient and the cost savings to be made from its proper 
integration in healthcare provision.  This in turn will drive a true market for the sensor and 
ensure its uptake if properly deployed. 
 

Condition      Parameter 

Dehydration ( elderly)    electrolytes 
Obesity ( weight loss)     ketones, tryglycerides, insulin 
Asthma      blood parameters, compliance 
Wound management     wound moisture, pH, bacteria 
Diabetes      glucose, insulin, ketones 
Cardiovascular      electrolytes, cardiac markers 
Stress      cortisol 
Poor nutrition     vitamins, electrolytes 
Drug abuse     drugs of abuse 
Drug compliance     specific sensors for medicines 
Cancer      markers for therapy, recurrence  

Table 1. Parameters potentially useful for home or community clinic  monitoring 

It is also necessary to understand the different types of markets within healthcare and 
alternative models of delivery within these markets.  Across the world, there has been a 
movement towards an increasing role for Primary Health Care (WHO, 2008), with a growth 
in patient-centred approaches which aim to put people at the centre of their own healthcare.  
The practical implementation of this is causing a decentralisation of healthcare provision 
away from the hospital to the home, local surgeries, and pharmacies.  This coincides with 
demands for better prevention, and early diagnosis.  The driving force behind these trends 
is the downward pressure on the unit cost of treatment that is a major feature of today’s 
healthcare systems.   
Many of the influences identified above are well established.  It is therefore pertinent to 
consider why such a limited number of biosensors have made an impact within this 
apparently favourable climate.  The regulatory environment which governs such devices is 
an important consideration.  It is beyond the scope of this chapter to detail the regulatory 
requirements in each region. Whatever the precise nature of the regulatory framework in 
any region, it is clear that it represents a significant barrier standing between a promising 
research result and subsequent translation into a marketable medical device product.  This is 
certainly one explanation for the discrepancy between the volume of academic research 
papers reporting on biosensor development, and the rather limited number of commercially 
successful biosensors.  Crucially, gaining regulatory approval represents a significant cost, 
the bulk of which is necessarily incurred at a point when the device is unable to generate 
sales revenue.  These costs are mainly related to obtaining proof of clinical performance and 
generating biocompatibility or toxicology data, and to ensuring that large scale manufacture 
of devices is highly quality controlled. Consideration of the regulatory requirements from 
the outset of any medical device programme can help to minimise such costs by the correct 
selection of acceptable materials, and by adoption of approved design practices from the 
start of the process.   
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This takes us to a discussion of the key biological challenges in the deployment of 
biosensors, either in wearable format or as implanted systems.  

3. Home use biosensors 

3.1 State of the art 

The parameter that continues to set the pace for personal use of biosensors is glucose and it 
will be used in this chapter to illustrate what can be achieved in minimally-invasive 
biosensing. The extent of the diabetic market is such that there are considerable commercial 
and healthcare incentives to drive new developments in monitoring in this field. The WHO 
statistics from 2004 indicated that there were 170 million diabetics worldwide at that point 
and lifestyle changes are raising the rate of the development of the condition significantly, 
with an expected world population of 300 million by 2025 (WHO 2004). The development of 
portable glucose sensors for diabetics has been reviewed in detail by Newman & Turner, in 
2005, tracing the path of glucose sensing from the Yellow Springs Glucose Analyser 
developed by Leyland Clark through the introduction of amperometric,  mediated glucose 
sensors that provide reliable and portable glucose sensing up to the ‘minimally invasive’ 
sensors on offer today.  The frequent blood sampling required by diabetics who use blood 
testing devices has led to problems for users, including pain and damage to sampling sites, 
and companies have tried to overcome this by devising better lance systems and looking for 
alternative sampling sites to the fingertips. Ideally no blood sampling would take place for 
diabetic home testing and the field is moving towards this.  

3.2 Subcutaneous glucose sensors 

Currently the state of the art in minimally invasive technology is provided by subcutaneous 
sensors that the user must inject under their skin and clip to a skin mounted transmitter. 
Systems are available from Medtronic (Guardian® REAL-Time), Abbot (FreeStyle 
Navigator®) and Dexcom (Cox, 2009). The sensors can be left in body for up to seven days 
before removal or replacement and will transmit glucose readings to a meter from the skin 
mounted transmitter. This is a clear advance in glucose monitoring and the best yet that 
biosensing has been able to offer the diabetic field.  
Other point of care systems are available for some parameters but are all based on blood 
sampling, such as devices for monitoring of anti-coagulation therapy e.g. HemoSense  
INRatio meter (Meurin et al., 2009) and lactate measurement devices for sports 
monitoring and general medicine e.g. Roche Accutrend (Acierno et al., 2008).  Thus it is 
clear that there is no widespread availability of biosensors that are capable of either full or 
subcutaneous long term implantation and a brief consideration of the reasons for this is 
appropriate. 

3.3 Device implantation responses 

The host response in the human body to any foreign material is a stimulation of the 
inflammatory response. Body fluid contact with the device and protein adhesion stimulates 
cellular activity on the implant surfaces, commencing with leukocyte contact and a cell 
cascade reaction. This further stimulates protein deposition and fibrous encapsulation of the 
foreign material, creating a barrier to analyte diffusion and a degradation of device 
performance. Miniaturisation of devices has not removed these fundamental biological 
problems. The smaller sensors developed through nanotechnology are not immune to this 
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response despite improvements in biomaterials and the use of biocompatible coatings, such 
as polyethylene glycol, and the use of tissue response modifiers (mainly anti-inflammatory 
drugs) embedded in devices for local release. Vaddiraju et al., (2010) have reviewed the 
challenges facing nanosensors for implantation and conclude that while the reduction in size 
of implant through nanotechnology has lowered the immune response it has not been 
removed. Nevertheless, they recommend continued research in this field and the 
development of multianalyte devices for early disease detection.   
In addition there may be opportunities to introduce temporary implanted sensors where 
tissue needs local monitoring over shorter times. An example of such a device is an 
implantable sensor for cancer marker proteins that can be left in situ during tumour surgery 
to monitor local tissue response (Daniel et al., 2009). The sensor contains an implanted 
magnetic label sensitive to cancer markers which can diffuse into the device. It has been 
demonstrated in a murine model for the monitoring of cancer markers following tumour 
resectioning. With adjustment of the magnetic label it could equally be deployed for 
monitoring of metabolites or chemotherapy agents.  
Subcutaneous sensors do not fare much better when the host response is considered and are 
also subject to protein attachment. Gifford et al., (2006) have studied the encapsulation of a 
subcutaneous needle-type biosensor for glucose using a rat model and concluded that the 
absorption and infiltration of larger molecules, such as IgG (169 kDa) and serum albumin 
(66KDa), creates barriers to the diffusion of glucose and is the main cause of loss of 
sensitivity in these devices. Regular calibration is needed to account for this loss in 
sensitivity. 

3.4 Less invasive approaches to health monitoring 

If in vivo and subcutaneous biosensors are eventually thwarted by the host response then 
less invasive methods of obtaining biological samples directly from the subject must be the 
answer to many diagnostic requirements. There is a great deal of research presently 
underway to address this. The use of less invasive sensing methods for glucose are explored 
below, as an example of how minimally invasive monitoring is developing. Methods of non-
invasive and continuous glucose monitoring are regularly reviewed (see for example 
Ferrante do Amaral & Wolf, 2008; Girardin et al., 2009; Pickup et al., 2005; Tura et al., 2007; 
Wickramasinghe et al., 2004)  

3.5 Measurement of glucose in body fluids other than blood or interstitial fluid 

Although blood glucose concentrations are of interest, noninvasive methods for measuring 
glucose have been attempted using a number of different fluids in the body. The following 
discussion concentrates on fluids that are most readily accessible, such as sweat, saliva, tear 
fluid and urine while sampling of interstitial fluid will be discussed in later sections. Sweat 
is an example of a body fluid that is readily accessible through non-invasive means. Glucose 
levels in sweat have been reported to be similar to glucose levels found in blood. Sweat may 
therefore represent one option for non invasive measurement (Pellett et al., 1999) of glucose 
and other parameters. Patches have been developed for sweat collection, and these devices 
have been trialled for use in the detection of substance abuse (Liberty et al., 2003; Uemura et 
al., 2004).  
The measurement of glucose in urine, urinalysis, has also been used as an indication of 
blood glucose levels. This has been used clinically for some time and is often the method by 
which diabetics are first identified (Pickup & Williams, 1997). Although this method of 
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analysis is useful it does not lend itself to continuous, quantitative, blood glucose 
measurements. Aside from the practical issues of regularly measuring urine glucose levels, 
storage times in the bladder lead to significant lag times between glucose levels excreted in 
the urine and those found in the blood. Similarly, glucose levels in other biological fluids, 
such as saliva, also lag behind blood (Pellett et al., 1999).  
Even if this lag time between blood and body fluid glucose was considered insignificant, 
there are few devices reported in the literature for non-invasive, near continuous, 
monitoring of glucose levels from sampled human body fluids other than interstitial fluid. 
An example of a system for human body fluid measurement is a contact lens that reacts to 
tear glucose levels (Badugu et al., 2003).  Contact lenses embedded with a form of boronic 
acid that contains fluorophores have been investigated as a medium for sensing the amount 
of glucose in tear fluid.  It has been suggested that this approach may be suitable for the 
continuous monitoring of tear glucose levels, which typically correlate to blood glucose 
levels. A potential tear glucose operating range of 50µM – 1000µM was reported (Badugu et 
al., 2003).  It has been proposed that users could assess their glucose concentration by 
comparing the colour of their contact lens against pre-calibrated colour strip (Badugu et al., 
2005).  Further work is needed to address issues of resolution, lifetime and biocompatibility 
(Moschou et al., 2004).  The main issues concerning this method are, firstly, it seems that 
glucose fluctuation would only be detected if its concentration increased over what was 
expected.  If this were the case, then the onset of hypoglycaemia would not be detected.  The 
second issue is that this method does not provide a quantitative measure of blood glucose 
levels so could not be used in conjunction with hypo- or hyper-glycaemic alarms or give 
indication of insulin dose countermeasures. 

4. Human skin and minimally invasive monitoring 

Due to the potential for access through skin, the majority of approaches taken to minimally 
invasive blood glucose monitoring have concentrated on this organ. Skin is an effective 
barrier to the transport of molecules into the body or out of the body, due to the structure of 
the dermis, epidermis and stratum corneum, but does allow some molecular transport, 
interstial fluid collection and subcutaneous access.  The remainder of the chapter will deal 
with methods of non-invasive monitoring based on dermal or transdermal analysis of the 
analytes that can be obtained through the skin.   

4.1 Dermal monitoring approaches 
4.1.1 Non-invasive – electromagnetic analysis 

Electromagnetic radiation provides the possibility for truly non-invasive glucose 
measurement with a very low risk of adverse side effects. Electromagnetic (EM) wave 
radiation can be observed over a wide range of different wavelengths. The range of 
wavelengths gives rise to the electromagnetic spectrum as shown in Figure 3.  
Electromagnetic radiation will interact with molecules and atoms. These energetic 
interactions can be used to probe glucose, and potentially other parameters, in various ways 
depending on the chosen wavelength. As sensing of blood glucose has to be non-harmful to 
the body, shorter wavelengths than the optical region cannot be used as radiation below 
these wavelengths becomes ionising.  
Optical methods (between the visible and far-infrared parts of the electromagnetic spectrum) 
are largely based upon focusing a beam of light onto a tissue test site and measuring how the 
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light is modified by the target tissue. Light will interact with biological tissues in a number 
ways including absorption, reflection, scattering, transmission, polarisation or modification in 
wavelength.  The nature of this interaction and the degree to which it occurs will depend upon 
the components of  the tissue (e.g. water, fat, glucose) and their respective concentrations 
within the target sample.  These compounds have recognisable optical signature responses to 
incident light and many forms of analysis have been investigated to relate these optical 
signatures to the concentration of glucose in tissue samples.   
When the glucose concentration of the sample site has been measured, this then has to be 
related to blood glucose concentration.  This is not a straightforward process as within a 
chosen sample site there will be a number of compartments each containing a different 
concentration of glucose.  Each of these different compartments will contribute to the 
measured signal.  For sites chosen on the skin, the signal is likely to be dominated by the 
compartments containing intracellular fluid, interstitial fluid and capillary blood.  The ratio 
of these three groups will also vary depending on site location leading to very site specific 
measurement calibrations.   
Two of the most popular areas for investigation of glucose by  electromagnetic spectroscopy 
are near-infrared spectroscopy and mid-infrared spectroscopy.   

4.1.2 Near-Infrared Spectroscopy (NIR) 

The near-infrared range used for investigating blood glucose spans an electromagnetic 
wavelength range of approximately 1000nm -2500nm.  This region is a very popular range 
for investigation of glucose as it permits penetration into deep tissue (~1-100mm) depending 
on the chosen wavelength. The depth of penetration will decrease with increasing 
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Fig. 3. An illustration of the regions of the electromagnetic spectrum with approximate 
corresponding frequency and wavelength. 
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wavelength. Another advantage is that the absorption coefficient of water is weaker in near-
infrared region when compared with the mid-infrared region 
There are challenges to glucose measurement by near-infrared spectroscopy and a variety of 
tissue test sites have been researched (Oliver et al., 2009). From a physiological perspective, 
the challenges are compound. Firstly this arises from the relatively low concentrations of 
glucose in the body when compared with the presence of other substances that affect the 
NIR signal such as fats and water.  Secondly, the absorption coefficient of glucose is low in 
the near-infrared region and, finally,  the spectral bands due to glucose overlap with bands 
due to water, fat, haemoglobin and proteins. This introduces significant technical challenges 
for signal sensitivity and signal interference, which will need to be addressed in order to 
demonstrate sufficient accuracy of glucose measurement (Pickup et al., 2005; Tura et al., 
2007; Ferrante do Amaral & Wolf, 2008). The cost and physical size of equipment required 
for infrared spectroscopy measurements may also limit its application in continuous 
monitoring, particularly in the context of wearable sensors.  Despite these challenges, there 
is still a large amount of commercial activity in this area. 

4.1.3 Mid-infrared region 

The mid-infrared region can span between 2500nm – 10,000nm. As this radiation is at 
longer wavelengths than Near-Infra Red, the depth of penetration is reduced to the 
micrometer range (Tura et al., 2007). At these wavelengths, less of the light is scattered 
and the majority of light is absorbed. In this region the absorption peaks are sharper and 
more defined when compared with the broader weaker peaks seen in the NIR region. This 
is observed for both glucose and other compounds (Ferrante do Amaral & Wolf, 2008). 
However, hydration level of the skin can has a strong impact on such absorption signals 
and this is subject to variation. 

4.2 Transdermal monitoring approaches 

The transdermal route has clear attractions and can be divided into two approaches: 
interstitial fluid sampling, and transdermal extraction. In the first method, the intention is to 
directly sample interstitial fluid and this can be done via microneedle technology, 
sonophoresis or thermal ablation. For the second approach, transdermal extraction of 
molecules is achieved by electrically sampling the skin interface. This largely makes use of 
the existing skin transport routes in the hair follicles, sweat glands and in nano and 
micoporous structures in the skin. This is the realm of iontophoresis and electroporation.  
Both approaches could lend themselves to combined extraction and sensing using micro and 
nano electromechanical systems (MEMS and NEMS technology) and therefore should be of 
interest to those developing miniaturised sensors. Much of the literature in the field has 
been generated from research into transdermal drug delivery, but it is equally applicable to 
the extraction of molecules via the skin. Arora et al., (2008) comprehensively review 
Microsystems for transdermal drug delivery and describe state of the art skin delivery 
techniques that could easily be adapted for the collection of, or access to, interstitial fluid. 
They point out that creating micrometre-scale breaches in the skin is well tolerated and the 
skin will recover quickly from such breaches. Thus, it is possible to temporarily reduce the 
skin barrier for molecular collection and analysis. This means that the accepted passive 
limits of drug delivery (or molecular extraction) of 500 Da can be surpassed and large 
molecules could be detected as well as small.  
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4.2.1 Interstitial Fluid Sampling (ISF) 

The most easily understood of the device types for transdermal extraction are microneedle 
devices. Microneedle arrays can be fabricated and pressed onto skin or scraped over it to 
create the necessary breach in the stratum corneum. Successful application of a microneedle 
array can increase skin permeability in that region by up to 4 orders of magnitude. 
Microneedles can be solid or hollow and therefore such devices could offer a degree of 
flexibility in terms of location of biosensors. Combined sensors and microneedles are already 
being suggested by some groups. For example, Mukerjee et al., (2004) demonstrated successful 
collection of interstitial fluid from a microneedle and capillary device which enabled glucose 
measurement. Further investigation of how interstitial fluid levels of specific analytes compare 
with blood levels is required, but early signs are encouraging. Mitragotri et al., (2000) also 
investigated a range of other parameters in rats, with ISF collected by sonophoresis taken 
together with simultaneously collected serum samples, and found good agreement between 
glucose, albumin and triglycerides in ISF and serum, but higher than expected lactate and 
calcium in the ISF as compared to serum. 

4.2.2 Ultrasound (sonophresis/phonophoresis) 

Ultrasound has been explored as a method for enhancing drug transport across the skin.  
Various power levels, duty cycles, and frequencies have been examined.  Drug delivery for a 
range of hydrophilic and hydrophobic compounds enhanced by sonophoresis has been 
comprehensively reviewed by Escobar-Chavez et al., who conclude that the use of 
sonophoresis in skin permeation enhancement and drug delivery is likely to increase 
(Escobar-Chavez et al., 2009) 
Various frequencies of ultrasound can be chosen, from low frequencies (20 kHz) to very 
high frequencies (low MHz), to be applied to the skin to enhance permeability.  It has been 
suggested that in the lower frequency range (approximately 20 - 90 kHz) there exists a 
threshold intensity below which no detectable skin permeability enhancement will be 
observed. This threshold intensity increased with frequency (Tezel et al., 2001). It has also 
been suggested by the same authors that low frequencies (20 kHz) induced localised 
transport compared to a more dispersed effect seen with higher frequencies (58.9 kHz).  
Other authors (Ueda et al., 1995) have suggested that high frequency (10 and 16 MHz) 
ultrasonication can concentrate the ultrasonic energy on the stratum corneum in vivo. They 
also reported that electron microscopy indicated that the intercellular route of the stratum 
corneum is influenced by ultrasonication at these frequencies. 
Cavitation, the growth and collapse of gas bubbles, is generally reported to be the dominant 
mechanism of sonophoresis. Cavitation is thought to disorder the lipid bilayers in the 
stratum corneum creating mass transfer pathways and thus increasing the diffusion 
coefficient of solutes. However, it has been suggested that cavitation alone cannot account 
for the total enhancement effect observed (Cancel et al., 2004). Several mechanisms have 
been suggested to contribute to this transport phenomenon.  Among these are structural 
changes caused by cavitation, thermal effects, mixing in the liquid phase and acoustic 
streaming through hair follicles and sweat ducts.  In addition, a convective mechanism of 
enhancement has also been suggested, although no quantitative analysis has been proposed. 
Cavitational and mechanical effects increase tissue temperature and skin permeability is 
increased by an increase in temperature. The ultrasonic apparatus used in one study (Ueda 
et al., 1995), raised the temperature in the donor compartment (in vitro) by 3 - 4°C during the 
application of ultrasound. This may account for some reversible effects accompanying 
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ultrasound. In vivo, raising tissue temperature should not exceed an increase of 1ºC as 
anything above this can cause irreversible damage to tissue.  Such unwanted effects may 
account for the irreversible effects observed such as a decrease in barrier function of stratum 
corneum.   
Successful application of ultrasound to skin for the sampling of interstitial fluid and 
detection of glucose has already been successfully demonstrated by Kost et al., (2000) and it 
remains a topic of research interest.  
In summary, the sonophoresis approach to skin permeability enhancement is clearly of 
interest although physical size and cost of ultrasound based enhancement technology may 
limit its use in the field of continuous monitoring, particularly with application to wearable 
sensors.   

4.2.3 Radiofrequency (RF) thermal ablation 

Radiofrequency thermal ablation has been used in microsurgery for treatment of conditions 
such as tumours. This method consists of an array of needle like electrodes that are placed 
on the skin which deliver heat that kills the tumour while leaving the surrounding healthy 
tissue unharmed. This method has been tested in a similar way for aiding transdermal drug 
delivery. This works by using high voltage radiofrequency currents to create aqueous 
microchannels in the skin (Sintov et al., 2003). This study examined this effect in vitro (across 
porcine skin) and in vivo in rats. The study reports increased delivery of the chosen drug 
(diclofenac) by a factor of 30 compared with the control over a 12 hour period.  As RF 
thermal ablation has been demonstrated an effective method of increasing skin 
permeability, it is conceivable that it could be adapted for use in transdermal extraction or 
assisted diffusion.   

4.2.4 Electroporation 

Electroporation refers to the application of high electric fields for short bursts to skin 
causing the formation of micropores in the skin. A cell bilayer can be electroporated by the 
application of transmembrane voltages in the range 0.3-1V and thus 1ms pulses of between 
100- and 1500V have been used to electroporate the stratum corneum which contains 
approximately 100 bilayers (Vanbever & Preat, 1999). However, there is evidence that even 
application of moderate voltages up to 60V across the skin causes electroporation 
(Chizmadzhev et al., 1998) and thus it should be expected that some poration will occur 
during iontophoresis. The formation of micron feature openings in the SC by electroporation 
leads to the possibility of extraction of higher molecular weight molecules. There is 
considerable scope for localised electroporation of skin by microdevices and microelectrodes 
that is yet to be exploited. 

4.2.5 Iontophoresis 

Iontophoresis is a process where two electrodes, with good interface conductivity (such as 
silver chloride and conducting gel), are placed upon a membrane and a small voltage is 
applied to deliver a low current through the membrane (or skin in human applications).  
This voltage usually seeks to drive a constant DC current in the range of 300 – 500 µA/cm2.  
This method can be used to enhance transport of ionic elements, or molecules and 
compounds through the skin as a result of the interaction of the charged ions and molecules 
with the imposed electric field. Uncharged molecules are also transported by 
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electroosmosis.  The skin is a permselective membrane that, at physiological pH (~5.0-6.0), 
supports a net negative charge (Manabe et al., 2000).  As a result, a positively charged ion 
will penetrate more easily across the skin than a comparably sized negative ion. An 
electroosmotic solvent flow will also be established.  This electroosmotic effect predominates 
in the anode to cathode direction because current is preferentially carried by cations and  
momentum is transferred to the solvent by cation movement. This momentum causes a net 
convective flow (electroosmosis) from anode to cathode and, as a result, there will be 
enhanced transport of dissolved, uncharged solutes in the same direction. 
Iontophoresis may also enhance the transdermal movement of larger molecules (> 1000 Da) 
(Delgado-Charro et al., 1994). However, the transport numbers of such molecules (i.e., the 
fraction of the total current flowing which is carried by the large molecule of interest) are 
very small because of competition from smaller, more mobile ions such as the background 
electrolytes and/or receptor solutions. Research in this field is ongoing and unexpected 
behaviour has sometimes been reported with larger molecules such as peptides. For 
example, a very weak dependence of flux upon applied current density, and even an inverse 
relationship between transport and applied peptide concentration, has been observed 
(Delgado-Charro et al., 1994). 

5. Minimally invasive monitoring by reverse iontophoresis  

Reverse iontophoresis is where the application of electric current across the skin is used to 
extract a substance of interest from within or beneath the skin to the surface (Santy & Guy, 
1996a,b). Figure 4 illustrates the application of a constant current via two skin mounted 
electrodes.  The electrodes are housed in electrically conducting gel chambers.  The diagram 
also illustrates the resultant solvent flow that is generated.  Circles with a ‘+’ represent 
positive ions and circles with a ‘-‘ represent negative ions.  Circles with a ‘G’ represent the 
glucose that is caught in the solvent flow and carried into the gel chamber for analysis via an 
imbedded sensor. 
Transdermal molecular extraction by reverse iontophoresis has a distinct appeal as it is an 
electronically controlled and programmable method of extraction, that can be turned on and 
off at different points in the diagnostic cycle. Because there is no deliberate breach of the 
skin there are four separate routes of molecular transmission that are available for molecular 
transport; transcellular, intercellular, via hair follicles and via eccrine (sweat) glands (Riviere 
& Heit, 1997). The mechanism of extraction is non-specific; there are a great number of 
potential analytes that could be measured and therefore a great number of potential uses for 
reverse iontophoresis.  An example of this has been shown by Sieg et al., where glucose and 
urea were simultaneously extracted (Sieg et al., 2004b).  We have demonstrated good levels 
of simultaneous lactate and glucose extraction in healthy volunteers by application of 
iontophoresic current of 300uA cm-2 in 15 minute cycles for periods up to 1 hour as shown in 
Figure 5 (Ching & Connolly, 2008b). Others have shown the simultaneous extraction of a 
range of amino acids in human subjects (Sieg et al., 2009). 
Investigations into methods of optimising the analyte extraction have revealed that cathodic 
extraction is enhanced as pH increases as far as can be feasibly maintained in contact with 
the skin surface; the reverse is true for anodal extraction (Santi & Guy, 1996b).  In-vitro, 
electroosmosis increases with decreasing ionic strength in the electrode chambers.  
However, sufficient electrolyte must be present to sustain the necessary electrochemical 
reactions occurring at the electrode surfaces. 
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Fig. 4. Schematic illustration of the principle of reverse iontophoresis showing an 
iontophoresis extraction device supplying a constant current to an anode and cathode.  

 

 

Fig. 5. Average results of long duration bipolar direct current application (current density of 
0.3mA/cm2, polarity of electrodes reversed at intervals of 15 minutes, experimental time of 

60 minutes) on  human transdermal extraction of (a) lactate and (b) glucose (mean  SD; 
n=10 ). Extraction of lactate or glucose by reverse iontophoresis was significantly higher 
(p<0.001 for both cases) than that of the control sample. Reprinted from Ching & Connolly, 
2008b with permission. 
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Further work by Santi & Guy used a non-metabolizable sugar mannitol as a marker and 
found that decreasing the pH in the anodal chamber and increasing that in the cathode 
chamber improved the total quantity of electroosmotic flow from beneath the skin (Santi & 
Guy, 1996a). The authors also fixed pH, and reduced the ionic strength of the electrode 
chamber solutions (relative to the physiological level), confirming again enhanced reverse 
extraction, most notably at the cathode.  

5.1 Effects of iontophoresis on human skin and skin recovery 

The successful clinical application of iontophoresis will require minimal or no side effects as 
well as the rapid recovery of the skin barrier after the current flow has been terminated.   
Curdy et al., (2001) has reviewed non-invasive methods for skin integrity assessment. These 
methods include Transepidermal water loss (TEWL), Impedance spectroscopy (IS), 
Attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy and Laser 
Doppler flowmetry (or velocimetry) (LDF).  Curdy et al., used a variety of these methods to 
assess skin function following iontophoresis in vivo (Curdy et al., 2002).  The paper 
demonstrated a reduction in skin barrier impedance, as desired and expected, post-
iontophoresis.  However, the paper concludes that there is no evidence of an association 
between the observed reduction in impedance and skin damage. 
The potential for reverse iontophoresis as a technology for transdermal extraction has been 
most noticeably demonstrated by the Glucowatch (Cygnus Inc). Significantly, the 
GlucoWatch gained FDA approval for diabetic monitoring in 2001.  The FDA approval was 
based on nine pivotal clinical studies, seven assessed the effectiveness of the device and two 
assessed safety. A summary of these studies and the criteria on which the GlucoWatch 
achieved FDA approval can be found in the relevant FDA approval documentation 
(Summary of safety and effectiveness data, PMA No. P990026, FDA 2011).  In 2002, the 
second generation device (GlucoWatch G2) obtained FDA approval (Summary of safety and 
effectiveness data, PMA No. P990026S008b, FDA 2011) Further details on this device can be 
found in the literature (see for example Tierney et al., 2001).  Despite obtaining FDA 
approval in 2001 the GlucoWatch did not secure market adoption.  Technical or user-related 
issues, such as sweating on the skin under the device causing a short circuit that (when 
detected by two electrodes specifically designed for this) stopped glucose readings, 
impeded its widespread uptake 

5.2 Reverse iontophoresis challenges  

If reverse iontophoresis is going to make the impact that many expect in the field of 
minimally invasive monitoring, it is clear that key technical challenges will have to be 
overcome.  It is now worth exploring each in some detail and examining what research is 
underway to address each challenge.  The following analysis is largely based on glucose 
sensing, although other parameters are mentioned where appropriate.  However, many of 
the technology challenges are common across a range of potential parameters, and therefore 
the discussion should be of relevance to all readers engaged in minimally-invasive sensor 
development.  

5.2.1 Comfort 

It is clear that one of the major advantages of minimally invasive sensors is an ability to 
perform monitoring that is relatively pain free.  This is clearly understood when the 
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replacement of frequent, fingerstick blood sampling is considered.  Any device that can 
provide the same information without the requirement for blood samples would represent a 
real advance and facilitate better disease management strategies, which are known to reduce 
secondary complications of diabetes (UK Prospective Diabetes Study Group (1998a; 1998b; 
1998c; 1998d)).  It is therefore essential that any proposed technology does not in itself 
introduce new barriers to adoption, such as pain or inconvenience associated with its use.  
The level of pain experienced during iontophoresis is related to the current density, and it is 
generally accepted that currents in excess of 300µA / cm2 cannot be readily tolerated for 
extended periods (Ledger, 1992).  This places limits on the type of molecule that can be 
extracted transdermally for analysis, with molecules over 500Da being unlikely to cross the 
skin at this level of current.  In addition, the applied current density has also been directly 
correlated with the transdermal flux (Delgado-Charro et al., 1994).  Using the neutral 
molecule, Mannitol, Delgado-Charro et al., were able to demonstrate that flux was linearly 
correlated with applied current density over a range of 0.14 – 0.55 mA / cm2 (Delgado-
Charro et al., 1994).  Therefore, any efforts to reduce the current level must be balanced with 
the need to extract a quantifiable amount of the analyte of interest, and for biosensing this is 
limited by the range of the sensor to be deployed in the gel electrode.  Consequently, 
technologies that can enable efficient transdermal extraction at low current levels are 
particularly appealing 
Since one of the potential benefits of minimally invasive sensors is the ability to monitor 
continuously over extended periods, it is worth examining in more detail how the skin 
interface responds to the process of reverse intophoresis over prolonged extraction periods.  
On a practical level, there is evidence of localised skin irritation over prolonged durations of 
reverse iontophoresis (Howard et al., 1995). There are two main reasons for this beyond the 
localized heating that can occur at higher levels of current.  Firstly, the use of direct current 
(DC) and secondly, the use of embedded biosensors within the skin gel.   
Direct current (DC) is believed to generate high concentrations of hydroxyl ions within the 
anodal gel compartment, with the production of hydrogen ions within the cathodal 
compartment.  Since both gel compartments are in intimate contact with the skin surface, the 
resultant localized alterations in pH may be, at least in part, responsible for the erythema 
and stinging that has been reported in some studies (Howard et al., 1995).  In efforts to 
address this, polarity reversal has been introduced.  Here, the polarity of the electrodes is 
regularly alternated, such that the current flow changes direction.  In addition to reducing 
the effects of local pH imbalances, it has also been shown in several studies, including our 
own, to actually enhance iontophoretic transport (Ching et al., 2008a). DC current can cause 
electrical polarization of the skin, thus inhibiting molecular transport across it, and it has 
been proposed that the enhanced transport, produced by switching electrode polarity, is 
likely due to a reversal of this skin polarisation process (Ching et al., 2008a). It is worth 
mentioning, however, that not all studies have demonstrated such an enhancement effect on 
transdermal flux (Santi & Guy, 1996a; Santi & Guy, 1996b).  It is likely that the optimum 
extraction conditions are molecule dependent.  Careful consideration of current level, 
duration, and delivery mode are therefore required.   
Another factor to be considered in transdermal extraction is the accumulation of reaction 
intermediates and products resulting from the detection technology.  The extent to which 
this represents a barrier to clinical adoption depends on the molecule of interest, and how it 
is to be measured.  If one considers the detection of electrolytes collected at the skin surface 
by reverse iontophoresis, a relatively simple embedded ion-selective potentiometric sensor 
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could be used to measure the ion concentration without the production of any deleterious 
reaction products.  However, the situation was quite different with the first generation of 
reverse-iontophoresis based continuous glucose monitors. The biosensors employed in these 
devices used glucose oxidase enzyme that was distributed throughout the gel (Tierney et al., 
2001).  Considering that the product of the glucose-glucose oxidase reaction is hydrogen 
peroxide, a known irritant (Watt et al., 2004), it is clear that irritation is a risk with prolonged 
use of these types of embedded sensors.  The use of mediated enzyme electrodes for analyte 
detection, where the detection enzyme is bonded to the electrode alongside a mediator (Liu 
& Okuma, 1998; Sato et al., 2006), or where the components are dispersed in the ink of a 
printed electrode (Saby et al., 1995), has removed this particular limitation. These mediated 
biosensors, which do not produce hydrogen peroxide, are now the most common method of 
glucose detection used today.    
At this stage, it is worth repeating that one of the main aims of minimally invasive sensors, 
is to replace existing invasive measurement methods where this will be of real clinical 
benefit. If this replacement is to be justified, then the proposed system must provide the 
clinician or patient with at least the same level of information as the original test format. The 
utility of reverse iontophoresis therefore relies, at least in part, on the ability to use the 
reading obtained at the skin surface as an indicator of the concentration of the analyte of 
interest in the blood. This is a key challenge, and many view it as the Achilles heel of the 
technology. It is therefore worthy of discussion and we will examine some of the technical 
challenges that have hampered efforts to establish robust correlations between blood and 
skin levels of an analyte. 

5.2.2 Lag 

A significant criticism of transdermal technologies that rely on sampling interstitial fluid, 
such as reverse iontophoresis, is that there is a lag time in detection of the molecule at the 
skin interface (Kulcu et al., 2003). It is known that blood glucose changes can occur rapidly 
in the blood (Pickup & Williams, 1997). A lag time of around 20 minutes was reported for 
the GlucoWatch (Tamada et al., 1995) although other studies suggest that shorter lag times 
of around 5 min may be possible (Kurnik et al., 1998). So it is not yet clear that lag time is an 
insurmountable problem for reverse iontophoresis approaches. It is also worth noting, that 
the relative importance of lag time can be viewed as being dependent on the molecule of 
interest. Given that attention has largely focused on glucose measurement thus far, it is 
perhaps not surprising that this problem has received considerable attention. However, 
there are other applications where the impact of lag time would present a much less 
significant problem. When one considers therapeutic drug monitoring for instance, a reverse 
iontophoresis patch may be applied to the skin for several hours before a measurement is 
made to estimate the final concentration of the drug within the blood (Leboulanger et al., 
2004). Similarly, it is of little apparent clinical benefit to measure disease marker molecules 
continuously, or over an extended duration. Rather, the purpose of such detection would be 
to provide a snapshot to inform diagnosis, enabling treatment or prevention measures to be 
initiated. It is therefore clear that one must consider the molecule, and the intended use of 
the information, since both will impact the extent to which existing reverse iontohporesis 
technologies can usefully be applied. The point has already been made earlier in this 
chapter, but this reinforces the value of clinician input at the very earliest stages of device 
development. 
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5.2.3 Gel properties 

Up until this point, our discussion on lag has focused on what is happening within the 
different compartments of the body, notably the relationship between blood and interstitial 
fluid analyte concentrations.  The following discussion now considers what happens within 
the gel that collects the molecule at the skin surface.  There are several challenges associated 
with this aspect of the technology.  The first relates to irritation and this has been covered in 
previously in the text.  The second relates to the diffusion profile within the gel environment 
and ultimately the systems sensitivity.  The diffusion characteristics of small molecules 
within solutions and gels are relatively well described in the literature (Wesselingh, 1993; 
Westrin et al., 1994). However, the impact of molecular diffusion within the gels used in 
reverse iontophoresis has so far been examined in only a limited number of studies 
(Künzelmann & Böttcher, 1997; Kurnik et al., 1998). 
Let us first consider what happens within existing reverse iontophoresis gels.  The molecule 
of interest is extracted across the skin and collects in a gel reservoir.  At some point 
following application of the current, the molecule will have reached a level that is detectable 
using an embedded sensor. The first point to make is that this introduces a lag time, 
meaning that the sensor response will be delayed. Figure 6 illustrates this concept in practice 
for a hydroxypropylmethylcellulose gel reservoir of approximately 5mm depth, with an 
embedded glucose biosensor at the bottom of the gel reservoir which we developed for 
testing gel behaviour (McColl, 2001).  The time between addition of glucose to the gel 
surface and the first sensor response can be as much as one hour (Fig 6(b)).  The use of a 
reduced gel concentration, with a consequent increase in the diffusion coefficient (from 2.44 
x 10-11  to  6.87 x 10-11 m2 / s), reduces this lag time to around 30 minutes (Fig6 (a)).  
The time required for accurate detection will be related to gel volume, diffusion coefficient, 
molecule size and mobility, and gel thickness.  Since the properties of the parameter of 
interest are necessarily fixed, modification of the gel properties is the main option for 
improving detection performance. We have shown in Figure 6 that diffusion time can be 
reduced by selecting a gel with a high diffusion coefficient.  In addition, reducing gel 
volume and thickness will also reduce lag time.  Indeed, lag times of 5-10 minutes were 
reported in an experimental study, which examined glucose diffusion in the type of thin gel 
layers (127µm) used in the Glucowatch (Kurnik et al., 1998).  Future designs are likely to 
make use of gel printing technology which will enable the manufacture of very thin gel layers 
to reduce measurement lag time.  This will also lead to enhanced sensitivity by reducing the 
dilution of the molecule in the gel reservoir. Taken together with the developments in 
enhanced skin permeation methods described earlier, advances in this area may help pave the 
way for near zero current, diffusion dominated transdermal extraction systems.  
A second important element of diffusion in transdermal systems is the diffusion profile of 
the analyte to the sensor. It is important to work on the sensor design to enhance diffusion 
sensor profiles at the sensor interface and to calibrate the sensor carefully in situ. The gel 
improvements described above may be sufficient for the continuous detection of molecules 
where the concentration is relatively unchanging over short time periods (hours).  As an 
example, it can be envisaged that for a molecule of relatively constant concentration, such as 
sodium, measurement within the gel could take place after a specified time, t, and the blood 
concentration inferred by a relatively simple algorithm based on an initial calibration.  
However, for molecules such as glucose, there is high variability in the blood levels of the 
molecule which can change rapidly over a period of minutes (Pickup and Williams, 1997). 
Since the diffusion profile of the molecule through the gel is essentially uncontrolled in  
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Fig. 6. Anodic current recorded from 2 individual electrodes in 2% HPMC gel (a) and 4% 
HPMC gel (b).  At time zero, glucose was added to one end of the gel slab.  The profile 
indicates the glucose dependent amperometric response observed at a sensor positioned at 
the opposite end of the gel slab.  

existing systems, this means that continuous measurement and responses to rapid 
reductions/increases are difficult to measure.  It is in this context that more sophisticated gel 
extraction systems are called for in the future.   

5.2.4 Calibration 

Whatever the parameter to be measured, it is clear that what is measured at the skin 
surface must provide an indication of the blood level of the molecule. Most reverse 
iontophoresis-based detection systems developed to date have relied on calibration of the 
device with the use of a finger stick blood sample. In recent years, research effort has been 
dedicated to the use of what is collectively known as an ‘internal standard’. The basic 
requirement for an internal standard is that it must be small enough to be extracted using 
reverse iontophoresis, and that its concentration within blood should be relatively 
unchanging, and independent of the molecule of interest. The internal standard was first 
proposed in 1993 (Numajiri et al., 1993). Since then, there have been several alternative 
molecules proposed (Leboulanger et al., 2004; Sieg et al., 2004a; Sieg et al., 2003; Sieg et al., 
2004b). Of these, the most widely studied to date has been sodium. Sodium is a small, and 
highly mobile, cation that is present in blood at a concentration of around 133mM. It has 
been examined as an internal standard for glucose measurement calibration in a previous 
in vitro study (Sieg et al., 2003). Using excised porcine ear skin, it was shown that the ratio 
of sodium to glucose fluxes was correlated to the concentration of glucose within the test 
chamber, indicating the potential utility of sodium to act as an internal standard for 
sample free glucose calibration. However, in the subsequent follow up study in a selected 
set of human volunteers (n=12) it was found that the promising correlations observed in 
vitro were not replicated in vivo, with the authors concluding that, “sodium, as the major 
charge carrier across the skin is not very sensitive to relatively subtle differences in skin 
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charge. As such it is a less than ideal internal standard for glucose monitoring.”(Sieg et al., 
2004a). In the same study, it was reported that potassium flux varied among individuals 
and within the same experiment although no data were provided. The reasons for the 
apparent failure of sodium as an internal standard remain to be elucidated, and we will 
return to this later in this chapter.  

5.3 Reverse Iontophoresis – future prospects 

In the above discussion, we have outlined limitations around comfort, irritation, sensitivity, 
and calibration with reverse iontophoresis systems developed to date.  We will now go on to 
describe some of the most recent technical solutions that are being developed in response to 
these limitations.   
There are several possible approaches whereby the current level used in reverse 
iontophoresis may be reduced.  One potential method of achieving this is through the use of 
permeability enhancers.  If the permeability of the skin is increased then a greater flux of the 
analyte can move across the skin for detection. In the case of reverse iontophoresis, this 
provides the opportunity for a reduction in the amount of current required for analyte 
extraction.  There are many methods that can be used to achieve this, including chemical, 
mechanical, and electrical permeation enhancement methods. There are many different 
chemical enhancers used, with varying mechanisms of action.  It is beyond the scope of the 
present discussion to go into each method in detail, and the reader is referred to a review of 
the area by Thong et al., 2007, which outlines the range of chemicals commonly used, and 
provides a list of FDA approved skin patches utilizing this approach for transdermal drug 
delivery (Thong et al., 2007). Mechanical permeation enhancement has been described 
previously in the text and includes: ultrasound; radiofrequency ablation; and epidermal tape 
stripping (Lademann & Hadzija, 2009; Ruddy et al., 1995). Iontophoresis and 
Electroporation lie within the realm of electrical permeation methods and have been also 
been described elsewhere.  The synergistic use of a variety of the above enhancement 
methods has been well documented in the literature (Mitragotri, 2000). 
In identifying further opportunities for improvements to transdermal technologies, and 
minimally invasive sensing more generally, it is instructive to revisit the concept of the 
internal standard and to consider the reasons why no candidate has yet proven successful in 
a commercial device. We have previously described the in vivo study by Sieg et al., 2004a, 
which demonstrated that sodium could not reliably be used as an internal standard for 
glucose measurement by reverse iontophoresis.  Despite sodium flux being constant across 
all subjects, the glucose flux was an order of magnitude lower in 4 out of the 12 subjects 
studied.  In addition, the constant sodium flux observed in the same subject over the course 
of a year did not reflect the high variation in glucose flux observed, over the same period in 
the same subject.  Specifically, large decreases in electroosmosis were observed in the winter 
months.  One potential explanation for the discrepancy between glucose and sodium fluxes 
is that the barrier properties of the skin are not constant between subjects and can indeed be 
variable from day to day within the same person.  The question is therefore, how can such 
variations in skin permeability to different molecules be controlled for? 

5.3.1 Skin permeability 

Skin is a highly complex barrier, and it is well known that human skin permeability is 
highly variable (Cevc & Vierl, 2010; Cornwell & Barry, 1995). Large differences in 
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permeability can be observed between different body sites on an individual. In addition to 
this intra-individual variability there also exists an additional large inter-individual 
variability. For example, significant differences exist between individuals of different race, 
age, gender etc. Differences in skin permeability can be at least partially explained by 
structural factors such as stratum corneum thickness, intercellular lipid composition and the 
density of skin appendages. In vivo, biological factors such as skin metabolism and skin 
surface temperature may also have an impact.  Finally, as well as naturally existing skin 
differences, individuals treat their skin with a variety of soaps moisturisers and other 
cosmetics.  Given that skin permeability is crucial for reverse iontophoresic transport, and 
that this parameter is highly variable, then it is highly likely that accurate calibration will 
only be achieved by controlling for this variable.   
There are a variety of non- or minimally-invasive methods that are available to characterise 

variations in skin properties. These have been the subject of review elsewhere, and have 

been summarized in this current chapter. A detailed description of the routes of in-vivo 

molecular transport across human skin, with a focus on the influence of iontophoresis was 

provided by Riveiere & Heit, 1997. The following discussion will consider the utility of 

impedance measurements, and will be focused within the context of calibrating transdermal 

extraction processes.  The discussion will then be broadened out to the use of impedance in 

other minimally invasive monitoring and diagnostic applications, including hydration 

monitoring, and cancerous tissue detection, before concluding with a brief exploration of 

other similar technologies for measuring tissue properties minimally invasively which are 

useful in diagnostics and patient monitoring. 

The human body is made up of trillions of cells containing, and surrounded by, electrolyte 

solutions of multiple cations and anions (sodium and chloride are the most abundant).  The 

lipid membranes of these cells together with the proteins and fats of the body form a 

complex electrical domain worthy of study and characterization in the quest to understand 

person to person tissue variability.   

5.3.2 Skin impedance calibration 

The electrical impedance of the skin is dominated by two components, resistance and 

capacitance. Skin impedance is represented mathematically as a phasor quantity, or as two 

components represented by real and imaginary numbers.  In its simplest form we can think 

of the  real term as accounting  for resistive elements in the skin, and the imaginary term as 

largely  representing  capacitative features of the tissue.  It is a field of study in its own right 

and the reader is referred to two review articles, which serve as a useful introduction to the 

technique and how it can be applied in medicine (Rigaud et al., 1996; Valentinuzzi, 1996).  

For the purposes of the current chapter, it is sufficient to recognize that the values of the real 

and imaginary components are dependent on the properties and structures of the 

underlying biological tissue.  When this concept is applied to skin, we see that different 

elements in the skin give rise to different components of the overall impedance signal.  For 

example, the sweat glands and hair follicles are predominantly resistive in nature, whilst the 

lipid laden regions of the dermis are dominantly capacitive in nature.  The skin can 

therefore be modeled as a series of resistors and capacitors (Figure 7). Applying this model 

to skin, it is easy to see how the skin impedance is dependent on a whole host of anatomical 

and physiological variables within the skin structure.   
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Fig. 7. One representation of how skin can be modeled electrically. 

Our specific interest has been in examining how skin impedance might be usefully deployed 

in the calibration of minimally invasive transdermal sensing applications.  Briefly, we 

consider that the flux, F, of any given molecule across the skin will be a function of skin 

permeability, P, such that, 

F = C x P + k 

Where C is the molecule concentration in blood/interstitial fluid, and k is a constant to be 

determined.   

Given the impracticality of measuring P in people, we have been investigating if various 

impedance derived parameters (Z values), taken from measurements of human skin in 

vivo can be used to provide an indication of the variation in P from person to person and 

day to day.  Our results indicate that this approach may be able to provide individual 

permeability values that are parameter and person specific, thus removing the 

requirement for the time consuming and often invasive calibration methods which are 

limitations of all existing transdermal monitoring devices. In one recent study in diabetic 

patients completed in 2009, we have shown that the rate of transdermal potassium flux 

collected in the gel of iontophoresis electrodes placed on the skin of a diabetic patient can 

be directly related to a normalized impedance parameter, measured through the same 
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electrodes. Figure 8 shows that the normalized impedance on patient skin can be 

correlated with transdermal flux. This opens the debate again on the possible uses of 

electrolytes as internal standards that can be used to calibrate iontophoresis systems for 

skin permeability and transdermal extractions.  
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Fig. 8. Normalised impedance parameter, Zm, versus transdermal potassium ion flux in a 
Type II Diabetes patient group (n = 9). 

6. Conclusion 

Demand for clinical diagnostics in the home and community will grow as disease states 

develop in an increasingly aged world population. As yet biosensors have not overcome the 

challenges that host responses to implantation generate for sensor systems and therefore 

long term implantation of sensors for diagnostic monitoring is not a reality. Minimally 

invasive monitoring via the transdermal route is open to further development for wearable 

or point of care systems and combining know how from drug delivery research and 

miniaturised sensors opens new possibilities in device design for clinical monitoring. A key 

aspect of successful deployment of devices in this field will be the creation of 

multidisciplinary working groups that cross the clinical interface and the resolution of 

issues around calibration of devices.  
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