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1. Introduction  

Driven by global competition and rising cost pressure in the pharmaceutical industry, over 

the last ten years single-use bioreactors have been increasingly used for animal cell 

cultivations in screening experiments, seed inoculum and seed train productions as well as 

in small and medium scale production processes of proteins (in particular, antibodies and 

vaccines). In contrast to re-usable bioreactors made of glass or stainless steel, single-use 

bioreactors consist of a flexible or rigid cultivation vessel which has been gamma-sterilized 

and made ready for the purchaser to use. After harvest, the cultivation vessel is discarded, 

which results in a lower risk of cross-contamination, and eliminates the need for steam 

sterilization and cleaning [Eibl et al. (2010)]. 

Nowadays a multitude of single-use bioreactors are commercially available, which can be 

categorized according to the type of power input into static and dynamic systems. The latter 

can be further subdivided into hydraulically, pneumatically and mechanically driven 

bioreactors and their combinations, the so-called hybrid systems [Eibl et al. (2011)]. 

Mechanically driven single-use bioreactors represent the largest group and are mixed by 

either orbital-shaken, wave-induced or stirrer motion.  

While wave-mixed bioreactors (e.g. from GE Healthcare, Sartorius Stedim Biotech, Applikon 

Biotechnology) were initially dominant, nowadays stirred bag systems (such as Hyclone® 

Single Use Bioreactor S.U.B., BIOSTAT® CultiBag STR, XDR™-DSTB animal) are more 

frequently used, mainly due to the broad experience already obtained with conventional 

stirred cell culture bioreactors [Eibl et al. (2011)]. The flexible cultivation bags are fixed and 

shaped by a temperature-controlled stainless steel container. This design is also used in the 

BIOSTAT® CultiBag STR from Sartorius Stedim Biotech, which is available at different scales 

from 50 to 1,000 L. The bag geometry, the impellers and the aeration system are designed in 

a similar way to Sartorius Stedim’s re-usable stirred cell culture bioreactors to ensure 

comparability of single-use and classical processes, and thus facilitate integration of single-

use bioreactor technologies into modern cultivation processes [De Wilde et al. (2009); Noack 

et al. (2011)].  

Until summer 2009, stirred bag bioreactors were available only at working volumes 

exceeding 50 L for manufacturing and cost reasons. The introduction of the first single-use 

stirred bioreactors with a rigid cultivation vessel (Mobius® CellReady 3L bioreactor and 

CelliGen® BLU SUB) bridged the gap for stirred systems between laboratory and pilot scale 
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[Kaiser et al. (2010)]. With the recent development of the UniVessel® single-use, Sartorius 

Stedim Biotech have extended their portfolio of the BIOSTAT® product family at bench 

scale. This novel cell culture bioreactor comes as close as possible to the conventional 

UniVessel®, but differs slightly in geometry due to the manufacturing process. Furthermore, 

the positioning of installations, such as harvest tubes or probes, are customized in the re-

usable bioreactor, but fixed in the single-use alternative.  

Comparability of single-use and conventional cell culture bioreactors is essential for process 
development, especially when both systems have to be used side by side in hybrid 
solutions. A need for single-use bioreactors with design and set-up comparable to the re-
usable alternative is therefore evident. Hence, the aim of this case study is a comparison of 
the UniVessel® 2L single-use bioreactor with its conventional counterpart made out of glass 
(in the following, also referred to as ‘small scale‘). For this purpose, fluid flow investigations 
using computational fluid dynamics (CFD) are carried out for the single-use and 
conventional bioreactor to show that the small changes in the geometry of the single-use 
UniVessel® have no significant effect on its fluid flow. The commercial CFD software 
package ANSYS Fluent (version 12.1.3) is applied and engineering parameters, such as 
power input, mixing time and oxygen mass transfer, are determined for the first time. With 
regard to scale-up, the results are compared with those of the disposable BIOSTAT® 
CultiBag STR at 50 L scale (in the following, also referred to as ‘large scale’).  

2. Issues related to scale-up in stirred cell cultures 

For biomanufacturing processes requiring larger volumes, scalability of the bioreactor 

system is a crucial factor, because similar process characteristics have to be guaranteed over 

the different scales [Storhas (2003)]. The conventional scale-up of bioprocesses is based on 

physicochemical and geometrical similarity [Zlokarnik (2006)]. However, keeping one 

process parameter constant will change several others. Hence, the key parameters with the 

strongest influence on cell growth and productivity have to be identified. In aerobic 

cultivations, these are primarily oxygen mass transfer and carbon dioxide removal, 

mechanical stress and mixing intensity. According to Storhas (2006), all these parameters are 

influenced by the specific power input (power input per volume of culture broth), even 

though in different proportions (see Fig. 1). For example, mixing time in fully turbulent 

flows is proportional to the third radical of the specific power input (Eq. 1), resulting in 

longer mixing times at larger scales. 

 ( )
1/3

m┠ P/V
−

∝  (1) 

In contrast, the highest local energy input εmax, which is often related to mechanical stress, is 
proportional to the specific power input: 

 
3

tip
max

u
P/V

d
ε ∝ ∝  (2) 

Besides the specific power input, impeller tip speed utip, impeller Reynolds number Re, 
mixing time ┠m, oxygen mass transfer coefficient kLa and the Kolmogorov eddy length le are 
applied as scale-up/down criteria in biotechnology. However, the difficulty in the scale-up 
of cell culture processes results from a lack of preservation of local flow structures as the 
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reactor vessels are scaled-up [Venkat & Chalmers (1996)]. It is well-known that highly 
localized regions of high energy dissipation exist and that local flow structures greatly 
depend on the geometry and operation conditions of the vessels, and cannot be described 
adequately by global scale-up parameters. Therefore, spatial resolved data obtained by 
experimental [Venkat & Chalmers (1996)] and numerical techniques are increasingly being 
introduced in scale-up studies [Letellier et al. (2002)]. 
 

 

Fig. 1. Influence of scale on different process parameters at constant P/V 

As previously mentioned, oxygen mass transfer is another important parameter for scale-
up. Due to its low solubility in aqueous media, oxygen has to be continuously supplied to 
the culture. Animal cells have lower metabolic rates and oxygen demands compared with 
yeast and bacteria, but in high cell density processes or in cases where aeration is limited by 
mechanical stress tolerance, oxygen mass transfer can become a limiting factor [Ozturk 
(1996)]. Although some other options for oxygen supply are available, the use of sparging 
systems (e.g. ring sparger or microsparger) remains the most practicable method, especially 
at large scale [Arathoon & Birch (1986); Chisti (1993); Chalmers (1994)]. However, various 
reports of bubble-associated cell damage can be found in the literature [Handa et al. (1987); 
Oh et al. (1992); Kioukia et al. (1996)]. Because most agitated bioreactors used in cell culture 
operate at relatively low mechanical power input, mechanical stress caused by bubbles can 
exceed that of agitation. Bubble rupture at the liquid surface was found to have the highest 
effect due to the high local energy density occurring when bubbles burst [Jöbses et al. (1991); 
Chisti (2000)].  
Cell cultures respond to external stresses by changes in morphology, proliferation, 
differentiation, metabolism or even cell death [Weyand et al. (2009)]. Nevertheless, the 
biological effects of mechanical stress also depend on culture broth properties (viscosity, 
oxygen saturation, metabolite concentration, additives, etc.) and can significantly differ 
between the cell types, cell lines and their characteristics (such as origin, age, subcultivation 
number etc.) [Meneses-Acosta et al. (2001); Krampe & Al-Rubeai (2010)]. Due to the 
complexity of the cell damage mechanisms and the variety of factors described in literature, 
it is still difficult to draw any general conclusions. However, it is accepted that minimum 
levels of energy dissipation are desirable for scale-up in order to provide sufficient mixing 
and avoid sedimentation, oxygen depletion and inhomogeneities [Venkat & Chalmers 
(1996)].  
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3. Numerical methodology 

3.1 Description of bioreactors 
In this study, the fluid flow patterns in stirred cell culture bioreactors at two different scales 

(2 L and 50 L) were investigated. The small scale bioreactors from the Sartorius Stedim 

Biotech’s product family BIOSTAT® with the vessels UniVessel® 2L (made of glass) and its 

single-use counterpart, (UniVessel® 2L SU), have nearly identical geometries (see Tab. 1). 

Both systems have a cylindrical vessel with a dished bottom and are agitated by a 

combination of a Rushton turbine (RT) and a three-blade segment impeller (SBI), which are 

53 mm and 55 mm in diameter respectively. Due to the manufacturing process, the diameter 

of the plastic vessel broadens towards the top (from 118 to 126 mm), its bottom has a 

different shape, and the diameter of the stirrer shaft is larger (at 15.2 mm). Furthermore, the 

positioning of installations, such as harvest tubes or probes, are fixed in the single-use 

alternative but customized in the re-usable bioreactor. For the CFD simulation of the glass 

vessel, the probes were designed based on the bioreactors which are used in our laboratory 

(see Fig. 2d).  

 

 Symbol 
BIOSTAT® 

CultiBag STR 50 L 
UniVessel® 2L 

single-use 
UniVessel® 2L 

re-usable 

Filling height H 490 180 165 

Vessel diameter D 370 118 – 1261) 130 

Stirrer diameter     

 RT d1 143 53 53 

 SBI d2 143 55 55 

Stirrer height     

 RT w1 27 10.5 10.5 

 SBI w2 68.6 30.4 30.4 

Off-bottom clearance 
(distance from the bottom to the 
mid-plane of the lower impeller) 

h 89.5 48.5 48.5 

Clearance between 
stirrers  
(distance between the mid-planes 
of the impellers) 

c 186 70 70 

Shaft diameter  s 20 15.2 10 

Table 1. Geometrical dimensions of the bioreactors investigated. All values are given in 
millimetres and the symbols are indicated in Fig. 2a. 1) The single-use UniVessel® features a 
slight inclination of 1° due to the manufacturing process as compared to the re-usable vessel. 
Hence, the range of the vessel diameters is given. The mean value of 122 mm was used in 
calculations 
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Fig. 2. CAD-models of the four bioreactors used in this study: BIOSTAT® CultiBag STR 50 L 
with two stirrer configurations (a) and (b), and the UniVessel® 2L single-use (c) with its 
conventional counterpart (d) 

The geometry of the BIOSTAT CultiBag STR 50 L differs from the smaller scales primarily in 
its differently-shaped bottom (see Figs. 2a and 2b). Other parameters (e.g. d/D, H/D, c/D 
etc.) are geometrically similar. Inside the bag, no baffles are integrated and inside the vessel 
no additional elements, such as probes, are present because measurements of the pH value 
and oxygen concentration are realized by small optical sensors installed at the bottom of the 
bag near the wall. Their influence on the fluid flow is negligible.  

3.2 Model equations and numerical details  
The CFD investigations were realized using a RANS approach with the commercial 
software package Fluent (ANSYS, Inc. (version 12.1.3)). Using the pre-processor GAMBIT 
(version 2.4) the accurate bioreactor geometries, shown in Fig. 2, were discretized by body-
fitted unstructured meshes. The tetrahedral control volumes were subsequently transformed 
to polyhedral cells as they have advantages of both tetrahedral and hexahedral cells 
[Paschedag et al. (2007)]. Prior to the investigations, the grid sensitivity of the CFD results 
was tested, indicating that meshes with about 130,000 cells for the UniVessel® and 180,000 
cells for the BIOSTAT® CultiBag 50L are good compromises between acceptable calculation 
time and accuracy for further studies.  
The governing equation for mass and momentum for single-phase flows can be written 
as:  

 ( )u 0
t

ρ
ρ

∂
+∇ ⋅ ⋅ =

∂


 (3) 

 
( )

( )
u

u u p g F
t

ρ
ρ τ ρ

∂ ⋅
+∇ ⋅ ⋅ ⋅ = − ∇ +∇⋅ + ⋅ +

∂

   
 (4) 

where ρ is the fluid viscosity, u


 is the velocity vector, p is the static pressure, and the terms 

gρ ⋅


 and F


 denote the gravitational and external body forces respectively. The Reynolds 

stress tensor τ was described by the standard k-ε turbulence model [Fluent (2006)].  
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For multi-phase simulations, an Euler-Euler approach was applied, which considers water 

as continuous and air as the dispersed phase. The mass and momentum conservation 

equations for the kth phase are given as: 

 
( )

( )
k k

k k ku 0
t

α ρ
α ρ

∂ ⋅
+∇ ⋅ ⋅ ⋅ =

∂


 (5) 

 
( )

( )
k k k

k k k k eff,k k k k k k

u
u u p g F R

t

α ρ
α ρ τ α α ρ

∂ ⋅ ⋅
+∇ ⋅ ⋅ ⋅ ⋅ = ∇ ⋅ − ⋅∇ + ⋅ ⋅ + +

∂

    
 (6) 

 

where ku


 is the phase velocity vector (k = L the liquid phase and k = G the gas phase), ρk 

the phase density and ┙k the phase volume fraction. A multi-phase k-ε turbulence model 

provided by Fluent was used with default settings [Fluent (2006)]. The drag force was 

modelled by a standard drag model with a correlation for the drag coefficient given by Ishii 

& Zuber (1979).  

In both single- and multi-phase simulations, the vessel walls, the impeller and the probes 

were treated as non-slip boundaries with standard wall functions. Stirrer rotation was 

implemented using the Multiple Reference Frame model (MRF) in steady state simulations, 

which is a good compromise between physical accuracy and reasonable computational time. 

All equations were discretized using the First Order Upwind scheme, and the (phase-

coupled) SIMPLE algorithm was chosen for pressure-velocity coupling. Convergence was 

assumed when the residuals decreased below 10-5. 

For the simulation of mixing process, the flow field obtained was used for a transient 

calculation of the concentration distribution of an inert tracer superimposed on the flow 

field. Assuming tracer distribution by convection and diffusion, the species transport 

equation is given by: 

 
( )

( ) ( )effu D
t

ρ β
ρ β ρ β

∂ ⋅
+∇ ⋅ ⋅ ⋅ = − ∇⋅ ⋅ ⋅∇

∂


 (7) 

 

where ┚ is the mass fraction of the tracer and Deff is the effective diffusion coefficient, which 

is calculated using the following equation [Fluent (2006)]: 
 

 
t

eff m

t

D D
Sc

η
= +  (8) 

where Dm, tη and Sct represent the molecular diffusion coefficient, the turbulent viscosity 

and the turbulent Schmidt number (which is 0.7 by default) respectively. The tracer was 

injected at the liquid surface (at r/R = 0.5) and the concentration was monitored at eight 

different points inside the bioreactor. The mixing time was defined as the time required to 

achieve 95% homogeneity defined by Eq. 9, where ┚∞ is the mass fraction in its equilibrium 

value.  

 
(t)

H(t)  
β β

β

∞

∞

−
=  (9) 
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4. Results and discussion 

4.1 Single-phase flow pattern 
As described above, animal cell cultures are sensitive to shear stress, which is often related 

to the impeller tip speed. Although there are some doubts from the fluid dynamic 

perspective, maximum tolerable tip speeds are described in the literature [Fenge, et al. 

(1993); Varley & Birch (1999)]. Maximum tolerable tip speeds differ between cell lines: 

hybridoma cells were found to tolerate the highest values of up to 1.8 m·s-1 [Chisti 

(2001)]. Hence, the flow fields in this study were simulated for various rotational speeds 

up to 625 rpm (corresponding to utip = 1.8 m·s-1) in the UniVessel® system. The tip 

speeds were subsequently adopted for the simulations of the 50 L scale BIOSTAT® 

CultiBag STR. 

In the following sections, the predicted single-phase fluid flow patterns are described and 

compared in respect of the two small scale bioreactors. Important engineering 

characteristics, such as power input and mixing time, are subsequently described. 

Furthermore, attempts to predict mechanical stress on the cells are presented. 

The CFD-predicted fluid flow pattern for the two small scale cell culture bioreactors under 

unaerated conditions are given in Fig. 3. In both vessels, the upper segment blade impeller 

(SBI) shows a clear axial flow profile in down-pumping mode while the lower Rushton 

turbine (RT) discharges the fluid radially towards the vessel wall. The fluid impinges on the 

outer wall, splits and moves upwards and downwards forming two recirculation loops per 

half-vessel. In the lower loop, the highest velocities in the order of 0.5 · utip are observed in 

the vicinity of the RT, dropping to 0.1 · utip near the vessel bottom. In the vicinity of the 

upper impeller, fluid velocities reach about 0.4 · utip, but are significantly lower near the 

liquid surface.  

As described by Alcamo et al. (2005), the jet of the RT has a slight downward inclination, 

which can be explained by the absence of baffles. In contrast, slight upwardly inclined radial 

jets have been found in experimental [Yianneskis et al. (1987)] and numerical [Montante et 

al. (2001)] studies on fully baffled vessels with Rushton turbines. An interaction of the two 

impellers can be neglected due to the distance between their mid-plains of c/d ≈ 1.25 [Liepe 

et al. (1998); Vrabel et al. (2000)], which is also confirmed by the estimated power input (see 

Section 4.2.1). 

A more quantitative analysis of the velocity field is presented in Figs. 4 and 5, which show 

normalised radial, tangential and axial fluid velocities at different positions inside the 

vessel. In each case, nearly identical fluid velocities are obtained in the UniVessel® single-

use and its glass counterpart. The small remaining differences can be ascribed to numerical 

errors and the fact that the meshes are almost, but not completely, identical.  

The maximum radial velocity in the RT’s discharge is located below the mid-impeller plain, 

resulting in an asymmetric profile (see Fig.  4a). Compared with data given by Alcamo et al. 

(2005) for a single Rushton turbine in an unbaffled vessel, qualitative agreement is achieved, 

although higher values of radial velocity of up to 0.4 · utip are obtained in this study. This 

might be an effect of the indirect baffling caused by the probes used in this study since the 

radial velocities obtained for the completely unbaffled BIOSTAT® CultiBag 50L are more 

similar to data given in the literature [Alcamo et al (2005)]. In contrast, Delafosse et al. (2008) 

and Kresta & Wood (1991) give maximum radial velocities in the stirrer discharge of up to 

0.8 · utip.  
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Fig. 3. Velocity distribution in the two small scale vessels UniVessel® single-use (a) and 
UniVessel® re-usable (b) represented by dimensionless velocity u/utip. The velocity 
magnitude is indicated by contour plots. The velocity vectors are projected to the given 
plains with fixed length 

 

 

Fig. 4. Comparison of dimensionless radial (a) and tangential velocities (b) between the 
bioreactors investigated. The radial velocities are given at a distance of 2r/d = 0.57 from the 
impeller tip and the tangential velocities are shown for z/D = 0.2 

Similar results are found for tangential velocity, where good agreements between the two 

small scale vessels are again found. The maximum tangential velocity of 0.3 · utip is 

predicted near r/R = 0.4, which is qualitatively comparable to the findings of Alcamo et al. 

(2005). Due to the higher radial component found in this study, the tangential velocity is 

lower than those reported, whereas the values for the 50 L scale vessel are more comparable 

to those described in literature [Alcamo et al (2005)].  
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In Fig. 5, radial profiles of the axial velocities directly above and below the upper impeller are 
shown. The maximum axial velocities in the impeller’s discharge are located at r/R = 0.4 in 
both cases and have values of uz ≈ 0.2 · utip. Zhu et al. (2009) give PIV data of an axial 
pumping “elephant ear” impeller (Applikon Biotechnology) in an unbaffled vessel with 
similar geometries to that of the SBI. Good qualitative agreement is obtained between PIV 
measurements and our CFD results. The recirculation points, where up- and down-flow meet 
and axial velocities become zero, are nearly identical between the two impellers. However, 
the maximum velocities determined in the impeller’s discharge and near the vessel wall have 
lower values for the segment impeller with uz = 0.2 · utip and uz = 0.05 · utip respectively (see 
Fig. 5a). If the axial velocities of the small scale vessels are compared with the 50 L scale, good 
quantitative agreement is evident below the impeller, but some differences occur above the 
SBI. Thus, maximum velocity in the discharge of the larger impeller is shifted to the left (to 
r/R = 0.1) and lower values of uz ≈ 0.02 · utip are found near the wall (see Fig. 5b). 
 

 

Fig. 5. Dimensionless axial velocities uz/utip as a function of the radial co-ordinate below (a) 
and above (b) the upper impeller (with Δz/d = 0.27) 

For further comparison, the dimensionless axial and radial circulation or pumping numbers 
Flz and Flr of the two impellers were calculated using the predicted flow field. Primary and 
secondary pumping numbers Flz,p  and Flz,s as defined by Patwardhan et al. (1999) were 
calculated for the axial impeller using  Eqs. 10 and 11. Both integrals were evaluated closest 
to the impeller in the pumping direction, whereas the axial flow was integrated over the 
impeller radius and to the point of reversal of the flow (r = Rr).  

 
r d/2

z,p z3
r 0

2
Fl r v (r) dr

N d

π
=

=

= ⋅
⋅   (10) 

 
rr R
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Fl r v (r) dr

N d

π =

=

= ⋅
⋅   (11) 

 
2

1

z

r r3
z

2
Fl r v (z) dz

N d

π
= ⋅

⋅   (12) 

In doing so, radial flow numbers for the Rushton turbine of 0.56 and 0.36 are determined in 
the small and large scale vessels respectively. Again no differences are found between the 
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plastic and the glass bioreactor. However, as a result of the downward inclined stirrer jet 
investigated in this study, both values are lower than 0.71, as the value reported for fully 
baffled tanks by Revstedt et al. (1998). The primary and secondary axial flow numbers for 
the small scale vessel are found to be 0.4 and 0.77. Zhu et al. (2009) obtained a primary flow 
number of 0.7 for the “elephant ear” impeller and Liepe et al. (1998) reported values for the 
secondary flow number between 0.7 and 2.2 for different axial pumping stirrers. The latter 
indicate that the pumping capacity could be increased by about 30 % when baffling is used.  

4.2 Engineering characteristics and scale-up issues 
4.2.1 Power input 
Using the predicted flow, the impellers’ power inputs were obtained from the torque acting 
on the stirrer and the shaft. The dimensionless power number (also called Newton number) 
was calculated as: 

 
R

3 5 2 5

2 MP
Ne

N d N d

π

ρ ρ

⋅
= =

⋅ ⋅ ⋅ ⋅
 (13) 

In Fig. 6a, the determined power numbers are given as a function of the impeller Reynolds 
number. Decreasing values for Ne are obtained in all investigated cases up to critical 
Reynolds numbers of Recrit ≈ 104, which is most often found in typical agitated systems 
[Zlokarnik (1999)]. Above the critical Reynolds number, the stirrer torque is not fully 
compensated by wall shear stresses and the power number becomes constant [Liepe et al. 
(1998)]. The CFD simulations resulted in values for the power number of 3.33 and 3.14 in the 
bioreactors agitated by RT and SBI at small and large scale respectively. As already 
indicated by the flow field, the probes seem to have a small effect on the power input. For 
the configuration with two SBIs the Newton number is lower at a value of 1.13. It is well-
known that impellers in unbaffled vessels show a continuous decrease in the Newton 
number over a range of 0 < Re <≈ 5 · 105 due to vortex formation [Liepe et al. (1998)]. 
However, this effect was not taken into account in this study and the predicted values are in 
good agreement with experimental data provided by Sartorius Stedim Biotech. These were 
obtained by torque measurements and revealed power numbers of 3.4 with RT and SBI, and 
1.2 with two SBIs [Personal communication, Ute Noack, Sartorius Stedim Biotech, 2010].  
In Fig. 6b, the specific power input is shown as a function of the tip speed. For the maximum 
tip speed investigated in this study (1.8 m·s-1), the highest specific power input at 50 L scale 
is 240 W·m-3. The configuration with the two SBIs reaches only 86 W·m-3 due to the lower 
power number. Typical values of specific power input are about 100 W·m-3 [Henzler & 
Kauling (1993)], although Nienow (2006) gives a range of 10 to 250 W·m-3. However, if the 
impeller tip speed is used as a scale-up/down criterion, the power input at small scale 
increases significantly, as the relationship in Eq. 14 confirms: 

 
tipu

P/V
d

∝  (14) 

Thus, at a tip speed of 1.8 m·s-1 the specific power input increases up to 960 W·m-3 in the 
small scale bioreactors investigated, which is unreasonably high for cell culture applications. 
On the other hand, if the tip speed for moderate power input in small scale systems (e.g. 
0.37 m·s-1 for about 10 W·m-3) is adopted in the larger scale CultiBag STR 50L, the P/V drops 
significantly (to about 1 W·m-3). Thus, maintaining tip speed at such low values is a major 
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constraint with severe implications for mass transfer as well as homogeneity (see Section 
4.2.2). Although impeller tip speed is often used for scaling-up in the pharmaceutical 
industry, these results emphasize that the tip speed does not appear to be an important 
parameter for scale-up, which aligns with the findings of Nienow (2006).  
 

 

Fig. 6. Power characteristics of the four bioreactor configurations investigated (a). Specific 
power input as a function of tip speed (b). Note that the symbols for the UniVessel® 2L 
single-use are partly hidden by those of the UniVessel® re-usable 

4.2.2 Mixing time  
Mixing time was determined by addition of an inert tracer based on predicted flow field. 
The volume of the added tracer was equal to 0.1 % of the vessel content in all cases 
investigated. Typical tracer response curves for different tip speeds at a point near the upper 
impeller in the UniVessel® 2L single-use are given in Fig. 7. As reported by Min & Gao 
(2006) and Jahoda et al. (2007), the RANS approach with standard k-ε turbulence model fails 
to predict reasonable tracer response curves due to the under-prediction of turbulent 
fluctuations. However, good agreement of the mixing time with experimental results is 
usually obtained, as previously found in several studies in our laboratory on different glass 
and single-use bioreactors [Kaiser (2009); Löffelholz et al. (2011)].  
 

 

Fig. 7. Tracer response curve for different tip speeds at a point near the upper stirrer in the 
UniVessel 2L single-use. For better comparison, time is given as dimensionless 
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In Fig. 8, mixing times for all cases investigated are shown as a function of the specific 

power input (P/V). For the small scale systems, mixing times between 2.3 and 7.4 s are 

predicted, depending on the stirrer speed. As expected, only minor variations are again 

observed between the single-use and re-usable vessel types, which can be attributed to the 

different liquid heights present for equal volumes. In the BIOSTAT® CultiBag STR 50L, 

mixing times between 10 and 59.8 s are required to achieve the homogeneity desired, 

whereas the two segment impellers show significantly lower mixing times compared with 

the configuration of the RT and the SBI at a certain specific power input. The reason for 

this is the lower power number of the SBI, which results in higher stirrer speeds being 

required to achieve a certain power input. The stirrer speed is directly related to 

turbulence intensity, which improves mixing [Liepe et al. (1998); Kraume (2003)].  

The slopes of the regression functions (see Fig. 8a) are between —0.36 and —0.3, and are 

close to the theoretical value of —0.33 (see Eq. 1), which is valid for turbulent conditions 

where  

 H m Rc N const.θ= ⋅ =  (15) 

The mixing numbers calculated, which represent the stirrer rotations required to achieve the 

homogeneity desired, are 18 and 35 for the small and large scale bioreactors respectively. 

These values indicate that the agitation of the Sartorius Stedim’s bioreactors is in the 

performance range of conventional impellers, as reported by Liepe et al. (1998). 

Based on turbulence theory, it was suggested that mixing time is independent of impeller 

type and inversely proportional to turbulent diffusion so that: 

 

1/3
T

m 2
cL

ε
θ

−
 

∝ 
 

 (16) 

where εT is the local energy dissipation rate and Lc is the integral scale of turbulence. 

Assuming that the integral scale is proportional to the vessel diameter, Nienow (1997) gives 

a correlation for mixing time with the third radical of the specific power input and 

geometrical parameters: 
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 (17) 

in which the term (H/d)2.43 was originally developed for multiple impellers but also 

indicates the influence of the fill height observed in large-scale animal cell culture 

bioreactors at an aspect ratio of 1.3 with a single impeller working in draw and fill mode 

[Nienow (2006)]. 

If this approach is adapted to the CFD-predicted mixing times, two distinct functions are 

obtained for the reactor mixed by the RT/SBI combination and for the two axial pumping 

stirrers. Thus, the proportionality factor A in Eq. 17 is found to be 6.5 and 8.7 in the two 

functions respectively. They are in the same order of magnitude to the value of 5.9 found by 

Nienow (1997). Although mixing time is not an appropriate parameter for scale-up (see 

Section 2), homogeneity becomes increasingly important with respect to pH and nutrients at 

larger scales, and thus mixing capacity should be taken into account.  
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Fig. 8. Mixing time as a function of specific power input for all bioreactor configurations 
investigated (a). Comparison of the CFD-predicted mixing times with the correlation by 
Eq. 17 for all bioreactor configurations investigated (b) 

4.2.3 Gas distribution and oxygen mass transfer 
The gas phase distribution was modelled using an Euler-Euler approach, assuming a 

uniform bubble size with a diameter of 1 mm. This value was found to be the mean bubble 

size, determined by photography in the re-usable UniVessel® filled with pure water (2 L 

filling volume). Spatial gas phase distribution and oxygen mass transfer were investigated 

for different stirrer tip speeds in the range of 0.15 to 1.8 m·s-1 for two aeration rates of 0.1 

and 0.2 vvm (volume gas per volume liquid and minute), which were defined via gas inlet 

velocity with gas volume fractions at the inlet surface equal to one. 

Due to the low gassing rate, as often used in cell culture applications, no profound effect 

on the shape of the flow pattern is found, which is in qualitative agreement with the 

findings of Zhu et al. (2009). Small effects on the liquid velocity are predicted in the jet of 

the radial impeller, which becomes less intensive, as well as near the stirrer shaft, where 

the rising gas partly compensates for the downwards directed fluid flow (data not 

shown).  

In Fig. 9, the spatial gas phase distribution is given for impeller tip speeds of 0.37 m·s-1 

and 0.94 m·s-1 at an aeration rate of 0.1 vvm and compared with experimental 

observations of the re-usable UniVessel®. Good qualitative agreement is achieved for all 

operation conditions investigated. At low agitation, the greater part of the gas rises with 

low dispersion as the disruptive forces induced by the RT are insufficient to overcome 

buoyancy, although the RT is designed and commonly used to achieve homogeneous gas-

liquid dispersions. However, at such low agitation, the stirrer is considered to be 

“flooded” [Liepe et al. (1998); Zlokarnik (1999)]. The gas dispersion is clearly enhanced by 

the higher stirrer speed, as shown in Figs. 9c and 9d. Under such conditions, the air 

introduced is dispersed radially by the lower stirrer and reaches the vessel wall, but 

almost no gas is found near the bottom. This is again in qualitative agreement with 

experimental observations (see Fig. 9c) and is also found in experimental [Zhu et al. 

(2009)] and numerical investigations [Kerdouss et al. (2008] at comparable operation 

conditions in other gas-liquid agitated vessels.  
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Fig. 9. Comparison of experimental observed gas distribution in the re-usable UniVessel® 
and CFD-predicted results for the single-use vessel at impeller tip speeds 0.37 m·s-1 (a) and 
0.94 m·s-1 (b) 

Based on the predicted flow field, specific oxygen mass transfer coefficients kLa were 
calculated as the product of the liquid mass transfer coefficient kL and the specific surface 
area a, as suggested by Dhanasekharan et al. (2005) and Kerdouss et al. (2008). Assuming 
spherical bubble shape, which is guaranteed up to a bubble diameter of 3 mm [Gimbun et al. 
(2009)], the specific surface area is calculated by: 

 
G

B
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a

d

α⋅
=  (18) 

The liquid transfer coefficient is obtained based on Higbie’s penetration theory as shown in 

Eq. 19, where 2OD  represents the diffusion coefficient (2.01 · 10-9 m2·s-1 at 20 °C).  
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The results of these calculations are summarized in Tab. 2. It is evident that oxygen mass 
transfer is enhanced by high agitation and aeration rates, as has been shown on numerous 
occasions for various stirrer systems. Higher stirrer speed (i.e. higher specific power input) 
results in lower oxygen transfer resistance due to the higher surface renewal rate of the 
bubbles [Gimbun et al. (2009)], which is represented by higher kL values. Here, values 
between 3.15 and 5.95 · 10-4 m·s-1 are predicted, which are almost independent of the 
aeration rate. In contrast, significantly higher air volume fractions are obtained for the 
higher aeration rate, as expected. Interestingly, a maximum overall gas hold-up of about 
0.37 % and 0.66 % is reached at 30 W·m-3 for each aeration rate respectively, which is not 
enhanced by more rigorous agitation.  
The highest kLa value, 96.3 h-1, is obtained at 0.2 vvm and 625 rpm (see also Fig. 10a). This 
value is more typical of microbial fermentations, where higher oxygen demands have to be 
met. However, these high values are not entirely unexpected since the specific power input 
is also very high (see discussion in Section 4.2.1). Typical values for cell culture applications 
are in the range of 1 to 15 h-1 [Henzler & Kauling (1993); Langheinrich et al. (2002); Nienow 
(2006)].  

www.intechopen.com



 
CFD for Characterizing Standard and Single-use Stirred Cell Culture Bioreactors 

 

111 

Q [vvm] P/V [W·m-3] kL [10-4 m·s-1] a [m2·m-3] ┙ [%] kLa [h-1] 

0.1 0.6 3.15 14.0 0.23 18.7 

0.1 9.1 3.06 18.8 0.31 25.7 

0.1 30.0 3.25 21.9 0.37 31.5 

0.1 136.6 4.07 19.1 0.32 34.2 

0.1 558.6 5.32 18.9 0.32 44.4 

0.1 962.6 5.95 19.3 0.32 51.0 

0.2 0.6 3.16 22.5 0.38 32.5 

0.2 9.1 3.09 32.5 0.54 45.0 

0.2 30.0 3.23 39.6 0.66 56.4 

0.2 136.6 4.02 37.5 0.63 64.9 

0.2 558.6 5.26 37.1 0.62 84.1 

0.2 962.6 5.90 38.0 0.63 96.3 

Table 2. Summary of the results of the multi-phase simulations in the UniVessel® single-use. 
The symbols Q, P/V, kL, a, ┙ and kLa represent the aeration rate, the specific power input, 
the liquid oxygen mass transfer coefficient, the specific surface area, and the overall oxygen 
mass transfer coefficient 

To meet the oxygen demand of cells under steady-state conditions, the oxygen uptake rate 

OUR needs to be equal to the oxygen transfer rate OTR. The latter depends on mass transfer 

and the driving force on the gas-liquid surface, given as: 

 ( )2 2 2
s

O L O O

OUR OTR

q X k a c c⋅ = ⋅ − 
 (20) 

where 2Oq , X, 2Oc and 2
s
Oc represent the specific oxygen uptake rate, cell concentration, 

oxygen concentration and oxygen saturation concentration respectively. Typical specific 

oxygen demands reported for mammalian and insect cells range from about 1· 10-9 to 1· 10-8 

mmol·cell-1·day-1 (see also Tab. 3 for more details). Assuming oxygen solubility in cell 

culture media of 5 mg·L-1 and working at 30 % saturation, which are typical values in cell 

culture applications, the required kLa values for a cell density of 5 · 106 cells·mL-1 are 

between 1.1 and 36.8 h-1, depending on the cell line. These values are already reached at an 

aeration rate of 0.1 vvm with a specific power input of about 140 W·m-3, and with an even 

lower power input of about 10 W·m-3 at 0.2 vvm. In the CultiBag STR 50L a maximum kLa 

value of 35 h-1 was determined experimentally by Sartorius Stedim at an aeration rate of  

0.1 vvm [Personal communication, Ute Noack, Sartorius Stedim Biotech, 2010], giving 

comparable results for the large scale bioreactor. 
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Cell line qO2 [10-13 mol·cell-1·h-1] kLareq [h-1] 

C1a (hybridoma) 2.34 10.7 

FS-4 (human diploid cells) 0.5 2.3 

AB2-143.2(hybridoma) 1.9 – 4.0 8.7 – 18.3 

167.4G5.3 (hybridoma) 0.23 – 0.87 1.1 – 4.0 

NSO (myeloma) 2.19 – 4.06 10.0 – 18.6 

MAK (hybridoma) 4.6 21.0 

X-D (hybridoma) 2.3 – 4.2 10.5 – 19.2 

DG44 (CHO) 2.0 9.1 

CHO 5.0 – 8.04 22.9 – 36.8 

HFN7.1 (hybridoma) 2.0 9.1 

Table 3. Specific oxygen uptake rates of various cell lines adopted from Ruffieux et al. (1998) 
and Xiu et al. (1999) and required oxygen mass transfer coefficients at defined cell densities 
of 5·106 cells·mL-1 and oxygen concentrations of 5 mg·L-1 (see Eq. 20) 

In spite of the numerous literature data in respect of oxygen mass transfer, no correlation 

was found for the particular stirrer configuration and operation conditions used in this 

study. Thus, a correlation was developed following an approach suggested by van’t Riet 

(1979), where the kLa value is related to the specific power input and the superficial gas 

velocity (introduced gas per cross sectional area of the bioreactor):  

 ( )
a b

L gk a C P/V u= ⋅ ⋅  (21) 

As shown in Fig. 10, very good agreements between the model and CFD-predicted kLa 

values are achieved for the two aeration rates investigated (with R2 = 0.98). The coefficients 

C, a and b are found to be 6.51, 0.14 and 0.87 respectively (see Eq. 20). Hence, a rather high 

dependency of the kLa value on the superficial gas velocity (aeration rate) is evident and the 

specific power input is only of minor importance. This is in contrast to most correlations 

found in the literature, where the values for a and b are 0.5 ± 0.1 [Nienow (2006)]. 

Nevertheless, Van’t Riet (1979) gives a wider range of reported values in the ranges of 0.4 < 

a < 1 and 0 < b < 0.7. 

 ( )
0.14 0.87

L gk a 6.51 P/V u= ⋅ ⋅  (22) 

The strong effect of the superficial gas velocity obtained in this study can be explained by 

the fact that the stirrer does not completely disperse the introduced gas at low agitation 

rates, and thus the aeration is comparable to a bubble column (see Fig. 9a). Similar results 

were recently found in our laboratory with other single-use stirred bioreactors (e.g. the 

Mobius® CellReady 3L bioreactor) [Kaiser et al. (2011)]. However, we would like to point 
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out that only twelve data points were used for the correlation in this first attempt and the 

results were only obtained by CFD simulations, which have to be validated by experimental 

data in further studies.  

 

 

Fig. 10. CFD-predicted volume-averaged specific oxygen mass transfer coefficient kLa as a 
function of specific power input for the two aeration rates investigated. In addition to CFD-
predicted data points, the function obtained by Eq. 22 is given 

4.3 Mechanical stress 
4.3.1 Mechanical stress caused by turbulence  
Mechanical stress on cells is related to both turbulence and time-independent velocity-
gradients (shear and normal gradients) [Jöbses et al. (1991); Oh et al. (1992); Chisti (2000); 
Fenge et al. (2003)]. A popular, but yet unproven, theory of cell damage due to turbulence 
suggests that the biological entity is damaged by eddies of a comparable size. Significantly 
smaller eddies have too little energy and larger eddies merely carry the cells convectively. 
Assuming local isotropic turbulence, the size of the smallest eddies is defined by the 
Kolmogorov length le (Eq. 23). Although Ranade & Joshi (1989) and Jaworski et al. (1991) 
state that turbulence in the impeller jet is anisotropic, theoretical considerations and 
experimental evidence have shown that the fine-scale structure of most anisotropic 
turbulent flows is actually almost isotropic locally [Hinze (1959)]. Thus, Kolmogorov‘s 
definition of eddy size would appear suitable for the complete fluid domain.  
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ρ ε

 
=  ⋅ 
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In Fig. 11a, the dimensionless turbulent kinetic energy k/utip2 is shown. As expected, and in 
agreement with Hockey & Nouri (1996), convection of turbulence by the mean flow in the 
impeller jet, where the highest turbulent energies are found, is evident. The axial profiles of 
the turbulence kinetic energy in impeller jets are found to qualitatively agree with data 
given by Kresta & Wood (1991), although the predicted values are, by a factor of 5, lower in 
our study (data not shown). Rather high turbulence is also located near the installations, but 
significantly lower values are found in the bulk between the impellers and near the liquid 
surface. Thus, it can be argued that the turbulence distribution is very heterogeneous. For 
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standard Rushton turbines, Höfken et al. (1996) found differences between maximum and 

mean turbulent dissipation rates by two orders of magnitude ( max / 40...200ε ε = ).  

 

 

Fig. 11. Spatial distributions of the dimensionless turbulent kinetic energy k/utip2 (a) and the 
Kolmogorov eddy size le (b) at P/V = 230 W·m-3 in the UniVessel® 2L single-use 

As mentioned in Section 4.2.1, typical values for the specific power input are in the range of 
10 to 250 W·m-3 [Nienow (2006)]. Calculating the Kolmogorov eddy size gives le = 45 µm for 
ε = (P/V) (see Eq. 23). If, as found by Höfken et al (1996) near the impeller of a Rushton 
turbine, εmax = 200 · (P/V) is assumed, le decreases to about 12 µm. Since animal cells are of 
the order of 15-20 µm, the first cell damage would be expected at the maximum power 
input. In this study, the estimated Kolmogorov eddy size is lower than typical cell sizes 
above a specific power input of 230 W·m-3 (see Fig. 11b) in close proximity to the impellers 
and installations, which is in agreement with the literature data. 
Zhang et al. (1993) investigated animal cell disruption in turbulent capillary flows and 
developed a model of cell-hydrodynamic interactions using cell mechanical properties 
determined by micromanipulation. Assuming that eddies with similar or smaller sizes than 
the cells cause local surface deformation, they proposed that cell disruption occurs when the 
cells’ bursting membrane tension and bursting surface energy are exceeded. Good 
agreement between experiments and model predictions (with an underestimation of cell 
disruption by about 15%) were achieved [Zhang et al. (1993)].  
Garcia-Briones et al. (1994) compared CFD-predicted energy dissipation rates with those in 
unaerated flow devices (capillaries and viscometers). They concluded that energy 
dissipation rates in the order of 5.81 · 102 W·m-3 did not damage cells significantly, but 
values of ≈ 2.25 · 104 W·m-3 caused considerable damage. Using Eq. 22, the latter value gives 
an eddy length scale of 14.5 µm for water-like media, which is comparable to the size of 
animal cells (≈15…20 µm).  
The turbulence theory of cell damage is also supported by the observation that viscosifying 

additives reduce cell damage. Croughan et al. (1989) have associated cell death protection by 

serum with the turbulence-dampening effect of the additive. In contrast, observing an insect 

cell suspension with ten times higher viscosity to water (with ┟ ≈ 10 mPa·s and ρ ≈ 1000 

kg·m-3), Tramper et al. (1996) found that cell death rapidly occurred from a specific power 
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input of 2.3· 10-3 W·kg-1. Even if max / 200ε ε ≈  is assumed, this gives a minimum 

Kolmogorov length scale of le = 240 µm, which is considerably larger than an insect cell. 

Hence, it has been concluded that maximum shear stress is the more appropriate parameter 

for scale-up than the minimum eddy length scale [Tramper et al. (1996)].  

However, bearing in mind the heterogeneous distribution of turbulence, it is important to 

take residence time distribution into account for the evaluation of cell damage (see Section 

4.3.2 for further discussion). However, to the knowledge of the authors, such attempts have 

not yet been described for animal cells, unlike corresponding studies for blood cells in 

hemolysis experiments. Thus, the hemolysis level is often correlated with shear stress and 

residence time, as suggested, for example, by Giersiepen et al. (1990).  

4.3.2 Mechanical stress caused by velocity gradients (shear stress)  

In most CFD studies, the mechanical stress on cells is only related to the strain rate 

magnitude D, which is an invariant velocity gradient consisting of both shear and normal 

gradients. However, based on model experiments, various authors have shown that cells are 

differently affected by shear or normal gradients [e.g. Langer & Deppe (2000)]. It is therefore 

advantageous if each of them is quantified separately for the evaluation of cell damage. 

Recently, Wollny (2010) found that local shear and normal gradients ( nt γ and nnγ ) can be 

obtained from shear strain tensor using a coordinate system transformation, which results in 

Eqs. 24 and 25. Here, w  are velocities in the local co-ordinate systems defined by the co-

ordinates x, y   and z , which are orientated along the fluid flow direction. Detailed 

descriptions of the mathematical derivation can be found elsewhere [Wollny (2010)].  
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From the CFD-predicted flow fields, the local shear and normal gradients as well as the 

corresponding volume fractions were determined. Subsequently, the distribution was 

discretized into 250 bins (see Fig. 12a). It was found that the distribution follows a 

logarithmically normal function, which was confirmed by a chi-quadrate-test at a confidence 

level of 0.05 (data not shown).   

From Fig. 12a it is evident that the highest volume fractions (of about 4.5 %) are found at 

very low velocity gradients. Depending on the impeller speed, the median value (velocity 

gradient with the highest volume fraction) is in the order of 1 – 30 s-1. Interestingly, the 

median differs from the volume-averaged velocity gradient and the highest volume fraction 

is nearly independent of the stirrers’ power input. This is in qualitative agreement with our 

previous findings for different single-use and conventional stirred bioreactors [Löffelholz et 

al. (2011)]. 

Furthermore, high velocity gradients (> 100 s-1) have very small volume fractions below 

0.5 % of the total liquid volume. Wollny (2010) found quantitatively comparable values for a 

baffled bioreactor equipped with a 3x24° pitched blade impeller or a standard Rushton 
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turbine operating at 100 W·m-3. In this study, the impeller swept volume as described by 

Wollny (2010) is about 2 % of the total liquid volume for the stirrer configuration 

investigated. Thus, it can be argued that the regions of high ‘shear’ stress are positioned 

close to the impeller and that the cells are, if at all, mechanically stressed in only a small 

region of the bioreactor.  

 

 

Fig. 12. Evaluation of mechanical damage to cells caused by local shear and normal 
gradients. Log-normal frequency distribution of local shear gradients (expressed by the 
volume fraction) for two agitation rates (a), and mean shear and normal velocity gradients 
as a function of the specific power input (b). Error bars represent simple standard deviation 
of the logarithmically normal distribution 

In Fig. 12b, the mean velocity gradients obtained from the frequency distributions are given 

as a function of the specific power input. It is evident that the local shear gradients 

predominate compared with the normal gradients, which are suspected to cause higher cell 

damage [Langer & Deppe (2000)]. However, the magnitude of both mean and maximum 

velocity gradients is found to be significantly lower than the critical values (1 – 3· 105 s-1) 

causing substantial cell damage, as reported by Chisti (2001). Nevertheless, physiological 

effects, which do not necessarily require a physical breakage of the cells, were also observed 

at moderate levels of stress in the range of 0.5 – 5 N·m-2 (corresponding to 500 – 5000 s-1 in 

water-like culture broths) [Yim & Shamlou (2000)]. The maximum normal and shear 

gradients for the highest investigated power input (≈ 960 W·m-3) reached values of up to 

4800 and 6000 s-1 respectively. Consequently, based on the CFD results, no cell damage is 

expected in the small scale UniVessel® bioreactors at moderate agitation. A comparison of 

these results with the larger scale BIOSTAT® CultiBag STR will form part of further studies. 

5. Conclusions 

The first objective of this study was a comparison of the novel single-use UniVessel® cell 
culture bioreactor with its re-usable counterpart, developed by Sartorius Stedim Biotech. For 
this purpose, the fluid flow under non-aerated conditions was simulated using a RANS 
approach and the standard k-ε turbulence model. Almost identical flow patterns are 
achieved with only minor differences in fluid velocities and turbulence distributions, which 
can be attributed to small variations in the meshes and the positions of the installations such 
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as probes and harvest tubes. The CFD simulations reveal a rather complex flow pattern, in 
which the radial pumping Rushton turbine induced two flow loops per half-vessel and the 
segment blade impeller shows a typical axial flow in down-pumping mode.  
Predicted fluid velocities as well as flow numbers show good qualitative and quantitative 

agreement with literature data. Based on these results, it can be argued that the differences 

in geometry between the two small scale bioreactors have no influence on the overall fluid 

flow. From the fluid flow perspective, the UniVessel® 2L single-use is identical to its 

counterpart made of glass and thus no differences in cell cultivations are expected. This 

hypothesis clearly needs to be verified in cultivation experiments, which will be carried out 

in our laboratory in the near future.  

In a second part, key engineering parameters, such as power input, mixing capacity and 

oxygen mass transfer, for the UniVessel® 2L single-use are presented for the first time and 

compared with data on its conventional counterpart as well as with those on the BIOSTAT® 

CultiBag STR 50L. The power numbers Ne of the two small scale systems are identical (with 

a value of 3.33) and somewhat lower in the CultiBag STR 50L (Ne = 3.14) at the same stirrer 

configuration (RT and SBI). It is shown that unreasonably high specific power inputs for cell 

culture applications are obtained in the UniVessel® bioreactors, if the maximum tip speed of 

1.8 m·s-1 is used as a scale-up/down parameter for the CultiBag STR 50L. Thus, it can be 

concluded that (maximum) specific power input P/V is a more appropriate constraint for 

scale-up than tip speed when viewed from the perspective of adequate mixing and shear 

sensitivity of the cells, which is in agreement with the literature data. Furthermore, 

correlations for the mixing time are provided which are independent of the bioreactor scale, 

as suggested by Nienow (1997), and can thus be used in scale-up/down studies.  

From multi-phase simulations using an Euler-Euler approach, gas phase distribution and 

oxygen mass transfer were modelled for various agitation and aeration rates. In this first 

attempt, a constant bubble size of 1 mm, as obtained using photography at the BIOSTAT® B 

plus is assumed. It is well-known that bubble size depends on media properties, such as 

viscosity, salt content etc., and is usually non-uniform. In addition, bubble size distribution 

depends on aeration (e.g. the sparger design) and the agitation system (e.g. impeller type), 

and is further influenced by bubble break-up and coalescence. In the last two decades, 

bubble size distributions have been increasingly modelled using population balance models 

(PBM) [e.g. Kerdouss et al. (2008); Dhanasekharan et al. (2005)]. Nevertheless, computation 

using PBMs becomes more complex and time-consuming due to the additional transport 

equations for bubble size distribution. Hence, this approach is not adopted for the first 

engineering characterization of the UniVessel®, but will be used in further studies in the 

near future. Based on the results obtained so far, it can be concluded that the oxygen transfer 

capacity of the UniVessel® 2L single-use has no limitations for medium cell densities 

achieved at gentle agitation and aeration. In addition to the results presented, the fluid flow 

in the small scale UniVessel® equipped with two segment blade impellers will be 

investigated in further studies, because Sartorius Stedim decided to provide the UniVessel® 

single-use with this stirrer configuration mainly due to the broad acceptance by the 

costumers.  
In a third part, two approaches for the evaluation of mechanical stress on cells are 
presented. The first, which is based on the Kolmogorov turbulence theory, indicates that cell 
damage could occur above specific power inputs of 230 W·m-3. This value is also given as 
the upper limit of typical power inputs by Nienow (2006). However, it is shown that the 

www.intechopen.com



  
Computational Fluid Dynamics Technologies and Applications 

 

118 

turbulence distribution inside the bioreactor is very heterogeneous. Hence, volume-
weighted distributions of velocity gradients are predicted in the second approach. These 
velocity gradients are additionally subdivided into local shear and normal gradients, as 
suggested by Wollny (2010), which may allow a more detailed evaluation of cell damage 
mechanisms. Compared with turbulence, velocity gradients indicate lower cell stress 
potential. Although no cell damage is expected under typical operation conditions, it is 
difficult to draw general conclusions since biological effects depend on various factors, such 
as the cell line used, cell characteristics, culture media, additives and so on. Nevertheless, 
the results obtained indicate that Sartorius Stedim’s novel UniVessel® 2L single-use is a 
viable alternative to conventional stirred cell culture bioreactors at bench scale.  
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