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1. Introduction 

Optical lithography continues to be the popular technique for further miniaturization of 

electronic circuitry and its components. However, as further device miniaturization 

continues, the complexity of pattern generation and cost increase (ITRS 2006); therefore the 

use of such techniques becomes limited to high-end applications, such as microprocessor 

manufacturing.  As an alternative, nanomaterials and non-conventional nanofabrication 

methods, such as “bottom-up” chemical approaches, offer great opportunities in producing 

useful nanostructure-based devices with potential advantages such as enhanced 

performance and/or lower cost. A majority of the produced nanomaterials for device 

applications require post processing (e.g. transfer from a source to a target substrate).  For 

composite structures this transfer is not a concern, but for producing intricate nanodevices 

with a large scale hierarchical order, this step becomes a bottleneck.  Generally, scaling up 

requires knowledge of surface registries of a large group of nanocrystals on a given surface 

that is needed for the subsequent fabrication steps.  In addressing this issue, we combine a 

surface-directed nanocrystal growth with conventional lithography to control the registries 

of laterally grown semiconductor nanowires.  In this process, a nanowire is formed using a 

surface-directed vapor-liquid-solid (SVLS) process inside a Au nanodroplet; the 

nanodroplet defines the starting point of the nanowire and a single crystal substrate defines 

its growth direction.   We use substrates such as sapphire and gallium nitride and have 

shown that each crystal promotes its own specific growth directions.  Using this platform, 

nanowires are grown where the nanodevices are expected to be fabricated.  In the following, 

we intend to provide an account of the progress on directed deposition and growth of 

nanocrystals in the plane of a substrate and existing challenges to interface them with the 

outside world.   

“Bottom-up” fabrication strategies and directed assembly methods have become 

increasingly attractive in arranging nanostructure in a hierarchical order.  One of the key 

barriers to large-scale integration of functional nanowires and nanocrystals into devices and 

systems has been their difficulty in parallel interfacing with other device components.  A 

basic prerequisite for reproducibly interfacing, on the order of millions of, nanocrystals is to 

be able to precisely control their growth sites.  Shape of the nanocrystal significantly impacts 

www.intechopen.com



 
Nanowires - Implementations and Applications 

 

246 

the complexity of this process and thus nanocrystals with one elongated dimension fit in 

better with the available microfabrication protocols.  In controlling the growth site of one-

dimensional nanocrystals, also referred to as quantum wires, nanorods or nanowires, one 

popular approach is their growth in a free standing form using a metal–catalyst via a 

process called vapor-liquid-solid (VLS) (Wagner and Ellis 1964; Haraguchi, Katsuyama et al. 

1991; Morales and Lieber 1998).  The advantages of this growth technique include uniform 

composition and electronic structure of nanowires, and the ability to alter their composition 

by, for instance, introducing a quantum well (Bjork, Thelander et al. 2004) or a 

heterojunction (Bjork, Ohlsson et al. 2002; Wu, Fan et al. 2002).  Furthermore, the VLS 

technique allows control over the nucleation site of a nanowire such that it is grown where 

the metal catalyst is deposited (Huang, Mao et al. 2001).   

In applications requiring electron-hole recombination or separation, typically a n-p junction 

is needed that can be formed within a nanowire, either axially or radially (Putnam, 

Boettcher et al.; Garnett and Yang 2008).  In another design, the n-p junction is formed at the 

contact point of nanowires with the underlying substrate (Dalui, Lin et al.; Fang, Zhao et al.; 

Park and Yi 2004; Chen, Chang et al. 2009).  In both configurations, a top contact is necessary 

to complete the circuit.  To have a functional device, prior to the top contact deposition, a 

non–conductive spacer is used to fill the void between nanowires (Park and Yi 2004; Sun, 

Huang et al. 2008; Kelzenberg, Boettcher et al. 2010).  Different groups have used this 

technique for interfacing large ensembles of nanowires in photovoltaic applications; 

however, filling the void between nanowires can be a cumbersome step as it can force 

nanowires to collapse or lead to partial filling for closely packed nanowires.  In other 

applications where nanowires need to be integrated in a planar format, the standing 

nanowires must be removed from the substrate and cast on a different surface.  This step 

typically requires aligning nanowires to enhance the efficiency of interfacing them with 

other device components. Several strategies aiming at controlling hierarchical order of 

nanowires have been developed, such as electric field assisted orientation (Smith, Nordquist 

et al. 2000) and alignment with fluid flow in microchannels (Huang, Duan et al. 2001). 

Examples of other alignment techniques include the Langmuir-Blodgett technique(Kim, 

Kwan et al. 2001), assembly of densely packed nanowires using a pattern transfer process 

(Melosh, Boukai et al. 2003), shear force-alignment of nanowires in thin polymer films (Yu, 

Cao et al. 2007), and role-printing of nanowires (Yerushalmi, Jacobson et al. 2007). All of 

these techniques result in planar alignment of nanowires; however, they do not provide 

control over their surface registries for the successive patterning steps.    

In this chapter, we discuss a fabrication technique that has the potential to address the 
limitations described above. This technique combines a “bottom-up” chemical approach 
with optical lithography and improves the scalability, precision, and fidelity of integrating 
nanowires to a platform. We discuss the surface-directed growth concept as well as the 
different steps necessary for scalable fabrication of some nanowire devices, such as field 
effect transistors (FETs) and light emitting diodes (LEDs). In the first section, we discuss the 
growth of ZnO nanowires on a-plane sapphire and their application in nanowire FETs.  We 
provide some examples of fabricated nanowire FET devices with a single, two, or several 
nanowires. Furthermore, we analyze some of the electrical characteristics of individual 
nanowires and ensembles of nanowires.  In the second part of this chapter, we discuss the 
growth of ZnO nanowires on gallium nitride (GaN), formation of planar arrays of n-p 
heterojunctions, and their LED behavior.   
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2. Surface-directed growth of ZnO nanowires on sapphire and their charge 
transport 

Zinc oxide is a sensor, piezoelectric, UV light emitter, and transparent semiconductor in the 
visible spectrum, and as such is a technologically important material (Pan, Dai et al. 2002; 
Wang 2004; Wang, Song et al. 2007; Pearton, Lim et al. 2008).  In its one-dimensional form, 
ZnO nanowires have been grown using a phase transport process at high temperature, or 
via a wet chemistry at low temperature (Wagner and Ellis 1964; Pan, Dai et al. 2002; Law, 
Greene et al. 2005).  In the traditional VLS process, as described earlier, the nanocrystal 
growth is confined within a metal nanodroplet that dewets the substrate in early stages of 
growth, resulting in free-standing nanowires.  In our technique, the metal nanodroplet stays 
in contact with the substrate during the ZnO growth, allowing the substrate to guide the 
horizontal growth of the nanocrystal; hence we call it a surface-directed VLS (SVLS) process.  
As the nanocrystal grows, the Au nanodroplet also moves on the surface while maintaining 
its interface with the substrate and nanocrystal. This method preserves the advantages of the 
VLS process while simultaneously allowing for careful control of the nanocrystal growth 
site and direction.  Horizontal nanowires can be grown in a tube furnace at ambient 
pressure via a physical phase transport process. The anisotropic growth of a nanowire starts 
at the initial nanodroplet location and continues along the [ 1100 ]sap of an a-plane sapphire 
as the nanodroplet moves on the surface (Nikoobakht, Michaels et al. 2004).  In this 
direction, the ZnO (c-plane) and sapphire (a-plane) have a better lattice match along their 
“a” and “c” axes, respectively, leading to anisotropic ZnO growth.  Intentional anisotropic 
crystal growth has been previously observed, for instance, in the growth of one-dimensional 
rare-earth silicides or germanium on Si (Ogino, Hibino et al. 1999; Chen, Ohlberg et al. 2000; 
Ragan, Chen et al. 2003).  These techniques, while resulting in planar growth of nanowires, 
do not offer the control over their growth site or orientation.  Our nanowire-to-device 
integration strategy includes a two-step photolithography process which is schematically 
described in Fig. 1.  First, small Au pads and global marks are placed on a-plane sapphire 
surface using conventional optical lithography (Fig. 1a).  ZnO nanowires are then epitaxially 
grown on opposing sides of each Au pad in [ 1100 ]sap direction  (Fig. 1b) inside a tube 
furnace.  In the second photolithography step, patterns of metal electrodes are placed on the 
nanowires (Fig. 1c).  To complete the fabrication of the field effect transistors, a third step of 
photolithography (not shown) is used to place the top gate electrode patterns on the 
nanowires.  Prior to this patterning step, the nanowires are coated with a thin oxide (gate 
oxide) layer that protects nanowires from direct contact with the gate electrode. 
 

 

Fig. 1. Fabrication flow for interfacing ZnO nanowires to metal contacts.  a) Deposition of 
Au pads and global marks. b) Planar growth of ZnO nanowires from Au pads. c) Placing 
metal electrodes using conventional optical lithography. 

www.intechopen.com



 
Nanowires - Implementations and Applications 

 

248 

For preparing microscale Au pads, following photolithography protocols, substrates are 
coated with a typical photoresist. Patterns of 1 µm x 5 µm pads along with global marks are 
created on the photoresist. Thin Au films, 1nm to 3 nm, are deposited on the photoresist using 
a thermal evaporator. Photoresist lift-off is carried out by sequential submersion of the 
substrates in two acetone containers (at 80 °C) for a period of about 25 minutes. The lift-off 
process is concluded by sequential washing the substrates in hot (75 °C) and room 
temperature ethanol for a total time of 10 minutes. To remove the organic residue, ozone 
cleaning is performed for about 3-4 minutes, followed by washing in deionized (DI) water, and 
nitrogen gas drying. At this point a Au-patterned substrate is transferred to the end of the 
small quartz tube and nanowires are grown according to the procedure described earlier.  To 
grow horizontal ZnO nanowires, a modified approach (Nikoobakht, Michaels et al. 2004) of an 
earlier method for growing free standing nanowires (Wagner and Ellis 1964; Huang, Wu et al. 
2001) was used. Briefly, a ZnO/graphite mixture (0.15 g, 1:1 mass ratio) is loaded on a Si 
substrate and positioned at the center of an inner tube (13 cm length, 1.9 cm inner diameter).  
The tube, containing a Au coated sapphire substrate, is inserted into a tube furnace such that 
the mixed powder is located at the center of the outer tube (80 cm length, 4.9 cm inner 
diameter). The furnace temperature is set at 890 ºC (with a ramp rate of about 110 ºC/min.) for 
10 minutes under 0.6 standard liters per minute (SLPM) flow of 99.99% Ar or N2 gas.  8 mm x 8 
mm a-plane sapphire pieces are washed with small cotton swabs and DI water and then blown 
dry with nitrogen (99.99%). For Au nanodroplets less than 25 nm in size, we observe an in-
plane and oriented growth of small diameter nanowires on a-plane sapphire. For larger size 
Au nanodroplets, the population of free-standing nanowires increases. 

2.1 Directed growth of nanowires on sapphire 
In the first photolithography step, the Au pads are deposited such that their short sides are 

perpendicular to the [ 1100 ]sap direction of the sapphire wafer (Fig. 2a-c). We have shown that 

this is a major growth direction of nanowires on the sapphire surface. The identified pad 
orientation results in a smaller number of nanowires per unit length (discussed later). A closer 
view of the positioning of the Au pads relative to the nanowire growth direction is shown in 
Fig. 2(a, b). An atomic force microscopy (AFM) image of a Au pad and its height profile are 
illustrated in Fig. 2(c-d), which shows an average height of 2.5 nm. Typically, a Au thickness 
ranging from 2 nm to 8 nm is suitable for horizontal nanowire growth.  The thin Au film 
transforms to nanodroplets that, at higher temperatures, nucleate the nanowires.   
 

 

Fig. 2. Orientation of the deposited Au pads on the sapphire wafer. a) Sapphire wafer with 
its typical c-plane cut. b)  SEM image of arrays of Au pads deposited on sapphire. c) AFM 
image of an individual Au pad after photoresist removal. d) Height profile of the Au pad 
shown in (c). 
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Only those nanodroplets residing at the two short sides of each Au pad produce horizontal 
ZnO nanowires (Fig. 3a-b).  The group of nanowires shown in the scanning electron 
microscopy (SEM) image of Fig. 3b is also imaged by AFM (Fig. 3c) to characterize their 
dimensions and show the strength of this approach in locating a small group of nanowires 
on a large surface.   
The AFM height profile of these nanowires shows that their diameter ranges from 8 nm to 
13 nm.  Typically, Au pads with 3 (±1) nm thicknesses result in nanowires with an average 
thickness of 11 (±3) nm and the nanowire density per pad width is found to be 10 

nanowires/µm.  The number of nanowires can be further reduced by decreasing the Au pad 
size or by increasing the resolution of the optical lithography. Based on SEM and AFM size 
measurements, the width-to-height ratio of the nanowires is typically found to be close to 
one; therefore, a semicircular profile or a faceted structure is assumed for horizontal 
nanowires. This is confirmed by examining the cross-sections of these nanowires, as 
demonstrated in Fig. 3(d, e).  By increasing the number of deposited Au pads on the 
substrate, the scale of assembly of nanowires can be readily increased (Fig.4). The 
directionality of growth is mainly dictated by the underlying substrate, and so this unique 
growth direction is observed everywhere on the wafer as well as in sapphire wafers from 
different batches.  As shown in Fig. 4, free-standing nanowires grow from the Au 
nanodroplets that are far from the periphery of the Au pads (Huang, Mao et al. 2001). 
 

 

Fig. 3. a-b) SEM images of site-selective growth of horizontal nanowires.  c) AFM image of 
the group of nanowires shown in part (b). d-e) Transmission electron microscope images of  
cross-sections of two individual nanowires.   

2.2 Integration of horizontal nanowires with metal contacts 
Since the relative positions of nanowires are known with respect to the global marks on the 
surface (from step 1), integration of the nanowires and metal electrodes can be carried out 
by aligning these marks with the complementary ones on the second layer of the 
photolithography mask.  Metal electrode patterns are placed on nanowires across the whole 
8 mm x 8 mm substrate with a precision that is limited to the resolution of the mask aligner.   
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Fig. 4. Groups of horizontal nanowires made from planar arrays of Au pads. 

Figure 5a shows a low magnification view of a sapphire wafer after deposition of metal 

electrodes and metal pads.  The highlighted area in this figure is shown in the optical 

micrograph of Fig. 5b where the Au pads are seen as dark spots located underneath the 

metal electrodes.  Nanowires are not resolved in this figure, but their direction is shown 

with the black arrow.  In the used setup, alignment of nanowires and metal electrodes is 

such that the left metal contacts reside at one end of the nanowires.  The highlighted box in 

Fig. 5b is further magnified in the SEM image of Fig. 5c in which the original Au pads are 

marked blue.   

Depending on the number of nanowires grown from a given Au pad, a nanodevice can be 

comprised of single or multiple nanowires.  Examples of devices with a few nanowires are 

shown in Figures 5(c) and 6(a-b).  Devices containing double and single nanowires with 

multiple metal electrodes are shown in Figures 6(c- d).  Using this technique, we are able to 

achieve parallel fabrication of nanodevices using a photolithography process with one micron 

feature resolution. This is in contrast to the current state-of-the-art nanowire-device fabrication 

in which registries of nanowires are not known and single nanowire devices are typically 

fabricated randomly in a serial fashion by electron-beam lithography.  Single nanowire devices 

are of great interest, because of their enhanced characteristics that, most likely, smears out in 

devices containing multiple nanowires; however, single nanowire devices have not been well 

studied due to the limitation in their large scale formation.  As mentioned earlier, by 

increasing the resolution of the optical lithography, better control over the number of 

nanowires per growth site is expected; considering the current advances in the semiconductor 

industry for feature miniaturization, if the deposited Au features can be reduced in size, the 

present technique has the potential to produce high density of such devices. 
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Fig. 5. Scale of placement of metal electrodes on nanowires. a) Low magnification optical 
image of electrodes and bonding pads. b) The highlighted box in part (a) is magnified here 
showing the overlap of the dark spots with the left  hand side metal electrodes.  c) the marked 
area in part (b) is shown in the SEM image depicting two groups of nanowires originiated 
from two Au pads (marked blue) and their orientation relative to the metal electrodes.  

 

 

Fig. 6. Examples of fabricated multiple-, double, and single nanowire devices.  The electrode 
patterns and their spacing are defined in the photomask.  Aligning the global marks in the 
1st and 2nd mask readily results in overlap of the nanowires with the metal electrodes.   
Letters V,W, X,Y, and Z in part (d-e) are explained in section 2.3. 
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2.3 Electrical measurements 
In a single fabrication process, as described above, more than 600 nanodevices can be 

prepared composed of both single- and multi- nanowire devices.  The results presented here 

are from three different fabrication processes; more than 20 nanodevices were tested 

repeatedly over the course of 3 months during which none showed any evidence of 

degradation or aging.  Electrical measurements included two-terminal current vs. voltage  

(I-V) and transconductance (Ids-VG) were carried out using (Keithley 6430)1 and (Hewlett-

Packard 4140B)1 source-measure units and a probe station.  In the examined nanowires, the 

channel length ranged from 4 µm to 8 µm and nanowire diameters were between 7 (±1) nm 

to 22 (±1) nm.  Depending on the length and diameter of the nanowires, the maximum 

current extracted at a 5V bias ranged from 2 nA to 180 nA.  Among tested devices, different 

types of contacts are observed ranging from Ohmic to Schottky (Fig. 7).  As an example, the 

I-V scan in Fig. 7a was obtained from the device in Fig. 6d (contacts WY) showing an Ohmic 

contact.  In this device the nanowire length between the electrodes was 6.5 µm and its 

diameter was 12 (± 1) nm (measured by AFM).  The I-V scan in Fig. 7b, corresponding to the 

device VW (Fig. 6e) with a length of about 4 µm and a width of 22 (±1) nm, displays a 

different behavior.  In this case, the linear slopes of the I-V scans indicate the presence of 

an Ohmic contact, but with two different slopes for reverse and forward biases. The 

reasons behind the different slopes are not clear, but most likely are contact related.  

Although metal contact deposition is expected to be fairly homogenous for nanowires on 

a given substrate, the variation in electrical properties of the nanowires could be 

influenced by a number of other factors, such as contact contamination or inadequate 

thermal annealing. The results presented in this study are obtained without thermal 

annealing of the electrical contacts.  Another device behavior is shown in Fig. 7c that has a 

rectifying behavior. Compared to previous nanowire devices, this nanowire has a 

diameter of about 7 nm, which is relatively small.   

   

 

Fig. 7. Two-terminal current vs. source-drain voltage curves for three single NW devices. 

The diode like behavior of this device could be due to its Schottky contacts or the smaller 
diameter of the nanowire.  Nonetheless, information on charge transport at this size regime 
is very limited and more work is required to reach a comprehensive conclusion. 

                                                 
1 Certain commercial equipment, instruments, or materials are identified in this paper to adequately 
specify the experimental procedure. In no case does such identification imply recommendation or 
endorsement by the National Institute of Standards and Technology nor does it imply that the materials 
or equipment identified are necessarily the best available for the purpose 
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2.4 Modulating the electrical conductivity of nanowires 
For these measurements, a top-gated FET design (as illustrated in figure 8) was fabricated.  
In this design, a thin layer of silicon oxide (100 nm) is first deposited on nanowires using 
plasma-enhanced chemical vapor deposition (PECVD), followed by deposition of Au metal 
as gate electrode using optical lithography and thermal metal evaporation. 
 

 

Fig. 8. Top-gated FET nanowires.   Source, drain, and gate electrodes are labeled as S, D, and 
G, respectively. 

Here the idea is to modulate the electrical current that passes through the nanowires by 
applying a voltage to a gate electrode that resides about 100 nm above the nanowires. As-
grown ZnO nanowires typically have excess electrons, likely due to oxygen vacancies, and 
interstitials (Kohan, Ceder et al. 2000), and thus are n-type semiconductors. If that is the 
case, as gate electrode bias is increased to positive values, the conductivity of the nanowires 
increases.  Typical current vs. source-drain voltage (IDS-VDS) scans are shown in Figures 9a 
and 9b for a multi-nanowire and a two-nanowire device, respectively. At a positive gate 
bias, the IDS increases markedly; hence the channel is n-type (Sze 1969). A positive gate bias 
enables access to electrons (mostly in the valance band) of the nanowires, resulting in an 
increase in electron density in the conduction band and thus an increase in device 
conductivity. For a negative gate voltage, due to the repulsion of electrons by gate, the 
number of electrons in the conduction band decreases and thus the size of the conductive 
channel decreases. This is the trend that is also observed in nanowire devices at negative 
gate biases, as can be seen for the negative voltage region in Fig. 9c-d.  The plots in this 
figure demonstrate the gate modulation efficiency (IDS-VG) for a variety of source-drain 
voltages.  For such devices the threshold voltage was found to be about -3V; this is the gate 
voltage at which nanowires stop charge transport.  Since these nanowire devices have an 
intrinsic conductance at zero gate voltage, by definition they are classified as “depletion 
mode” FET devices.  This behavior can be modeled using the following equation which 
portrays the idealized characteristic of a insulated–gate field effect transistor (Sze 1969):  

 
2

G

dI C

dV L

µ
= Vds (1) 

www.intechopen.com



 
Nanowires - Implementations and Applications 

 

254 

 

Fig. 9. Current-voltage and transconductance measurements of NW devices. I DS-VDS data 
for top-gated FET NW device containing: a) eight NWs, with diameter distribution of 13 (±5) 

nm and channel length of 8.5 µm. b) two NWs, 10 (±1) nm and 20 (±1) nm in diameter and a 

channel length of 6.3 µm.  The scans were recorded at different gate voltages ranging from -
5V to 5V.  By increasing VDS, IDS linearly increased in both devices followed by device 
saturation due to a drastic drop-off in the charge carriers (electrons).  When negative gate 
bias was applied (lines with symbols), channel conductivity gradually decreased to zero.  
For fixed VDS values, IDS-VG scans were collected for: (c) an eight-NW device. d) a two-NW 
device.  The absence of current saturation in this voltage range indicated low resistivity of 
the contacts. 

In equation (1), C is the capacitance of the gate that is defined by
2 0

4
2 /ln( )SiO

h
C L

d
πε ε= ; ε0 is 

the permittivity of vacuum and εSiO2 is relative dielectric of the gate oxide layer.   
L is the device length, h is the oxide thickness, and d is the nanowire diameter.  Using equation 

(1) and slopes of the graphs at VDS of 1V in Fig. 9 (c-d), the field-effect mobilities, µ,   for the 
multi-nanowire and two-nanowire devices are found to be ~ 15 cm2/Vs and 20 cm2/Vs, 
respectively.  In calculating the mobility, the channel width was assumed to be the sum of the 
diameters of the nanowires.  Although the profile of the nanowires is closer to a semicircular 
shape, the nanowire profile was considered circular when estimating the field effect mobilities.  
The on/off current ratios of the devices were found to be about 105 for a  VDS of 4V.  Devices 
with multiple nanowires show characteristics comparable to those of thicker ZnO nanowires 
(e.g., 100 nm diameter) (Fortunato, Barquinha et al. 2004). While having smaller individual 
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diameters (15 nm to 25 nm), they still net a larger total surface area. These could be suitable for 
sensing application where higher surface area is an advantage. 
In examining single nanowire devices, IDS-VDS measurements were collected at different gate 
biases for a nanowire with 14(±1) nm diameter and a 7.1 μm channel length.  As seen in 
figure 10, current intensity that goes through individual nanowires increases as the gate bias 
voltage increases (under forward bias).  This device, compared to the two-nanowire device 
(Fig. 9b), shows a lower drain current, which could be due to Schottky contacts and the 
smaller nanowire diameter.  Figure 10b shows that the device remains off at zero gate bias, 
indicating a very small conductive channel width.  This defines this type of device as a FET 
in “enhancement mode”.  The threshold voltage was found to be about +1V. 
 

 

Fig. 10. a) IDS-VDS scans for a single NW FET.  The maximum drain-current at VDS of 5V 
increased from 1nA to about 50 nA within 0V to 4V of VG.  b) IDS-VG curves show that the 
single NW device is not conducting at zero gate bias, which is different from multi-NW 
devices (9c, d). 

Among the tested devices it was noticed that single nanowires with diameters less than 15 nm 
tended to remain off under no gate bias. The observation of the two different modes in 
multiple and single nanowire devices is likely due to a decrease in the number of nanowires 
and also their smaller diameter.  In low power applications, a device in the “enhancement 
mode” is more desirable over the “depletion mode” because there is no gate voltage necessary 
to turn the transistor off (Fortunato, Barquinha et al. 2004).  This is a remarkable property that 
can be used to tune the characteristics of a nanowire FET. The field effect electron mobility 
measured for several single nanowire devices was found to be 4 (±2) cm2/Vs with an on/off 
current ratio of at least ~5x104.  It is notable that the values reported above were obtained for 
device lengths ranging from 4 μm to 8 μm.  Nanowire surface engineering, e.g., overcoating 
nanowires with a material with suitable band gap and lattice constant, is expected to decrease 
the number of electron scattering sites in the nanowire and therefore improve the electron 
mobility.  Compared to ZnO thin film transistors, ZnO nanowire devices show comparable 
electron carrier densities (10 18 cm-3) and field effect mobilities, but significantly lower 
threshold voltages (Fortunato, Barquinha et al. 2004).  In all of our fabricated devices the 
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threshold voltage (Vth) was found to be between 1V to -4V originating from a gate dielectric 
thickness of about 60 nm.  ZnO nanowire devices are expected to have much lower Vth values 

and improved device behavior once a high-κ and structurally matched dielectric is used.  More 
comprehensive transport studies on single and multi-nanowire are needed to further 
understand the electrical properties of this new class of nanomaterial. 
A multitude of applications using this technique are possible.  In the field of crystal growth, 
use of “mobile metal nanodroplets”, such as Au, could be a new way for planar and 
localized growth of nanocrystals and their heterostructures.  We have extended this 
approach to other (II-VI or III-V) semiconductor nanowires that have an anisotropic crystal 
mismatch with their underlying substrate, which is discussed in the following section.   

3. Surface-directed growth of ZnO nanowires on GaN and their electro-optical 
properties 

In addition to the growth of ZnO on sapphire, more recently SVLS was used for growth of 

GaAs nanowires on GaAs substrates (Fortuna, Wen et al. 2008).  In the present work, we 

extend this process to formation of high quality heterojunctions of II-VI and III-V 

semiconductors; a characteristic that has been challenging to realize in homo- and 

heterojunction growth of these semiconductors (Kozodoy, Ibbetson et al. 1998; Vispute, 

Talyansky et al. 1998).  To demonstrate this concept, we form addressable microarrays of p-n 

heterojunctions by lateral growth of n-type ZnO nanowires, a II-VI semiconductor with 

hexagonal structure, on a p-type GaN substrate with a similar crystal structure (Nikoobakht 

and Herzing 2010).  ZnO, a wide band-gap semiconductor, is attracting renewed interest for 

UV light emission and lasing, piezoelectric devices (Wang and Song 2006), “invisible” circuitry 

(Nomura, Ohta et al. 2003), and photovoltaics (Law, Greene et al. 2005).    Its band gap can be 

engineered by the addition of Mg or Cd dopants, which are inexpensive and abundant 

(Pearton, Lim et al. 2008).  ZnO also exhibits one of the highest exciton binding energies (~ 60 

meV), which makes it a good candidate for high efficiency UV-visible light emitters.  To this 

end, we show a simple device design that allows charge injection to a large number of laterally 

grown heterojunctions.  This approach could enable formation of a wide range of electrically 

addressable II-VI and III-V heterojunctions and their easy integration into photonic and lab-

on-chip platforms with applications in energy generation and light detection. 

The lateral growth of ZnO nanowires takes place on a Au-patterned c-plane GaN substrate.  

Au patterns were deposited either by dispersing Au nanoparticles (10 nm to 40 nm in size) 

or by using a thermal evaporator.  The process is carried out inside a tube furnace that is 

held at 850 °C, with the substrate placed in a stream of ultra-dry N2 carrier gas containing 

Zn and O precursors.  The lateral growth of nanowires on GaN in the growth chamber is 

more sensitive relative to the growth of standing nanowires; for a reproducible growth, care 

must be taken to place Au coated substrates at the outlet of the small quartz tube (refer to 

section 2).  At high temperature, the resulting Au nanodroplets promote the planar growth 

of ZnO nanocrystals via the SVLS process, which is influenced by the lattice match and 

crystal symmetry of the nanocrystals and the substrate. Crystal symmetry clearly 

demonstrates its effect in a system like ZnO (a, b= 0.32489 nm) on GaN (a, b=0.31894nm), 

which contains a lattice mismatch of ~ 1.8%.  In the simplest case, we observed that using 10 

nm to 40 nm Au nanoparticles dispersed on GaN, the substrate directs the growth in six 

equivalent directions of 1010< >  with a hexagonal symmetry as shown in Figure 11(a,b).   
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Fig. 11. a) Schematic showing the six-fold symmetry of the surface-directed VLS growth of 
ZnO nanocrystals using Au nanoparticles (red circles) on c-plane GaN and b) its 
corresponding electron micrograph illustrating these growth directions.  c) The circular 
drawing in red represents the Au pattern deposited on GaN via standard photolithography, 
which in part (d) converts to nanodroplets at elevated temperatures.  e) The Au 
nanodroplets at the boundaries of the circular pattern result in horizontal nanowires. f) 
Arrays of p-n heterojunctions made from n-type ZnO nanowires grown on p-type GaN.   

The observed six-fold symmetry confirms the contribution of the underlying substrate in 
determining the growth direction.  The site selectivity of the growth is shown by Au 
patterning a GaN surface and growth of ZnO nanostructures.  In this process, a 
photolithographically-generated Au pattern with a thickness of 8 (±2) nm (Fig. 11c) at 
elevated temperatures (500 °C -700 °C) converts to packs of Au nanodroplets (Fig. 11d).  As 
shown in Figure 11e, at a temperature range of 840 °C- 900 °C, while the ZnO phase 
transport is in progress only Au nanodroplets formed at the perimeter of a Au pattern have 
the opportunity to laterally move on the substrate and form nanowires.  Nanowires 
preferentially grow in three directions and are all electrically connected via the ZnO 
backbone that can be seen as the dark-gray circular pattern.   

www.intechopen.com



 
Nanowires - Implementations and Applications 

 

258 

The nanowire width stays constant during its lateral growth, indicating that diffusion of Au 
to the nanowire facets and reduction in the volume of the Au nanodroplets remains 
insignificant for nanodroplets smaller than 20 nm (Hannon, Kodambaka et al. 2006).  When 
the diameter of the Au nanodroplets increases above 20 nm, the nanowires acquire a new 
dimension by growing in the [0002]ZnO direction (normal to the substrate plane).  Utilizing 
this observation, by depositing Au patterns as shown in Figure 12a with thickness of 10 (±2) 
nm to 17(±2) nm (step 1), it is possible to laterally grow ZnO nanowalls.  Steps 2 and 3 in this 
figure represent the formation of Au nanodroplets followed by growth of ZnO nanowalls, 
respectively.  The schematic in step 3 illustrates tilted view of an assembly.   Following these 
steps results in assemblies of ZnO nanowalls and standing nanowires as seen in Figure 12b.  
This assembly is grown from 5 mm long Au lines with 5 µm of width and 20 µm pitch.  In 
this figure, patterned Au lines are deposited parallel to the [1010] direction of GaN in order 
to allow the lateral growth of ZnO nanowalls in only two directions ( [0110]

 
and [1100] ). 

 

 

Fig. 12. a) Steps for growing assemblies of laterally grown ZnO nanowalls.  b) An assembly 
of ZnO nanowalls grown from a periodic array of Au lines with a film thickness of 15 (±2) 
nm, width of 5 µm and length of 5 mm.  Au lines are deposited along the [1010] GaN.  c) A 
tilted SEM view of ZnO nanowalls in a small section of the assembly from part (a).  d)  
STEM image of cross-sections of a group of ZnO nanowalls showing their upright growth in 
c-direction and their four major facets. 
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Examining the cross-sections of closely packed ZnO nanowalls (Figure 12b) shows they are 
vertical ZnO slabs with four dominant facets that can grow a few microns in the direction 
normal to the interface.   Due to the large number of Au nanodroplets formed at the 
perimeter of each Au line, a high density of nanowalls can be grown, which is advantageous 
in applications such as photovoltaics and photodetection where the surface area is 
important. 
Figure 13 shows that the height of a nanowall gradually decreases toward its leading end, 
indicating that its vertical growth most likely is due to a slower self-catalytic process (Wang, 
Kong et al. 2003).  Previously, in the case of ZnO nanocantilevers, self-catalytic growth was 
attributed to the formation of Zn clusters on the (0002) polar surface of ZnO nanowires 
(Wang, Kong et al. 2003).  Since nanowalls are only observed in the case of larger sized Au 
nanodroplets, it is possible that a larger volume Au nanodroplet also results in formation of 
Zn cluster (at its eutectic point) that promotes the growth in the ZnO [0002] direction.   
 

 

Fig. 13. Tilted view of grown ZnO nanowalls on GaN.  The height decreases toward the 
leading end of nanowalls.  

3.1 ZnO-GaN p-n heterojunctions and fabrication of nano-LEDs 
The present technique is suitable for fabricating II-VI nanowire-based devices on III-V 
semiconductor substrates including GaN and its other combinations, such as InGaN and 
AlGaN, to realize platforms for tunable light emission and detection.  As an example, in 
Figure 14a, a simple strategy is demonstrated for fabricating arrays of electrically-driven, 
light-emitting, p-n heterojunctions formed at the interface between ZnO nanowires or 
nanowalls and the GaN substrate.  

The GaN substrate is c-plane and 5 µm thick, which is grown on c-plane sapphire.  The GaN 
layer is doped with Mg at a concentration of 5 x 1017 cm-3 (purchased from TDI1).  In this 
technique, since the relative location of nanowire arrays are known, metal contacts can be 
readily deposited via standard photolithography over the ZnO backbones.  A representative 
image of a three-layer (metal/ ZnO nanowalls /GaN) structure is shown in Figure 14b, 
where the top metal electrode (Ti-Au) deposited on the ZnO backbone is highlighted in 
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yellow. During the device operation, the metal contacts on the ZnO backbones allow 
electron injection into nanowires or nanowalls and hole injection to the p-GaN side.  The 
location, size and shape of the light emitting devices can be controlled by depositing Au 
catalyst patterns ranging from a few microns to several millimeters with triangular, circular, 
and square shapes (Nikoobakht and Herzing 2010). 
 

 

Fig. 14. a) Schematic showing a tilted view of an electrically-driven array of p-n 
heterojunctions made from n-type ZnO nanowalls on p-type GaN.  In this cartoon, the GaN 
substrate is shown as a hexagon. b) SEM image of the tilted view of a device is illustrated; 
the yellow color indicates the deposited metal electrode on the ZnO backbone.  All other 
device layers are labeled in the figure. 

Current-voltage (I-V) characteristics of the as grown n-p heterojunctions exhibit rectifying 
behavior for small and large groups of nanowires or nanowalls.  Multiple devices were 
repeatedly operated from -25 V to 27 V in order to examine the structural and functional 
stability of the p-n heterojunctions.  Results in Figures 15a and 15b, respectively, show the I-

V scans of a 5 mm x 5 mm n-p heterojunction array and a 100 µm-size array.   
 

 

Fig. 15. I-V scans of two nanowall-LED devices with lateral dimensions of: a) 5 mm and b) 

100 µm. 
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As seen in these figures, the injected current is substantially higher in larger sized devices, 
due to the larger number of involved nanowires as well as the contribution of the ZnO 
backbone in conducting the charges to the GaN layer. We typically observe a turn on 
voltages of 2.7 V to 3.8 V (± 0.2), breakdown voltages of 3V to 9V, and a diode ideality factor 
ranging from 3 to 3.4, which  are comparable to those of free-standing heterojunction 
nanowires (Nikoobakht and Herzing 2010) (Tian, Zheng et al. 2007).   

3.2 Electrically-driven light emission of p-n heterojunction arrays  
In the fabricated devices, the dopant concentration of the GaN layer is 5 x 1017 cm-3 and the 
carrier concentration of the ZnO nanowires is about 1x1018 cm-3 (based on previous electrical 
measurements (Nikoobakht 2007)).  Upon applying a DC voltage to metalized arrays of p-n 
heterojunctions made from ZnO nanowalls on p-GaN, individual heterojunctions in the 
array independently emit light, as can be seen from the electroluminescence (EL) image in 
Figure 16a. This image was collected from part of a device with a faceted-spiral pattern 
(inset) containing a millimeter-long ZnO backbone that is under an injection current of ~0.9 
mA at +7V.  Results show that both nanowires and nanowalls emit along their entire length 
in contrast to the mechanically formed p-n junctions where emission originates only from 
the parts of a nanowire that are in contact with the substrate (Lee, Kim et al. 2007; Zimmler, 
Stichtenoth et al. 2008). Another EL emission example of a nanowall-based p-n 
heterojunction array with lateral dimensions of 5 mm x 5 mm is illustrated in Figure 16b. 
The dark lines in this image are the metal contacts that block some of the emitted light.   The 
strength of this growth technique is that it allows large scale charge injection into planar 
nanowire LEDs with a unique control that is difficult to achieve using other techniques.   
 

 

Fig. 16. a) The electroluminescence image of a group of emitting p-n heterojunctions that is 
part of a millimeter-long nanowall array with a ZnO backbone in the shape of a faceted 
spiral, which is shown in the optical image in the inset.  In this example, the injected current 
is ~0.9 mA at +7V. b) The electroluminescence image of a 5 mm-long array of emitting 

nanowall p-n heterojunctions with a 20 µm-pitch array spacing.   The arrays are formed 
along the specified direction relative to the GaN m-planes.  The inset shows the same array, 
but emitting under a forward injection current of 0.02A. 
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In order to further probe electro-optical characteristics of these heterojunctions, the EL spectra 

of a number of heterojunction arrays with different shapes and sizes (from 100 µm to 5 mm) 
were collected at voltages from -25 V to 27 V using an optical fiber mounted above an active 
device.  Figure 17a illustrates an example in which two spectra are collected from a large array 
of nanowall p-n heterojunctions (EL image shown in Figure 16b) under a forward bias from 9V 
to 25V.  The strong excitonic emission of the device at about 390 nm agrees well with the 
photoluminescence (PL) of ZnO nanowalls at 380 nm (Fig. 17b), indicating that holes are 
injected into the n-type ZnO. This is also in agreement with the brightly emitting nanowires in 
Figure 16 (a-b) showing that the majority of the charge recombination occurs in the ZnO 
region.  The strong emission and the narrow spectral bandwidth (32 nm FWHM) are indicative 
of a low density of interface states that depress the radiative recombination probability.  The 
inset of Figure 16a shows the blue emission of a 5 mm2-array of p-n heterojunctions at 20 V 
with an injection current of 0.017 A. The collective emission of the p-n heterojunctions is 
intense enough that can be observed by the unaided eye. 
 

 

Fig. 17. a) EL spectra of a p-n heterojunction array (similar to the array in Fig.16b) with a 
lateral dimension of 5 mm under a forward bias of -13 V to -25 V (injection current of 0.01 A 
to 0.036 A).  Inset shows the blue emission of the corresponding device at a forward bias of 
20V collected using a digital camera after 30s of exposure time.  b) EL emission of p-n 
heterojunctions at forward bias (circle symbol) and its good agreement with PL emission of 
the p-n heterojunctions (solid line). c)  EL emission at 640 nm from the same array, but 
under a reverse bias of +7 V to 15V (0.003-0.011A injection current).  Inset shows the orange 
emission of the same device at a reverse bias of 20 V. d) Compares EL emission at 640 nm at 
a reverse bias (solid line) with PL of p-GaN substrate (square symbol). 
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By applying reverse bias voltages above 6V, i.e., beyond the break down voltage of the 
examined devices, we observe a bright orange emission with a wavelength centered at 640 
nm (1.95 eV) as shown in the spectra of Figure 17c and inset.  This emission is different from 
PL emission of p-GaN (black curve-Fig. 17d), which also indicates that the charge 
recombination does not occur in the GaN layer.  Although this is still under study, we note 
that the 640 nm emission intensity decreases as the surface area of the ZnO backbone-GaN 
decreases.  This drop in intensity also coincides with a better rectifying behavior and an 
increase in the breakdown voltage from 4 V to more than 9 V in smaller size devices (refer to 
Figures 15 a-b).   
Results suggest that the ZnO backbone has a contribution to this emission; nonetheless we 
do not observe this emission in the PL of the corresponding devices on GaN (brown curve-
Fig. 17b). With regard to the electronic states involved in this emission, we tentatively 
attribute the EL emission under the reverse bias to a transition from an intrinsic shallow 
state (such as Zni) to an intrinsic deep state such as oxygen vacancies.  The shape of the EL 
emission spectrum does not change by increasing the injection current in both reverse and 
forward biases.  However, by increasing the injected current (I) the intensity of the emitted 
light first grows then reaches a mild saturation at higher voltages.  This could be an 
indication of a limited charge carrier concentration at the junction, heating effects, or 
increase in non-radiative processes.  In addition to ZnO, we observe the lateral growth for 
Ti2O3 and GaN on substrates such as Al2O3 (Nikoobakht 2007) and GaN, which possess 
hexagonal or trigonal/ rhombohedral crystal structures.     

4. Conclusion 

A nanodevice fabrication method is described which is based on the combination of a 
“bottom-up” chemical method and conventional optical lithography.  Compared to other 
available techniques, this method controls the surface registries of nanocrystals for 
successive fabrication steps.  The chemical method provides the horizontal growth of 
nanowires from individual Au nanodroplets, and their alignment is dictated by the 
underlying substrate.  Nanowires are grown where the devices are to be fabricated, and the 
need for nanowire transfer or alignment is eliminated.   This SVLS growth of nanowires for 
a wide group of materials is likely, especially III-V and II-VI semiconductors, since growth 
of their free-standing forms has already been reported using this process (Fortuna, Wen et 
al. 2008).  The present technique maintains the strength of the VLS-based methods in growth 
of axial and core-shell heterojunctions, while allowing control of their hierarchical assembly 
through surface-directed processes.  The flexibility in material combination and the ability to 
grow dense arrays of laterally grown nanowires/nanowalls could lead to the development 
of novel heterojunctions that are electrically addressable on relevant scales.  Due to the 
unique control over the location and orientation of arrays of nanowires afforded by this 
technique, and its compatibility with conventional microfabrication methods, it is expected 
to impact the field of scalable nanowire-based devices by enabling the realization of 
numerous structural combinations and device concepts.   
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