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1. Introduction 
 

A Wireless Sensor Network (WSN) is a network composed of sensor nodes communicating 
among themselves and deployed in large scale (from tens to thousands) for applications 
such as environmental, habitat and structural monitoring, disaster management, equipment 
diagnostic, alarm detection, and target classification. In WSNs, typically, sensor nodes are 
randomly distributed over the area under observation with very high density. Each node is 
a small device able to collect information from the surrounding environment through one or 
more sensors, to elaborate this information locally and to communicate it to a data collection 
centre called sink or base station. WSNs are currently an active research area mainly due to 
the potential of their applications. However, the deployment of a large scale WSN still 
requires solutions to a number of technical challenges that stem primarily from the features 
of the sensor nodes such as limited computational power, reduced communication 
bandwidth and small storage capacity. Further, since sensor nodes are typically powered by 
batteries with a limited capacity, energy is a primary constraint in the design and 
deployment of WSNs. 
Datasheets of commercial sensor nodes show that data communication is very expensive in 
terms of energy consumption, whereas data processing consumes significantly less: the 
energy cost of receiving or transmitting a single bit of information is approximately the 
same as that required by the processing unit for executing a thousand operations. On the 
other hand, the energy consumption of the sensing unit depends on the specific sensor type. 
In several cases, however, it is negligible with respect to the energy consumed by the 
communication unit and sometimes also by the processing unit. Thus, to extend the lifetime 
of a WSN, most of the energy conservation schemes proposed in the literature aim to 
minimize the energy consumption of the communication unit (Croce et al., 2008). To achieve 
this objective, two main approaches have been followed: power saving through duty cycling 
and in-network processing. Duty cycling schemes define coordinated sleep/wakeup 
schedules among nodes in the network. A detailed description of these techniques applied 
to WSNs can be found in (Anastasi et al., 2009). On the other hand, in-network processing 
consists in reducing the amount of information to be transmitted by means of aggregation 
(Boulis et al., 2003) (Croce et al., 2008) (Di Bacco et al., 2004) (Fan et al., 2007) 
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(Intanagonwiwat et al., 2003) (Lindsey et al., 2002) (Madden et al., 2002) and/or 
compression techniques. In this chapter, we do not consider aggregation: the interested 
reader can refer to (Fasolo et al., 2007) for a brief discussion and classification of aggregation 
approaches. 
Data compression algorithms fall into two broad classes: lossless and lossy algorithms. 
Lossless algorithms guarantee the integrity of data during the compression/decompression 
process. On the contrary, lossy algorithms generate a loss of information, but generally 
ensure a higher compression ratio. 
Due to the limited resources available in sensor nodes, to apply data compression in WSNs 
requires specifically designed algorithms. Two approaches have been followed: 

1. to distribute the computational cost on the overall network (Chen et al., 2004) 
(Ciancio & Ortega, 2005) (Ciancio et al., 2006) (Deligiannakis et al., 2004) (Ganesan 
et al., 2003) (Gastpar et al., 2006) (Girod et al., 2005) (Guestrin et al., 2004) (Lin et al., 
2006) (Pradhan et al., 2002) (Rebollo-Monedero, 2007) (Tang & Raghavendra, 2004), 
(Wagner et al., 2007) (Zixiang et al., 2004); 

2. to exploit the statistical features of the data under monitoring so as to adapt some 
existing algorithms to the constraints imposed by the limited resources available on 
the sensor nodes (Ganesan et al., 2003) (Lynch et al., 2004) (Sadler & Martonosi, 
2006). 

The first approach is natural in cooperative and dense WSNs, where data measured by 
neighbouring nodes are correlated both in space and in time. Thus, we can apply distributed 
transforms or estimate distributed models which allow decorrelating the data measured by 
sensors, and, therefore, representing these data by using fewer bits. Obviously, the models 
are generally only approximations of the data. Thus, distributed compression algorithms are 
intrinsically lossy.  
To the best of our knowledge, only a few papers have discussed the second approach. 
Examples of compression techniques applied to the single node adapt some existing 
dictionary-based compression algorithms to the constraints imposed by the limited 
resources available on the sensor nodes. For instance, in (Sadler & Martonosi, 2006) and 
(LZO, 2008), the authors have introduced two lossless compression algorithms, namely S-
LZW and miniLZO, which are purposely adapted versions of LZW (Welch, 1984) and LZ77 
(Ziv & Lempel, 1977), respectively. Since S-LZW outperforms miniLZO, as shown in (Sadler 
& Martonosi, 2006), we will consider only S-LZW as comparison in this chapter. The 
Lightweight Temporal Compression (LTC) algorithm proposed in (Schoellhammer et al.,  
2004) is an efficient and simple lossy compression technique for the context of habitat 
monitoring. LTC introduces a small amount of error into each reading bounded by a control 
knob: the larger the bound on this error, the greater the saving by compression. 
The choice of the algorithm type (lossless or lossy) depends on the specific application 
domain. Typically, applications, which are not particularly critical, tolerate the use of 
sensors that, though very cheap, collect data affected by a non-negligible noise. In this 
context, lossy compression algorithms can provide a double advantage: to reduce noise and 
to compress data (Ganesan et al., 2003). On the other hand, the criticality of some application 
domains demands sensors with high accuracy and cannot tolerate that measures, are 
corrupted by the compression process. In Body Area Networks, for instance, sensor nodes 
permanently monitor and log vital signs: each small variation of these signs have to be 
captured because it might provide crucial information to make a diagnosis. Thus, we believe 

 

that both lossless and lossy compression algorithms suitable to WSNs have to be deeply 
investigated. Since sensor nodes are typically equipped with a few kilobytes of memory and 
a 4-8MHz microprocessor, embedding classical data compression schemes in these tiny 
nodes is practically infeasible (Barr & Asanović, 2006) (Kimura & Latifi, 2005).  
To overcome these problems, in a previous paper (Marcelloni & Vecchio, 2009), we have 
proposed a Lossless Entropy Compression algorithm (LEC), which exploits the natural 
correlation that exists in data typically collected by WSNs and the principles of entropy 
compression. We have shown how its low complexity and the small amount of memory 
required for its execution make the algorithm particularly suited to be used on available 
commercial sensor nodes. Other important features of LEC are i) its ability to compute a 
compressed version of each value on the fly and ii) to exploit a very short fixed dictionary, 
whose size depends on the precision of the analog-to-digital converter (ADC).  
The LEC algorithm follows a scheme similar to the one used in the baseline JPEG algorithm 
for compressing the so-called DC coefficients of a digital image: the basic idea is to divide 
the alphabet of values into groups whose sizes increase exponentially and consequently to 
implement the codewords as a hybrid of entropy and binary codes (Pennebaker & Mitchell, 
1992). In particular, the entropy code (a variable-length code) specifies the group, while the 
binary code (a fixed-length code) represents the index within the group. In (Marcelloni & 
Vecchio, 2009), we have adopted the Huffman table proposed in JPEG to entropy encoding 
the groups.  
In this chapter, first we briefly introduce the LEC algorithm and, by using two real datasets, 
we discuss how the LEC algorithm outperforms S-LZW and three well-known compression 
algorithms, namely gzip, bzip2 and rar. We used these three algorithms as benchmarks, but 
actually these algorithms are not embeddable in tiny sensor nodes. Second, we analyze how 
the correlation between consecutive samples affects the performance of LEC by 
downsampling the datasets with different downsampling factors and by evaluating how 
much the compression ratio decreases. Third, we investigate the use of semi-adaptive and 
adaptive Huffman coding to increase the performance in the case of reduced correlation 
between consecutive samples. Fourth, we discuss how LEC can be transformed into a lossy 
compression algorithm and show how the lossy version considerably outperforms the 
lossless version in terms of compression ratios without introducing a significant error. 
Finally, we compare the lossy version of LEC with LTC. 
The Chapter is organized as follows. Section 2 introduces the LEC algorithm. In Section 3, 
we assess the performance of LEC in terms of compression ratios and complexity. Section 4 
introduces the lossy version of LEC and shows some preliminary experimental results. 
Finally, Section 5 gives some conclusions. 

 
2. The LEC Algorithm 
 

Figure 1 shows the block scheme of the LEC algorithm. In the sensing unit of a sensor node, 
each measure mi acquired by a sensor is converted by an ADC to a binary representation ri 
on R bits, where R is the resolution of the ADC, that is, the number (2R) of discrete values 
the ADC can produce over the range of analog values.  
For each new acquisition mi, LEC computes the difference di = ri - ri-1, which is input to an 
entropy encoder (in order to compute d0 we assume that r-1 is equal to the central value 
among the 2R possible discrete values). The entropy encoder performs compression 
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(Intanagonwiwat et al., 2003) (Lindsey et al., 2002) (Madden et al., 2002) and/or 
compression techniques. In this chapter, we do not consider aggregation: the interested 
reader can refer to (Fasolo et al., 2007) for a brief discussion and classification of aggregation 
approaches. 
Data compression algorithms fall into two broad classes: lossless and lossy algorithms. 
Lossless algorithms guarantee the integrity of data during the compression/decompression 
process. On the contrary, lossy algorithms generate a loss of information, but generally 
ensure a higher compression ratio. 
Due to the limited resources available in sensor nodes, to apply data compression in WSNs 
requires specifically designed algorithms. Two approaches have been followed: 

1. to distribute the computational cost on the overall network (Chen et al., 2004) 
(Ciancio & Ortega, 2005) (Ciancio et al., 2006) (Deligiannakis et al., 2004) (Ganesan 
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existing algorithms to the constraints imposed by the limited resources available on 
the sensor nodes (Ganesan et al., 2003) (Lynch et al., 2004) (Sadler & Martonosi, 
2006). 

The first approach is natural in cooperative and dense WSNs, where data measured by 
neighbouring nodes are correlated both in space and in time. Thus, we can apply distributed 
transforms or estimate distributed models which allow decorrelating the data measured by 
sensors, and, therefore, representing these data by using fewer bits. Obviously, the models 
are generally only approximations of the data. Thus, distributed compression algorithms are 
intrinsically lossy.  
To the best of our knowledge, only a few papers have discussed the second approach. 
Examples of compression techniques applied to the single node adapt some existing 
dictionary-based compression algorithms to the constraints imposed by the limited 
resources available on the sensor nodes. For instance, in (Sadler & Martonosi, 2006) and 
(LZO, 2008), the authors have introduced two lossless compression algorithms, namely S-
LZW and miniLZO, which are purposely adapted versions of LZW (Welch, 1984) and LZ77 
(Ziv & Lempel, 1977), respectively. Since S-LZW outperforms miniLZO, as shown in (Sadler 
& Martonosi, 2006), we will consider only S-LZW as comparison in this chapter. The 
Lightweight Temporal Compression (LTC) algorithm proposed in (Schoellhammer et al.,  
2004) is an efficient and simple lossy compression technique for the context of habitat 
monitoring. LTC introduces a small amount of error into each reading bounded by a control 
knob: the larger the bound on this error, the greater the saving by compression. 
The choice of the algorithm type (lossless or lossy) depends on the specific application 
domain. Typically, applications, which are not particularly critical, tolerate the use of 
sensors that, though very cheap, collect data affected by a non-negligible noise. In this 
context, lossy compression algorithms can provide a double advantage: to reduce noise and 
to compress data (Ganesan et al., 2003). On the other hand, the criticality of some application 
domains demands sensors with high accuracy and cannot tolerate that measures, are 
corrupted by the compression process. In Body Area Networks, for instance, sensor nodes 
permanently monitor and log vital signs: each small variation of these signs have to be 
captured because it might provide crucial information to make a diagnosis. Thus, we believe 

 

that both lossless and lossy compression algorithms suitable to WSNs have to be deeply 
investigated. Since sensor nodes are typically equipped with a few kilobytes of memory and 
a 4-8MHz microprocessor, embedding classical data compression schemes in these tiny 
nodes is practically infeasible (Barr & Asanović, 2006) (Kimura & Latifi, 2005).  
To overcome these problems, in a previous paper (Marcelloni & Vecchio, 2009), we have 
proposed a Lossless Entropy Compression algorithm (LEC), which exploits the natural 
correlation that exists in data typically collected by WSNs and the principles of entropy 
compression. We have shown how its low complexity and the small amount of memory 
required for its execution make the algorithm particularly suited to be used on available 
commercial sensor nodes. Other important features of LEC are i) its ability to compute a 
compressed version of each value on the fly and ii) to exploit a very short fixed dictionary, 
whose size depends on the precision of the analog-to-digital converter (ADC).  
The LEC algorithm follows a scheme similar to the one used in the baseline JPEG algorithm 
for compressing the so-called DC coefficients of a digital image: the basic idea is to divide 
the alphabet of values into groups whose sizes increase exponentially and consequently to 
implement the codewords as a hybrid of entropy and binary codes (Pennebaker & Mitchell, 
1992). In particular, the entropy code (a variable-length code) specifies the group, while the 
binary code (a fixed-length code) represents the index within the group. In (Marcelloni & 
Vecchio, 2009), we have adopted the Huffman table proposed in JPEG to entropy encoding 
the groups.  
In this chapter, first we briefly introduce the LEC algorithm and, by using two real datasets, 
we discuss how the LEC algorithm outperforms S-LZW and three well-known compression 
algorithms, namely gzip, bzip2 and rar. We used these three algorithms as benchmarks, but 
actually these algorithms are not embeddable in tiny sensor nodes. Second, we analyze how 
the correlation between consecutive samples affects the performance of LEC by 
downsampling the datasets with different downsampling factors and by evaluating how 
much the compression ratio decreases. Third, we investigate the use of semi-adaptive and 
adaptive Huffman coding to increase the performance in the case of reduced correlation 
between consecutive samples. Fourth, we discuss how LEC can be transformed into a lossy 
compression algorithm and show how the lossy version considerably outperforms the 
lossless version in terms of compression ratios without introducing a significant error. 
Finally, we compare the lossy version of LEC with LTC. 
The Chapter is organized as follows. Section 2 introduces the LEC algorithm. In Section 3, 
we assess the performance of LEC in terms of compression ratios and complexity. Section 4 
introduces the lossy version of LEC and shows some preliminary experimental results. 
Finally, Section 5 gives some conclusions. 

 
2. The LEC Algorithm 
 

Figure 1 shows the block scheme of the LEC algorithm. In the sensing unit of a sensor node, 
each measure mi acquired by a sensor is converted by an ADC to a binary representation ri 
on R bits, where R is the resolution of the ADC, that is, the number (2R) of discrete values 
the ADC can produce over the range of analog values.  
For each new acquisition mi, LEC computes the difference di = ri - ri-1, which is input to an 
entropy encoder (in order to compute d0 we assume that r-1 is equal to the central value 
among the 2R possible discrete values). The entropy encoder performs compression 
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losslessly by encoding differences di more compactly based on their statistical 
characteristics. LEC exploits a modified version of the Exponential-Golomb code (Exp-
Golomb) of order 0 (Teuhola, 1978), which is a type of universal code. The basic idea is to 
divide the alphabet of numbers into groups whose sizes increase exponentially. Like in 
Golomb coding (Golomb, 1966) and Elias coding (Elias, 1975), a codeword is a hybrid of 
unary and binary codes: in particular, the unary code (a variable-length code) specifies the 
group, while the binary code (a fixed-length code) represents the index within the group. 
Indeed, each nonzero di value is represented as a bit sequence bsi composed of two parts 
si|ai, where si codifies the number ni of bits needed to represent di (that is, the group to 
which di belongs) and ai is the representation of di (that is, the index position in the group). 
When di is equal to 0, the corresponding group has size equal to 1 and therefore there is no 
need to codify the index position in the group: it follows that ai is not represented. 
 

 COMPRESSOR

DELAY 

ENCODER 
ri di

ri-1

-
+ bsi

UNCOMPRESSOR

DECODER 
bsi

DELAY 
++

id

i-1r

ir

 
Fig. 1. Block diagram of the encoding/decoding schemes.  
 
For any nonzero di, ni is trivially computed as  2log id   : at most ni is equal to R. Thus, in 

order to encode ni a prefix-free table of R + 1 entries has to be specified. This table depends 
on the distribution of the differences di: more frequent differences have to be associated with 
shorter codes. From the observation that, in typical data collected by WSNs, the most 
frequent differences are those close to 0, in (Marcelloni & Vecchio, 2009) we adopted Table 1, 
where the first 11 lines coincide with the table used in the baseline JPEG algorithm for 
compressing the DC coefficients (Pennebaker & Mitchell, 1992). On the other hand, these 
coefficients have statistical characteristics similar to the measures acquired by the sensing 
unit. Of course, whether the resolution of the ADC is larger than 14 bits, the table has to be 
appropriately extended.  
In order to manage negative di, LEC maps the input differences onto nonnegative indexes, 
using the following bijection: 
 

 
, 0

   
02 1 ,i

i i
n

ii

d d
index

dd
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 (1) 

 

Finally, si is equal to the value at entry ni in the prefix-free table and ai is the binary 
representation of index over ni bits. Since di is typically represented in two’s complement 
notation, when 0id , ai is equal to the ni low-order bits of di – 1.  
The procedure used to generate ai guarantees that all possible values have different codes. 
Using Table 1, we have, for instance, that di = 0, di = +1, di = -1, di = +255 and di = -255 are 
encoded as 00, 010|1, 010|0, 111110|11111111 and 111110|00000000, respectively. Once bsi 
is generated, it is appended to the bitstream which forms the compressed version of the 
sequence of measures mi. 
In the uncompressor, the bit sequence bsi is analyzed by the decoder block which outputs 
difference di. Difference di is added to ri-1 to produce ri.  
 

ni si di 
0 00 0 
1 010 -1,+1 
2 011 -3,-2,+2,+3 
3 100 -7,…,-4,+4,…,+7 
4 101 -15,…,-8,+8,…,+15 
5 110 -31,…,-16,+16,…,+31 
6 1110 -63,…,-32,+32,…,+63 
7 11110 -127,…,-64,+64,…,+127 
8 111110 -255,…,-128,+128,…,+255 
9 1111110 -511,…-256,+256,…,+511 
10 11111110 -1023,…,-512,+512, …,+1023 
11 111111110 -2047, …,-1024,+1024, …,+2047 
12 1111111110 -4095, …,-2048,+2048, …,+4095 
13 11111111110 -8191, …,-4096,+4096, …,+8191 
14 111111111110 -16383, …,-8192,+8192, …,+16383 

Table 1. The default dictionary table. 

 
3. Performance Assessment Results 
 

In our experiments, we have used the temperature and relative humidity measurements 
collected from a randomly extracted node (NODE ID= 84) of the WSN SensorScope LUCE 
deployment (SensorScope, 2009), within the time interval from 23/11/2006 to 17/12/2006. 
The resulting temperature and relative humidity datasets are composed by 64913 samples 
and we will refer to them as LU_ID84_T and LU_ID84_H, respectively. The WSN adopted in 
the deployment employs a TinyNode node type (TinyNode, 2009), which uses a TI MSP430 
microcontroller, a Xemics XE1205 radio and a Sensirion SHT75 sensor module (Sensirion, 
2009).  
This module is a single chip which includes a capacitive polymer sensing element for 
relative humidity and a bandgap temperature sensor. Both the sensors are seamlessly 
coupled to a 14-bit ADC and a serial interface circuit on the same chip. The Sensirion SHT75 
can sense air temperature in the  CC  60,20  range and relative humidity in the 
 %100%,0  range. The outputs raw_t and raw_h of the ADC for temperature and relative 
humidity are represented with resolutions of 14 and 12 bits, respectively. The outputs raw_t 
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losslessly by encoding differences di more compactly based on their statistical 
characteristics. LEC exploits a modified version of the Exponential-Golomb code (Exp-
Golomb) of order 0 (Teuhola, 1978), which is a type of universal code. The basic idea is to 
divide the alphabet of numbers into groups whose sizes increase exponentially. Like in 
Golomb coding (Golomb, 1966) and Elias coding (Elias, 1975), a codeword is a hybrid of 
unary and binary codes: in particular, the unary code (a variable-length code) specifies the 
group, while the binary code (a fixed-length code) represents the index within the group. 
Indeed, each nonzero di value is represented as a bit sequence bsi composed of two parts 
si|ai, where si codifies the number ni of bits needed to represent di (that is, the group to 
which di belongs) and ai is the representation of di (that is, the index position in the group). 
When di is equal to 0, the corresponding group has size equal to 1 and therefore there is no 
need to codify the index position in the group: it follows that ai is not represented. 
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is generated, it is appended to the bitstream which forms the compressed version of the 
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difference di. Difference di is added to ri-1 to produce ri.  
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Table 1. The default dictionary table. 
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collected from a randomly extracted node (NODE ID= 84) of the WSN SensorScope LUCE 
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The resulting temperature and relative humidity datasets are composed by 64913 samples 
and we will refer to them as LU_ID84_T and LU_ID84_H, respectively. The WSN adopted in 
the deployment employs a TinyNode node type (TinyNode, 2009), which uses a TI MSP430 
microcontroller, a Xemics XE1205 radio and a Sensirion SHT75 sensor module (Sensirion, 
2009).  
This module is a single chip which includes a capacitive polymer sensing element for 
relative humidity and a bandgap temperature sensor. Both the sensors are seamlessly 
coupled to a 14-bit ADC and a serial interface circuit on the same chip. The Sensirion SHT75 
can sense air temperature in the  CC  60,20  range and relative humidity in the 
 %100%,0  range. The outputs raw_t and raw_h of the ADC for temperature and relative 
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and raw_h are converted into measures t and h expressed, respectively, in Celsius degrees 
(°C) and percentage (%) as described in (Sensirion, 2009). The datasets corresponding to the 
deployments store measures t and h. On the other hand, the LEC algorithm works on raw_t 
and raw_h. Thus, before applying the algorithm, we extracted raw_t and raw_h from t and h, 
respectively, by using the inverted versions of the conversion functions in (Sensirion, 2009). 
Table 2 shows some statistical characteristics of the two datasets. In particular, we have 
computed the mean s  and the standard deviation s  of the samples, the mean d  and the 
standard deviation d  of the differences between consecutive samples, the information 

entropy 



N

i
ii xpxpH

1
2 )(log)(  of the original signal, where N is the number of possible 

values xi (the output of the ADC) and )( ixp  is the probability mass function of xi, and the 

information entropy 2
1

( ) log ( )
N

d i i
i

H p d p d


    of the differentiated signal. 

 

Dataset Samples ss   
dd   H Hd 

LU_ID84_T 64913 7.21±3.16 -2.87·10-5±0.05 10.07 4.05 

LU_ID84_H 64913 87.04±8.04 1.12·10-4±0.55 10.08 5.85 

Table 2. Statistical characteristics of the datasets. 
 
In the following, we first show the compression ratios achieved by LEC and compare them 
with the ones achieved by S-LZW and three well-known compression algorithms. We also 
discuss the complexity of LEC and S-LZW. Then, we investigate the dependence of the 
compression performance of LEC on the correlation between consecutive samples of the 
signal to be compressed and show how semi-adaptive and adaptive Huffman coding can 
help LEC to increase the compression ratios. Finally, we introduce a problem that affects 
LEC and in general all the differential compression algorithms and discuss how this 
problem can be solved without considerably penalizing the compression ratios achieved by 
LEC. 

 
3.1 Compression ratios and complexity 
The performance of a compression algorithm is usually computed by using the compression 
ratio (CR) defined as: 

 _100 (1 )
_

comp sizeCR
orig size

    (2) 

 
where comp_size and orig_size are, respectively, the sizes in bits of the compressed and the 
uncompressed bitstreams. Considering that uncompressed samples are normally byte-
aligned, both temperature and relative humidity samples are represented by 16-bit unsigned 
integers. Thus, from Table 2, it is easy to compute orig_size for the given datasets. 
Moreover, assuming that all samples have to be transmitted to the sink by using the lowest 
number of messages so as to have power saving (Mainwaring et al., 2002) and supposing 

 

that each packet can contain at most 29 bytes of payload (Croce et al., 2008), we can define 
the packet compression ratio as: 
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where comp_pkt and orig_pkt represent the number of packets necessary to deliver the 
compressed and the uncompressed bitstreams, respectively. 
Table 3 shows the results obtained by LEC in terms of CR and PCR on the two datasets. As 
expected, the LEC algorithm achieves higher compression ratios on the temperature dataset 
which is characterized by a lower entropy dH  and, in general, a low variability between 
consecutive samples (that is, low values of the mean and standard deviation of the 
differences between consecutive samples).  
 

 Dataset orig_size comp_size CR(%) orig_pkt comp_pkt PCR(%) 

LEC 
LU_ID84_T 1038608 303194 70.81 4477 1307 70.81 

LU_ID84_H 1038608 396442 61.83 4477 1709 61.83 

Table 3. Compression ratios obtained by LEC on the two datasets. 
 
To assess the goodness of the results shown in Table 3, we have also applied the S-LZW 
algorithm and three well-known compression methods to the same datasets. S-LZW is a 
lossless compression algorithm purposely developed to be embedded in sensor nodes. S-
LZW splits the uncompressed input bitstream into fixed size blocks and then compresses 
separately each block. During the block compression, for each new string, that is, a string 
which is not already in the dictionary, a new entry is added to the dictionary. For each new 
block, the dictionary used in the compression is re-initialized by using the 256 codes which 
represent the standard character set. Due to the poor storage resources of sensor nodes, the 
size of the dictionary has to be limited. Thus, since each new string in the input bitstream 
produces a new entry in the dictionary, the dictionary might become full. If this occurs, an 
appropriate strategy has to be adopted. For instance, the dictionary can be frozen and used 
as-is to compress the remainder of the data in the block (in the worst case, by using the code 
of each character), or it can be reset and started from scratch. To take advantage of the 
repetitive behaviour of sensor data, a mini-cache is added to S-LZW: the mini-cache is a 
hash-indexed dictionary of size N, where N is a power of 2, that stores recently used and 
created dictionary entries. Further, the repetitive behaviour can be used to pre-process the 
raw data so as to build appropriately structured datasets, which can perform better with the 
compression algorithm.  
In (Sadler & Martonosi, 2006), the authors show that the use of structured datasets and the 
introduction of the mini-cache increase the compression ratios without introducing 
appreciable computational overhead. It follows that S-LZW has to balance four major inter-
related parameters: the size (BLOCK_SIZE) of the data block, the maximum number 
(MAX_DICT_ENTRIES) of dictionary entries, the strategy (DICTIONARY_STRATEGY) to 
follow when the dictionary is full and the number (MINI-CACHE_ENTRIES) of mini-cache 
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LEC and in general all the differential compression algorithms and discuss how this 
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appropriate strategy has to be adopted. For instance, the dictionary can be frozen and used 
as-is to compress the remainder of the data in the block (in the worst case, by using the code 
of each character), or it can be reset and started from scratch. To take advantage of the 
repetitive behaviour of sensor data, a mini-cache is added to S-LZW: the mini-cache is a 
hash-indexed dictionary of size N, where N is a power of 2, that stores recently used and 
created dictionary entries. Further, the repetitive behaviour can be used to pre-process the 
raw data so as to build appropriately structured datasets, which can perform better with the 
compression algorithm.  
In (Sadler & Martonosi, 2006), the authors show that the use of structured datasets and the 
introduction of the mini-cache increase the compression ratios without introducing 
appreciable computational overhead. It follows that S-LZW has to balance four major inter-
related parameters: the size (BLOCK_SIZE) of the data block, the maximum number 
(MAX_DICT_ENTRIES) of dictionary entries, the strategy (DICTIONARY_STRATEGY) to 
follow when the dictionary is full and the number (MINI-CACHE_ENTRIES) of mini-cache 
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entries. With the aim of putting S-LZW in its best situation, we adopted the values 
suggested in (Sadler & Martonosi, 2006): a block size of 528 bytes, a dictionary of 512 entries 
that is maintained once full and a mini-cache of 32 entries. 
As regards the well-known compression methods, we have considered gzip, bzip2 and rar. 
These methods have a parameter which allows setting the compression level. This 
parameter is between 1 and 9 (default 6) for gzip and bzip2, and between 1 and 5 (default 3) 
for rar. We fixed this paramater to the maximum possible compression (9 for gzip and bzip2 
and 5 for rar).  
Table 4 shows the results obtained by the four algorithms. We can observe that LEC 
outperforms the other algorithms. In the table, we have not shown the PCRs for gzip, bzip2 
e rar. Indeed, these algorithms have been used only as benchmarks to validate the 
compression ratios obtained by applying LEC. Actually, as already observed in (Ganesan et 
al., 2003) (Kimura & Latifi, 2005) (Sadler & Martonosi, 2006), these algorithms cannot be 
executed in a sensor node, due to memory requirements and computational power needed 
for their execution. Indeed, the executable codes are too large to be embedded in tiny sensor 
nodes. Further, the compression ratios are obtained after collecting all the samples and 
therefore all the samples have to be stored in memory. This implies that large datasets 
cannot be managed. In addition, the compression cannot be performed on the fly. Finally, 
during their execution, these algorithms require a large memory to manage some step of the 
execution.  
 

Dataset Algorithm CR(%) PCR(%) 

LU_ID84_T 

S-LZW 48.99 48.98 

gzip 48.87 - 

bzip2 69.24 - 

rar 69.16 - 

LU_ID84_H 

S-LZW 31.24 31.22 

gzip 37.86 - 

bzip2 57.82 - 

rar 59.03 - 

Table 4. Compression ratios obtained by S-LZW, gzip,  bzip2 e rar algorithms on the two 
datasets. 
 
As regards complexity of LEC and S-LZW, we have performed a comparative analysis on 
the number of instructions required by both the algorithms to compress data. To this aim, 
we have adopted the Sim-It Arm simulator (Sim-It, 2009), since there already exists a free 
available version of S-LZW implemented for this simulator by the same authors of this 
compression algorithm. Sim-It Arm is an instruction-set simulator that runs both system-
level and user-level ARM programs. Since S-LZW compresses each dataset block by block, 
we executed the two algorithms on Sim-It Arm simulator to compress the first block of each 

 

dataset. A block consists of 528 bytes (corresponding to 264 samples of 16 bits). Table 5 
shows the number of instructions required for compressing one block, the number of saved 
bits and the number of instructions per saved bit for the temperature and relative humidity 
datasets, respectively.  
We note that, though the LEC algorithm achieves a higher compression ratio than S-LZW, it 
requires a lower number of instructions. In particular, we observe that, the LEC algorithm 
executes, for instance, 15.33 instructions for each saved bit against 29.93 executed by S-LZW 
for compressing the first block of the temperature dataset. 
 

LEC S-LZW 

 Temperature Relative 
Humidity Temperature Relative 

Humidity 
number of 

instructions 44784 62817 63207 63207 

number of saved 
bits  2922 2086 2112 96 

number of 
instructions per 

saved bit 
15.33 30.11 29.93 658.41 

Table 5. Complexity of LEC and S-LZW. 

 
3.2 Compression ratio versus correlation between consecutive samples 
In the previous section we have adopted the default Huffman table for compressing the two 
datasets so as to show the effectiveness of the LEC algorithm when dealing with high 
correlated datasets. In this section, we analyze the behaviour of LEC when the correlation 
between consecutive samples decreases. To this aim, we performed the following 
experiment: we simulated different lengths of the sampling interval by downsampling the 
sequence of data. Since in the original datasets, samples are obtained by measuring 
temperature and relative humidity at intervals of 30 seconds along 25 days, we considered 
downsampling factors of 2, 4, 8, 16, 60 and 120, which correspond, respectively, to consider 
time intervals of 1, 2, 4, 8, 30 and 60 minutes. We expect that, like for all compression 
algorithms based on differential coding, the sampling rate affects the achievable 
compression ratio: when the sampling interval is long, the correlation between consecutive 
samples typically decreases, thus reducing the performance of the LEC algorithm. The 
significance of this reduction depends on the variability of the signal.  
Figure 2 shows the results obtained by compressing the downsampled temperature and 
relative humidity datasets. We can observe that the compression ratios decrease with the 
increase of the downsampling factors. For instance, for the temperature, we pass from a 
compression ratio of 70.81% with the original data (downsampling factor equal to 0) to a 
compression ratio of 41.38% with a downsampling factor equal to 120. As expected, the 
decrease of the compression ratios is therefore quite relevant. On the other hand, the 
Huffman table shown in Table 1 has been proposed for data with high correlation, where 
high probabilities are associated with differences between consecutive samples very close to 
0. Actually, these differences are characterized by a high occurrence frequency. By 
downsampling the original signal with factors from 16 to 120, this assumption is not true 
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the number of instructions required by both the algorithms to compress data. To this aim, 
we have adopted the Sim-It Arm simulator (Sim-It, 2009), since there already exists a free 
available version of S-LZW implemented for this simulator by the same authors of this 
compression algorithm. Sim-It Arm is an instruction-set simulator that runs both system-
level and user-level ARM programs. Since S-LZW compresses each dataset block by block, 
we executed the two algorithms on Sim-It Arm simulator to compress the first block of each 

 

dataset. A block consists of 528 bytes (corresponding to 264 samples of 16 bits). Table 5 
shows the number of instructions required for compressing one block, the number of saved 
bits and the number of instructions per saved bit for the temperature and relative humidity 
datasets, respectively.  
We note that, though the LEC algorithm achieves a higher compression ratio than S-LZW, it 
requires a lower number of instructions. In particular, we observe that, the LEC algorithm 
executes, for instance, 15.33 instructions for each saved bit against 29.93 executed by S-LZW 
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3.2 Compression ratio versus correlation between consecutive samples 
In the previous section we have adopted the default Huffman table for compressing the two 
datasets so as to show the effectiveness of the LEC algorithm when dealing with high 
correlated datasets. In this section, we analyze the behaviour of LEC when the correlation 
between consecutive samples decreases. To this aim, we performed the following 
experiment: we simulated different lengths of the sampling interval by downsampling the 
sequence of data. Since in the original datasets, samples are obtained by measuring 
temperature and relative humidity at intervals of 30 seconds along 25 days, we considered 
downsampling factors of 2, 4, 8, 16, 60 and 120, which correspond, respectively, to consider 
time intervals of 1, 2, 4, 8, 30 and 60 minutes. We expect that, like for all compression 
algorithms based on differential coding, the sampling rate affects the achievable 
compression ratio: when the sampling interval is long, the correlation between consecutive 
samples typically decreases, thus reducing the performance of the LEC algorithm. The 
significance of this reduction depends on the variability of the signal.  
Figure 2 shows the results obtained by compressing the downsampled temperature and 
relative humidity datasets. We can observe that the compression ratios decrease with the 
increase of the downsampling factors. For instance, for the temperature, we pass from a 
compression ratio of 70.81% with the original data (downsampling factor equal to 0) to a 
compression ratio of 41.38% with a downsampling factor equal to 120. As expected, the 
decrease of the compression ratios is therefore quite relevant. On the other hand, the 
Huffman table shown in Table 1 has been proposed for data with high correlation, where 
high probabilities are associated with differences between consecutive samples very close to 
0. Actually, these differences are characterized by a high occurrence frequency. By 
downsampling the original signal with factors from 16 to 120, this assumption is not true 
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anymore. To be fair in the experiment, we should compute again the occurrence frequencies 
of the differences between consecutive samples (this approach is known in the literature as 
semi-adaptive Huffman coding (Salomon, 2007)) and modify appropriately the Huffman 
table used in the compression.  
 

 
Fig. 2. Compression ratios obtained by using the default Huffman table on the temperature 
and humidity datasets sampled with different downsampling factors.  
 
Figure 3 shows the results obtained by semi-adaptive Huffman coding. We can observe that 
the compression ratios still decrease with respect to increasing downsampling factors (on 
the other hand, the correlation between consecutive samples is lower), but now this decrease 
is less significant. To take on-line these variations of difference distributions into account, in 
the literature adaptive Huffman coding has been proposed. The method was originally 
developed by Faller (Faller, 1973) and Gallager (Gallager, 1978) with substantial 
improvements by Knuth (Knuth, 1985).  
Figure 4 shows the results obtained by using the adaptive Huffman coding in LEC. 
Obviously, the use of the adaptive coding increases the compression ratios with respect to 
the use of a fixed table, but does not allow outperforming the use of the semi-adaptive 
Huffman coding. On the other hand, unlike fixed table and adaptive Huffman coding, semi-
adaptive Huffman coding exploits the knowledge of all data. Obviously, this knowledge 
cannot be assumed in real applications. Thus, the compression ratios obtained by using the 
semi-adaptive Huffman coding can be considered as an upper limit. However, we observe 
that the compression ratios achieved with the adaptive Huffman coding are very close to the 
ones obtained with the semi-adaptive Huffman coding. On the other hand, we have to 
consider that the use of the adaptive Huffman coding increases the complexity of LEC. 
Further, since the adaptive coding/decoding scheme is symmetric, a possible loss of one 
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packet makes the decompression process completely unreliable. Thus, in real applications of 
WSNs the use of a fixed table is certainly desirable and practically mandatory.  
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temperature and humidity datasets sampled with different downsampling factors.  
 

 
Fig. 4. Compression ratios obtained by using the adaptive Huffman coding on the 
temperature and humidity datasets sampled with different downsampling factors. 
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The fixed Huffman table used in the original version of LEC can guarantee satisfactory 
performance when the correlation between consecutive samples is high. However, when the 
correlation is not high, we can find a fixed Huffman table suitable for the specific 
application. Indeed, we would like to remark that, in real habitat monitoring applications, 
the sampling rate is a parameter of the application domain: once fixed, rarely it is modified. 
Since the trend of the environmental signals is generally known, this allows us to make quite 
reliable assumptions on the distributions of the differences, thus permitting us to generate 
fixed Huffman tables which guarantee high compression ratios. We could also consider to 
adopt a two-phase approach. In the first phase, we collect an appropriate number of samples 
so as to perform an analysis of occurrence frequency of the differences. Then, in the second 
phase, we use the fixed Huffman table generated by the analysis performed in the first 
phase to compress the data on the fly. 
To highlight that the lack of sample correlation does not affect only LEC, but in general all 
the compression algorithms, we have also applied S-LZW to the temperature and humidity 
datasets sampled with downsampling factors of 2, 4, 8, 16, 60 and 120. Figure 5 compares the 
compression ratios obtained by S-LZW with the ones achieved by the LEC algorithm 
executed by using the default table. As expected, we can observe that also the performance 
of S-LZW are considerably affected by downsampling. 
 

 
Fig. 5. Comparison between S-LZW and LEC executed with default table on the temperature 
and humidity datasets sampled with different downsampling factors.  
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LEC, as all the differential compression algorithms, suffers from the following problem. In 
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sample: if the first sample has been lost or corrupted, all the other samples are not correctly 
decoded. In our case, the compressed bitstream is sent by wireless communication to the 
collector, which takes the decompression process in charge. Since the transmission can be 
non-reliable, the first packet could be lost and thus also the first value, making correct 
reconstruction of samples impossible.  
To make communication reliable, a number of solutions have been proposed. In general, 
these solutions involve protocols based on acknowledgements which act at Transport layer. 
Obviously, these protocols require a higher number of message exchanges between nodes 
and this increases the power consumption. A review of these algorithms is out of the scope 
of this chapter. Anyway, a solution to this problem can be also provided at the application 
layer without modifying the protocols of the underlying layers: when we insert the first 
sample into the payload of a new packet, we do not insert the difference between the current 
and the previous sample, but rather the difference between the current sample and a 
reference value known to the decoder (for instance, the central value of the ADC). Thus, the 
decoding of each packet is independent of the reception of the previous packets. Table 6 
compares the PCRs obtained by using this expedient (this PCR will be denoted as PCR*) 
with those shown in Table 3: we can note that the decrease of PCR is not high. Further, the 
PCR*s are still higher than those achieved by S-LZW. Thus, we can conclude that the LEC 
scheme can be made more robust without significantly affecting its performance. 
 

Dataset PCR(%) PCR*(%) 

LU_ID84_T 70.81 68.19 

LU_ID84_H 61.83 58.21 

Table 6. PCRs obtained without (PCR) and by (PCR*s) transmitting the first value in each 
packet.  

 
5. From Lossless to Lossy 
 

In some WSN applications, like environmental monitoring, the accurateness of the measures 
is less important than the sensor cheapness. Thus, often commercial wireless nodes are 
equipped with sensors which, though cheap, collect measures affected by considerable 
noise. In this context, the use of lossless compression algorithms can be penalising. Indeed, 
noise increases the entropy of the signal and therefore hinders the lossless compression 
algorithm to achieve considerable compression ratios. The ideal solution would be to adopt 
on the sensor node, a lossy compression algorithm in which the loss of information would 
be just the noise. Thus, we could achieve high compression ratios without losing relevant 
information. To this aim, we exploit the observation that data typically collected by WSNs 
are strongly correlated. Thus, differences between consecutive samples should be regular 
and generally very small. If this does not occur, it is likely that samples are affected by noise. 
To de-noise and simultaneously compress the samples, we introduce a lossy version of LEC. 
In this version, the difference di = ri - ri-1 is not directly encoded, but is first quantized and 
then encoded following the Differential Pulse Code Modulation (DPCM) scheme often used 
for digital audio signal compression. The schemes of the lossy versions of the compressor 
and uncompressor are shown in Fig. 6. 
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and this increases the power consumption. A review of these algorithms is out of the scope 
of this chapter. Anyway, a solution to this problem can be also provided at the application 
layer without modifying the protocols of the underlying layers: when we insert the first 
sample into the payload of a new packet, we do not insert the difference between the current 
and the previous sample, but rather the difference between the current sample and a 
reference value known to the decoder (for instance, the central value of the ADC). Thus, the 
decoding of each packet is independent of the reception of the previous packets. Table 6 
compares the PCRs obtained by using this expedient (this PCR will be denoted as PCR*) 
with those shown in Table 3: we can note that the decrease of PCR is not high. Further, the 
PCR*s are still higher than those achieved by S-LZW. Thus, we can conclude that the LEC 
scheme can be made more robust without significantly affecting its performance. 
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and generally very small. If this does not occur, it is likely that samples are affected by noise. 
To de-noise and simultaneously compress the samples, we introduce a lossy version of LEC. 
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then encoded following the Differential Pulse Code Modulation (DPCM) scheme often used 
for digital audio signal compression. The schemes of the lossy versions of the compressor 
and uncompressor are shown in Fig. 6. 

www.intechopen.com



 

 COMPRESSOR

DELAY 

ENCODER 
ri id bsi

DELAY 
++

QUANTIZER 
+

-

ˆ
iI(d )

+ +1ˆ ir
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Fig. 6. Block diagram of the encoding/decoding schemes.  
 
Actually to avoid the well-known problem of the accumulation of the error (Salomon, 2007), 
we quantize the difference between sample ri and the most recent reconstructed value 1îr  . 
The problem originates from the following consideration: the compressor can compute the 
exact differences di from the original data samples ri and ri-1, while the uncompressor can 
work only with quantized differences îd . The uncompressor uses ˆ

id  to generate the 

reconstructed samples îr  ( 1
ˆˆ ˆi i ir r d  ) rather than the original samples ri. The generic nth 

reconstructed sample n̂r  at the uncompressor will contain the sum of the quantization errors 
accumulated during the reconstruction of the previous n-1 samples plus the quantization 
error of the current sample: 
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where qi is the quantization error. 
To overcome this problem, the compressor is modified so as to compute the generic 
difference 1ˆi i id r r   , that is, to calculate difference id  by subtracting the most recent 
reconstructed value 1îr   (which both the compressor and the uncompressor have) from the 
current original sample ri. Thus, the uncompressor first decodifies r0. Then, when it receives 
the first quantized difference 1̂d , it computes 1 0 1 0 1 1 1 1

ˆr̂ r d r d q r q       . When it 

receives the second quantized difference 2d̂ , it computes 
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ˆˆ ˆ ˆ ˆ ˆr r d r d q r r r q r q           . The decoded value 2̂r  contains just the single 

quantization error 2q , and in general, the decoded value îr  contains just the quantization 
error iq . 

 

Difference id  is input to the block QUANTIZER that outputs the quantization level îd  

assigned to id  and the index  ˆ
iI d  of ˆ

id . The index   ˆ
iI d  is input to the ENCODER block, 

which generates the codeword ibs  using the same bijection defined in (1) for mapping 
integer inputs to natural values, and the same combination of unary and binary codes 
described in Section 2. The ENCODER block, therefore, encodes the quantization index 
corresponding to the quantized difference rather than the difference as in LEC. Again, the 
dictionary table used to produce the codes should be generated based on the occurrence 
frequency of the quantization indexes. In these preliminary experiments, we have decided 
to adopt the same dictionary used in Table 1, where in place of id , the reader should read 

îd . Since the number of quantization levels îd  is lower than the number of possible id , the 
table might have a lower number of entries. 
In the uncompressor, the codeword ibs  is analyzed by the DECODER block which outputs 

the index  ˆ
iI d , exploiting the same dictionary table. This index is elaborated by the block 

DEQUANTIZER to produce ˆ
id  which is added to 1îr   to output îr . 

Currently, we are simply adopting a uniform quantization. In this case, the unique 
parameter to be fixed is the difference D between two consecutive levels. This parameter is 
very important because it affects the value of the quantization error and indirectly the 
compression ratio. To show the performance of the lossy version of LEC, we set D to six 
different values: 10%, 20%, 30%, 40%, 50% and 60% of the Manufactured Error (ME) of the 
sensor used to collect data. In the case of the sensors (Sensirion SHT75) used in our 
experiments, ME = ± 0.3 oC and ME = ± 1.8% for temperature and relative humidity, 
respectively (Sensirion, 2009). Table 7 shows the compression ratios and the root mean 
squared errors (RMSEs) obtained on the temperature and relative humidity datasets.  
RMSE is computed as:  
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where ir  is the original sample, îr  is the reconstructed sample and N is the number of 
samples of the signal. We observe that, as expected, the compression ratios are higher than 
the ones obtained by the original version of LEC. On the other hand, the lossy version 
introduces an error on the reconstructed signal. Anyway, this error is lower than ME, which 
represents a sort of uncertainty of the measure. 
To assess the results shown in Table 7, we have applied LTC to the same datasets. LTC is an 
efficient and simple lossy compression technique for the context of habitat monitoring. LTC 
generates a set of line segments which form a piecewise continuous function. This function 
approximates the original dataset in such a way that no original sample is farther than a 
fixed error e from the closest line segment. Thus, before executing the LTC algorithm, we 
have to set error e. To perform a fair comparison with the lossy version of LEC, we have set e 
to the 10%, 20% and 30% of the ME of the sensor. This allows obtaining RMSEs comparable 
with the ones obtained by the lossy version of LEC when D is equal to the 20%, 40% and 
60% of the ME. Table 8 shows the compression ratios and the RMSEs obtained on the 
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described in Section 2. The ENCODER block, therefore, encodes the quantization index 
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to adopt the same dictionary used in Table 1, where in place of id , the reader should read 
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Currently, we are simply adopting a uniform quantization. In this case, the unique 
parameter to be fixed is the difference D between two consecutive levels. This parameter is 
very important because it affects the value of the quantization error and indirectly the 
compression ratio. To show the performance of the lossy version of LEC, we set D to six 
different values: 10%, 20%, 30%, 40%, 50% and 60% of the Manufactured Error (ME) of the 
sensor used to collect data. In the case of the sensors (Sensirion SHT75) used in our 
experiments, ME = ± 0.3 oC and ME = ± 1.8% for temperature and relative humidity, 
respectively (Sensirion, 2009). Table 7 shows the compression ratios and the root mean 
squared errors (RMSEs) obtained on the temperature and relative humidity datasets.  
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where ir  is the original sample, îr  is the reconstructed sample and N is the number of 
samples of the signal. We observe that, as expected, the compression ratios are higher than 
the ones obtained by the original version of LEC. On the other hand, the lossy version 
introduces an error on the reconstructed signal. Anyway, this error is lower than ME, which 
represents a sort of uncertainty of the measure. 
To assess the results shown in Table 7, we have applied LTC to the same datasets. LTC is an 
efficient and simple lossy compression technique for the context of habitat monitoring. LTC 
generates a set of line segments which form a piecewise continuous function. This function 
approximates the original dataset in such a way that no original sample is farther than a 
fixed error e from the closest line segment. Thus, before executing the LTC algorithm, we 
have to set error e. To perform a fair comparison with the lossy version of LEC, we have set e 
to the 10%, 20% and 30% of the ME of the sensor. This allows obtaining RMSEs comparable 
with the ones obtained by the lossy version of LEC when D is equal to the 20%, 40% and 
60% of the ME. Table 8 shows the compression ratios and the RMSEs obtained on the 
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temperature and relative humidity datasets. We can observe that the lossy version of LEC 
outperforms LTC in terms of CR for comparable RMSEs, thus proving the good 
characteristics of the proposed lossy compression algorithm. 
 

Dataset Algorithm CR(%) RMSE 

 0.1·ME 78.18 0.0082 

 0.2·ME 81.26 0.0171 

LU_ID84_T 0.3·ME 83.45 0.0256 

0.4·ME 83.46 0.0353 

0.5·ME 84.94 0.0428 

0.6·ME 86.14 0.0517 

 0.1·ME 74.65 0.0450 

 0.2·ME 78.83 0.0872 

LU_ID84_H 0.3·ME 80.89 0.1296 

0.4·ME 82.13 0.1721 

0.5·ME 82.97 0.2166 

0.6·ME 83.61 0.2598 

Table 7. Compression ratios obtained by the lossy version of LEC on the two datasets.  
 

Dataset Algorithm CR(%) RMSE 

LU_ID84_T 

0.1·ME 55.00 0.0190 

0.2·ME 77.53 0.0348 

0.3·ME 86.12 0.0502 

LU_ID84_H 

0.1·ME 26.49 0.0824 

0.2·ME 55.97 0.1681 

0.3·ME 70.99 0.2496 

Table 8. Compression ratios obtained by the LTC algorithm on the two datasets.  

 
 
 
 

 

6. Conclusions 
 

In this chapter, we have discussed how enabling compression helps in wireless sensor 
nodes. First, we have briefly introduced LEC, a lossless compression algorithm we proposed 
in a previous paper. LEC divides the alphabet of differences between consecutive samples 
into groups whose sizes increase exponentially. Each codeword is a hybrid of unary and 
binary codes: in particular, the unary code (a variable-length code) specifies the group, 
while the binary code (a fixed-length code) represents the index within the group. In the 
original version, we used the Huffman table proposed in JPEG for coding the groups. Here, 
we have investigated semi-adaptive and adaptive Huffman coding and carried out a 
comparison in terms of compression ratios with the LEC algorithm with fixed Huffman 
table. We have shown that semi-adaptive and adaptive Huffman coding can increase the 
compression ratios when the correlation between consecutive samples decreases. We have 
compared all the approaches with S-LZW, a compression algorithm specifically proposed 
for sensor nodes, and with three classical compression algorithms, namely gzip, bzip2 and 
rar, though these algorithms are not embeddable in tiny sensor nodes. We have shown that 
the different versions of LEC can achieve considerable compression ratios in all the datasets 
considered in the experiments. Finally, we have discussed how LEC can be transformed into 
a lossy compression algorithm and have shown that this lossy version outperforms LTC, a 
lossy compression algorithm specifically designed for being embedded in tiny sensor nodes. 
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