
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900

Enabling Compression in Tiny Wireless Sensor Nodes 1

Enabling Compression in Tiny Wireless Sensor Nodes

Francesco Marcelloni and Massimo Vecchio

X

Enabling Compression in Tiny
Wireless Sensor Nodes

Francesco Marcelloni1 and Massimo Vecchio2

1Dipartimento di Ingegneria dell’Informazione, University of Pisa, Via Diotisalvi 2, 56122
Pisa, Italy, e-mail: f.marcelloni@ing.unipi.it

2INRIA Saclay, Ile de France sud, France, e-mail: massimo.vecchio@inria.fr

1. Introduction

A Wireless Sensor Network (WSN) is a network composed of sensor nodes communicating
among themselves and deployed in large scale (from tens to thousands) for applications
such as environmental, habitat and structural monitoring, disaster management, equipment
diagnostic, alarm detection, and target classification. In WSNs, typically, sensor nodes are
randomly distributed over the area under observation with very high density. Each node is
a small device able to collect information from the surrounding environment through one or
more sensors, to elaborate this information locally and to communicate it to a data collection
centre called sink or base station. WSNs are currently an active research area mainly due to
the potential of their applications. However, the deployment of a large scale WSN still
requires solutions to a number of technical challenges that stem primarily from the features
of the sensor nodes such as limited computational power, reduced communication
bandwidth and small storage capacity. Further, since sensor nodes are typically powered by
batteries with a limited capacity, energy is a primary constraint in the design and
deployment of WSNs.
Datasheets of commercial sensor nodes show that data communication is very expensive in
terms of energy consumption, whereas data processing consumes significantly less: the
energy cost of receiving or transmitting a single bit of information is approximately the
same as that required by the processing unit for executing a thousand operations. On the
other hand, the energy consumption of the sensing unit depends on the specific sensor type.
In several cases, however, it is negligible with respect to the energy consumed by the
communication unit and sometimes also by the processing unit. Thus, to extend the lifetime
of a WSN, most of the energy conservation schemes proposed in the literature aim to
minimize the energy consumption of the communication unit (Croce et al., 2008). To achieve
this objective, two main approaches have been followed: power saving through duty cycling
and in-network processing. Duty cycling schemes define coordinated sleep/wakeup
schedules among nodes in the network. A detailed description of these techniques applied
to WSNs can be found in (Anastasi et al., 2009). On the other hand, in-network processing
consists in reducing the amount of information to be transmitted by means of aggregation
(Boulis et al., 2003) (Croce et al., 2008) (Di Bacco et al., 2004) (Fan et al., 2007)

1

www.intechopen.com

(Intanagonwiwat et al., 2003) (Lindsey et al., 2002) (Madden et al., 2002) and/or
compression techniques. In this chapter, we do not consider aggregation: the interested
reader can refer to (Fasolo et al., 2007) for a brief discussion and classification of aggregation
approaches.
Data compression algorithms fall into two broad classes: lossless and lossy algorithms.
Lossless algorithms guarantee the integrity of data during the compression/decompression
process. On the contrary, lossy algorithms generate a loss of information, but generally
ensure a higher compression ratio.
Due to the limited resources available in sensor nodes, to apply data compression in WSNs
requires specifically designed algorithms. Two approaches have been followed:

1. to distribute the computational cost on the overall network (Chen et al., 2004)
(Ciancio & Ortega, 2005) (Ciancio et al., 2006) (Deligiannakis et al., 2004) (Ganesan
et al., 2003) (Gastpar et al., 2006) (Girod et al., 2005) (Guestrin et al., 2004) (Lin et al.,
2006) (Pradhan et al., 2002) (Rebollo-Monedero, 2007) (Tang & Raghavendra, 2004),
(Wagner et al., 2007) (Zixiang et al., 2004);

2. to exploit the statistical features of the data under monitoring so as to adapt some
existing algorithms to the constraints imposed by the limited resources available on
the sensor nodes (Ganesan et al., 2003) (Lynch et al., 2004) (Sadler & Martonosi,
2006).

The first approach is natural in cooperative and dense WSNs, where data measured by
neighbouring nodes are correlated both in space and in time. Thus, we can apply distributed
transforms or estimate distributed models which allow decorrelating the data measured by
sensors, and, therefore, representing these data by using fewer bits. Obviously, the models
are generally only approximations of the data. Thus, distributed compression algorithms are
intrinsically lossy.
To the best of our knowledge, only a few papers have discussed the second approach.
Examples of compression techniques applied to the single node adapt some existing
dictionary-based compression algorithms to the constraints imposed by the limited
resources available on the sensor nodes. For instance, in (Sadler & Martonosi, 2006) and
(LZO, 2008), the authors have introduced two lossless compression algorithms, namely S-
LZW and miniLZO, which are purposely adapted versions of LZW (Welch, 1984) and LZ77
(Ziv & Lempel, 1977), respectively. Since S-LZW outperforms miniLZO, as shown in (Sadler
& Martonosi, 2006), we will consider only S-LZW as comparison in this chapter. The
Lightweight Temporal Compression (LTC) algorithm proposed in (Schoellhammer et al.,
2004) is an efficient and simple lossy compression technique for the context of habitat
monitoring. LTC introduces a small amount of error into each reading bounded by a control
knob: the larger the bound on this error, the greater the saving by compression.
The choice of the algorithm type (lossless or lossy) depends on the specific application
domain. Typically, applications, which are not particularly critical, tolerate the use of
sensors that, though very cheap, collect data affected by a non-negligible noise. In this
context, lossy compression algorithms can provide a double advantage: to reduce noise and
to compress data (Ganesan et al., 2003). On the other hand, the criticality of some application
domains demands sensors with high accuracy and cannot tolerate that measures, are
corrupted by the compression process. In Body Area Networks, for instance, sensor nodes
permanently monitor and log vital signs: each small variation of these signs have to be
captured because it might provide crucial information to make a diagnosis. Thus, we believe

that both lossless and lossy compression algorithms suitable to WSNs have to be deeply
investigated. Since sensor nodes are typically equipped with a few kilobytes of memory and
a 4-8MHz microprocessor, embedding classical data compression schemes in these tiny
nodes is practically infeasible (Barr & Asanović, 2006) (Kimura & Latifi, 2005).
To overcome these problems, in a previous paper (Marcelloni & Vecchio, 2009), we have
proposed a Lossless Entropy Compression algorithm (LEC), which exploits the natural
correlation that exists in data typically collected by WSNs and the principles of entropy
compression. We have shown how its low complexity and the small amount of memory
required for its execution make the algorithm particularly suited to be used on available
commercial sensor nodes. Other important features of LEC are i) its ability to compute a
compressed version of each value on the fly and ii) to exploit a very short fixed dictionary,
whose size depends on the precision of the analog-to-digital converter (ADC).
The LEC algorithm follows a scheme similar to the one used in the baseline JPEG algorithm
for compressing the so-called DC coefficients of a digital image: the basic idea is to divide
the alphabet of values into groups whose sizes increase exponentially and consequently to
implement the codewords as a hybrid of entropy and binary codes (Pennebaker & Mitchell,
1992). In particular, the entropy code (a variable-length code) specifies the group, while the
binary code (a fixed-length code) represents the index within the group. In (Marcelloni &
Vecchio, 2009), we have adopted the Huffman table proposed in JPEG to entropy encoding
the groups.
In this chapter, first we briefly introduce the LEC algorithm and, by using two real datasets,
we discuss how the LEC algorithm outperforms S-LZW and three well-known compression
algorithms, namely gzip, bzip2 and rar. We used these three algorithms as benchmarks, but
actually these algorithms are not embeddable in tiny sensor nodes. Second, we analyze how
the correlation between consecutive samples affects the performance of LEC by
downsampling the datasets with different downsampling factors and by evaluating how
much the compression ratio decreases. Third, we investigate the use of semi-adaptive and
adaptive Huffman coding to increase the performance in the case of reduced correlation
between consecutive samples. Fourth, we discuss how LEC can be transformed into a lossy
compression algorithm and show how the lossy version considerably outperforms the
lossless version in terms of compression ratios without introducing a significant error.
Finally, we compare the lossy version of LEC with LTC.
The Chapter is organized as follows. Section 2 introduces the LEC algorithm. In Section 3,
we assess the performance of LEC in terms of compression ratios and complexity. Section 4
introduces the lossy version of LEC and shows some preliminary experimental results.
Finally, Section 5 gives some conclusions.

2. The LEC Algorithm

Figure 1 shows the block scheme of the LEC algorithm. In the sensing unit of a sensor node,
each measure mi acquired by a sensor is converted by an ADC to a binary representation ri
on R bits, where R is the resolution of the ADC, that is, the number (2R) of discrete values
the ADC can produce over the range of analog values.
For each new acquisition mi, LEC computes the difference di = ri - ri-1, which is input to an
entropy encoder (in order to compute d0 we assume that r-1 is equal to the central value
among the 2R possible discrete values). The entropy encoder performs compression

www.intechopen.com

Enabling Compression in Tiny Wireless Sensor Nodes 3

(Intanagonwiwat et al., 2003) (Lindsey et al., 2002) (Madden et al., 2002) and/or
compression techniques. In this chapter, we do not consider aggregation: the interested
reader can refer to (Fasolo et al., 2007) for a brief discussion and classification of aggregation
approaches.
Data compression algorithms fall into two broad classes: lossless and lossy algorithms.
Lossless algorithms guarantee the integrity of data during the compression/decompression
process. On the contrary, lossy algorithms generate a loss of information, but generally
ensure a higher compression ratio.
Due to the limited resources available in sensor nodes, to apply data compression in WSNs
requires specifically designed algorithms. Two approaches have been followed:

1. to distribute the computational cost on the overall network (Chen et al., 2004)
(Ciancio & Ortega, 2005) (Ciancio et al., 2006) (Deligiannakis et al., 2004) (Ganesan
et al., 2003) (Gastpar et al., 2006) (Girod et al., 2005) (Guestrin et al., 2004) (Lin et al.,
2006) (Pradhan et al., 2002) (Rebollo-Monedero, 2007) (Tang & Raghavendra, 2004),
(Wagner et al., 2007) (Zixiang et al., 2004);

2. to exploit the statistical features of the data under monitoring so as to adapt some
existing algorithms to the constraints imposed by the limited resources available on
the sensor nodes (Ganesan et al., 2003) (Lynch et al., 2004) (Sadler & Martonosi,
2006).

The first approach is natural in cooperative and dense WSNs, where data measured by
neighbouring nodes are correlated both in space and in time. Thus, we can apply distributed
transforms or estimate distributed models which allow decorrelating the data measured by
sensors, and, therefore, representing these data by using fewer bits. Obviously, the models
are generally only approximations of the data. Thus, distributed compression algorithms are
intrinsically lossy.
To the best of our knowledge, only a few papers have discussed the second approach.
Examples of compression techniques applied to the single node adapt some existing
dictionary-based compression algorithms to the constraints imposed by the limited
resources available on the sensor nodes. For instance, in (Sadler & Martonosi, 2006) and
(LZO, 2008), the authors have introduced two lossless compression algorithms, namely S-
LZW and miniLZO, which are purposely adapted versions of LZW (Welch, 1984) and LZ77
(Ziv & Lempel, 1977), respectively. Since S-LZW outperforms miniLZO, as shown in (Sadler
& Martonosi, 2006), we will consider only S-LZW as comparison in this chapter. The
Lightweight Temporal Compression (LTC) algorithm proposed in (Schoellhammer et al.,
2004) is an efficient and simple lossy compression technique for the context of habitat
monitoring. LTC introduces a small amount of error into each reading bounded by a control
knob: the larger the bound on this error, the greater the saving by compression.
The choice of the algorithm type (lossless or lossy) depends on the specific application
domain. Typically, applications, which are not particularly critical, tolerate the use of
sensors that, though very cheap, collect data affected by a non-negligible noise. In this
context, lossy compression algorithms can provide a double advantage: to reduce noise and
to compress data (Ganesan et al., 2003). On the other hand, the criticality of some application
domains demands sensors with high accuracy and cannot tolerate that measures, are
corrupted by the compression process. In Body Area Networks, for instance, sensor nodes
permanently monitor and log vital signs: each small variation of these signs have to be
captured because it might provide crucial information to make a diagnosis. Thus, we believe

that both lossless and lossy compression algorithms suitable to WSNs have to be deeply
investigated. Since sensor nodes are typically equipped with a few kilobytes of memory and
a 4-8MHz microprocessor, embedding classical data compression schemes in these tiny
nodes is practically infeasible (Barr & Asanović, 2006) (Kimura & Latifi, 2005).
To overcome these problems, in a previous paper (Marcelloni & Vecchio, 2009), we have
proposed a Lossless Entropy Compression algorithm (LEC), which exploits the natural
correlation that exists in data typically collected by WSNs and the principles of entropy
compression. We have shown how its low complexity and the small amount of memory
required for its execution make the algorithm particularly suited to be used on available
commercial sensor nodes. Other important features of LEC are i) its ability to compute a
compressed version of each value on the fly and ii) to exploit a very short fixed dictionary,
whose size depends on the precision of the analog-to-digital converter (ADC).
The LEC algorithm follows a scheme similar to the one used in the baseline JPEG algorithm
for compressing the so-called DC coefficients of a digital image: the basic idea is to divide
the alphabet of values into groups whose sizes increase exponentially and consequently to
implement the codewords as a hybrid of entropy and binary codes (Pennebaker & Mitchell,
1992). In particular, the entropy code (a variable-length code) specifies the group, while the
binary code (a fixed-length code) represents the index within the group. In (Marcelloni &
Vecchio, 2009), we have adopted the Huffman table proposed in JPEG to entropy encoding
the groups.
In this chapter, first we briefly introduce the LEC algorithm and, by using two real datasets,
we discuss how the LEC algorithm outperforms S-LZW and three well-known compression
algorithms, namely gzip, bzip2 and rar. We used these three algorithms as benchmarks, but
actually these algorithms are not embeddable in tiny sensor nodes. Second, we analyze how
the correlation between consecutive samples affects the performance of LEC by
downsampling the datasets with different downsampling factors and by evaluating how
much the compression ratio decreases. Third, we investigate the use of semi-adaptive and
adaptive Huffman coding to increase the performance in the case of reduced correlation
between consecutive samples. Fourth, we discuss how LEC can be transformed into a lossy
compression algorithm and show how the lossy version considerably outperforms the
lossless version in terms of compression ratios without introducing a significant error.
Finally, we compare the lossy version of LEC with LTC.
The Chapter is organized as follows. Section 2 introduces the LEC algorithm. In Section 3,
we assess the performance of LEC in terms of compression ratios and complexity. Section 4
introduces the lossy version of LEC and shows some preliminary experimental results.
Finally, Section 5 gives some conclusions.

2. The LEC Algorithm

Figure 1 shows the block scheme of the LEC algorithm. In the sensing unit of a sensor node,
each measure mi acquired by a sensor is converted by an ADC to a binary representation ri
on R bits, where R is the resolution of the ADC, that is, the number (2R) of discrete values
the ADC can produce over the range of analog values.
For each new acquisition mi, LEC computes the difference di = ri - ri-1, which is input to an
entropy encoder (in order to compute d0 we assume that r-1 is equal to the central value
among the 2R possible discrete values). The entropy encoder performs compression

www.intechopen.com

losslessly by encoding differences di more compactly based on their statistical
characteristics. LEC exploits a modified version of the Exponential-Golomb code (Exp-
Golomb) of order 0 (Teuhola, 1978), which is a type of universal code. The basic idea is to
divide the alphabet of numbers into groups whose sizes increase exponentially. Like in
Golomb coding (Golomb, 1966) and Elias coding (Elias, 1975), a codeword is a hybrid of
unary and binary codes: in particular, the unary code (a variable-length code) specifies the
group, while the binary code (a fixed-length code) represents the index within the group.
Indeed, each nonzero di value is represented as a bit sequence bsi composed of two parts
si|ai, where si codifies the number ni of bits needed to represent di (that is, the group to
which di belongs) and ai is the representation of di (that is, the index position in the group).
When di is equal to 0, the corresponding group has size equal to 1 and therefore there is no
need to codify the index position in the group: it follows that ai is not represented.

 COMPRESSOR

DELAY

ENCODER
ri di

ri-1

-
+ bsi

UNCOMPRESSOR

DECODER
bsi

DELAY
++

id

i-1r

ir

Fig. 1. Block diagram of the encoding/decoding schemes.

For any nonzero di, ni is trivially computed as  2log id   : at most ni is equal to R. Thus, in

order to encode ni a prefix-free table of R + 1 entries has to be specified. This table depends
on the distribution of the differences di: more frequent differences have to be associated with
shorter codes. From the observation that, in typical data collected by WSNs, the most
frequent differences are those close to 0, in (Marcelloni & Vecchio, 2009) we adopted Table 1,
where the first 11 lines coincide with the table used in the baseline JPEG algorithm for
compressing the DC coefficients (Pennebaker & Mitchell, 1992). On the other hand, these
coefficients have statistical characteristics similar to the measures acquired by the sensing
unit. Of course, whether the resolution of the ADC is larger than 14 bits, the table has to be
appropriately extended.
In order to manage negative di, LEC maps the input differences onto nonnegative indexes,
using the following bijection:

, 0

02 1 ,i

i i
n

ii

d d
index

dd

    
 (1)

Finally, si is equal to the value at entry ni in the prefix-free table and ai is the binary
representation of index over ni bits. Since di is typically represented in two’s complement
notation, when 0id , ai is equal to the ni low-order bits of di – 1.
The procedure used to generate ai guarantees that all possible values have different codes.
Using Table 1, we have, for instance, that di = 0, di = +1, di = -1, di = +255 and di = -255 are
encoded as 00, 010|1, 010|0, 111110|11111111 and 111110|00000000, respectively. Once bsi
is generated, it is appended to the bitstream which forms the compressed version of the
sequence of measures mi.
In the uncompressor, the bit sequence bsi is analyzed by the decoder block which outputs
difference di. Difference di is added to ri-1 to produce ri.

ni si di
0 00 0
1 010 -1,+1
2 011 -3,-2,+2,+3
3 100 -7,…,-4,+4,…,+7
4 101 -15,…,-8,+8,…,+15
5 110 -31,…,-16,+16,…,+31
6 1110 -63,…,-32,+32,…,+63
7 11110 -127,…,-64,+64,…,+127
8 111110 -255,…,-128,+128,…,+255
9 1111110 -511,…-256,+256,…,+511
10 11111110 -1023,…,-512,+512, …,+1023
11 111111110 -2047, …,-1024,+1024, …,+2047
12 1111111110 -4095, …,-2048,+2048, …,+4095
13 11111111110 -8191, …,-4096,+4096, …,+8191
14 111111111110 -16383, …,-8192,+8192, …,+16383

Table 1. The default dictionary table.

3. Performance Assessment Results

In our experiments, we have used the temperature and relative humidity measurements
collected from a randomly extracted node (NODE ID= 84) of the WSN SensorScope LUCE
deployment (SensorScope, 2009), within the time interval from 23/11/2006 to 17/12/2006.
The resulting temperature and relative humidity datasets are composed by 64913 samples
and we will refer to them as LU_ID84_T and LU_ID84_H, respectively. The WSN adopted in
the deployment employs a TinyNode node type (TinyNode, 2009), which uses a TI MSP430
microcontroller, a Xemics XE1205 radio and a Sensirion SHT75 sensor module (Sensirion,
2009).
This module is a single chip which includes a capacitive polymer sensing element for
relative humidity and a bandgap temperature sensor. Both the sensors are seamlessly
coupled to a 14-bit ADC and a serial interface circuit on the same chip. The Sensirion SHT75
can sense air temperature in the  CC  60,20 range and relative humidity in the
 %100%,0 range. The outputs raw_t and raw_h of the ADC for temperature and relative
humidity are represented with resolutions of 14 and 12 bits, respectively. The outputs raw_t

www.intechopen.com

Enabling Compression in Tiny Wireless Sensor Nodes 5

losslessly by encoding differences di more compactly based on their statistical
characteristics. LEC exploits a modified version of the Exponential-Golomb code (Exp-
Golomb) of order 0 (Teuhola, 1978), which is a type of universal code. The basic idea is to
divide the alphabet of numbers into groups whose sizes increase exponentially. Like in
Golomb coding (Golomb, 1966) and Elias coding (Elias, 1975), a codeword is a hybrid of
unary and binary codes: in particular, the unary code (a variable-length code) specifies the
group, while the binary code (a fixed-length code) represents the index within the group.
Indeed, each nonzero di value is represented as a bit sequence bsi composed of two parts
si|ai, where si codifies the number ni of bits needed to represent di (that is, the group to
which di belongs) and ai is the representation of di (that is, the index position in the group).
When di is equal to 0, the corresponding group has size equal to 1 and therefore there is no
need to codify the index position in the group: it follows that ai is not represented.

 COMPRESSOR

DELAY

ENCODER
ri di

ri-1

-
+ bsi

UNCOMPRESSOR

DECODER
bsi

DELAY
++

id

i-1r

ir

Fig. 1. Block diagram of the encoding/decoding schemes.

For any nonzero di, ni is trivially computed as  2log id   : at most ni is equal to R. Thus, in

order to encode ni a prefix-free table of R + 1 entries has to be specified. This table depends
on the distribution of the differences di: more frequent differences have to be associated with
shorter codes. From the observation that, in typical data collected by WSNs, the most
frequent differences are those close to 0, in (Marcelloni & Vecchio, 2009) we adopted Table 1,
where the first 11 lines coincide with the table used in the baseline JPEG algorithm for
compressing the DC coefficients (Pennebaker & Mitchell, 1992). On the other hand, these
coefficients have statistical characteristics similar to the measures acquired by the sensing
unit. Of course, whether the resolution of the ADC is larger than 14 bits, the table has to be
appropriately extended.
In order to manage negative di, LEC maps the input differences onto nonnegative indexes,
using the following bijection:

, 0

02 1 ,i

i i
n

ii

d d
index

dd

    
 (1)

Finally, si is equal to the value at entry ni in the prefix-free table and ai is the binary
representation of index over ni bits. Since di is typically represented in two’s complement
notation, when 0id , ai is equal to the ni low-order bits of di – 1.
The procedure used to generate ai guarantees that all possible values have different codes.
Using Table 1, we have, for instance, that di = 0, di = +1, di = -1, di = +255 and di = -255 are
encoded as 00, 010|1, 010|0, 111110|11111111 and 111110|00000000, respectively. Once bsi
is generated, it is appended to the bitstream which forms the compressed version of the
sequence of measures mi.
In the uncompressor, the bit sequence bsi is analyzed by the decoder block which outputs
difference di. Difference di is added to ri-1 to produce ri.

ni si di
0 00 0
1 010 -1,+1
2 011 -3,-2,+2,+3
3 100 -7,…,-4,+4,…,+7
4 101 -15,…,-8,+8,…,+15
5 110 -31,…,-16,+16,…,+31
6 1110 -63,…,-32,+32,…,+63
7 11110 -127,…,-64,+64,…,+127
8 111110 -255,…,-128,+128,…,+255
9 1111110 -511,…-256,+256,…,+511
10 11111110 -1023,…,-512,+512, …,+1023
11 111111110 -2047, …,-1024,+1024, …,+2047
12 1111111110 -4095, …,-2048,+2048, …,+4095
13 11111111110 -8191, …,-4096,+4096, …,+8191
14 111111111110 -16383, …,-8192,+8192, …,+16383

Table 1. The default dictionary table.

3. Performance Assessment Results

In our experiments, we have used the temperature and relative humidity measurements
collected from a randomly extracted node (NODE ID= 84) of the WSN SensorScope LUCE
deployment (SensorScope, 2009), within the time interval from 23/11/2006 to 17/12/2006.
The resulting temperature and relative humidity datasets are composed by 64913 samples
and we will refer to them as LU_ID84_T and LU_ID84_H, respectively. The WSN adopted in
the deployment employs a TinyNode node type (TinyNode, 2009), which uses a TI MSP430
microcontroller, a Xemics XE1205 radio and a Sensirion SHT75 sensor module (Sensirion,
2009).
This module is a single chip which includes a capacitive polymer sensing element for
relative humidity and a bandgap temperature sensor. Both the sensors are seamlessly
coupled to a 14-bit ADC and a serial interface circuit on the same chip. The Sensirion SHT75
can sense air temperature in the  CC  60,20 range and relative humidity in the
 %100%,0 range. The outputs raw_t and raw_h of the ADC for temperature and relative
humidity are represented with resolutions of 14 and 12 bits, respectively. The outputs raw_t

www.intechopen.com

and raw_h are converted into measures t and h expressed, respectively, in Celsius degrees
(°C) and percentage (%) as described in (Sensirion, 2009). The datasets corresponding to the
deployments store measures t and h. On the other hand, the LEC algorithm works on raw_t
and raw_h. Thus, before applying the algorithm, we extracted raw_t and raw_h from t and h,
respectively, by using the inverted versions of the conversion functions in (Sensirion, 2009).
Table 2 shows some statistical characteristics of the two datasets. In particular, we have
computed the mean s and the standard deviation s of the samples, the mean d and the
standard deviation d of the differences between consecutive samples, the information

entropy 



N

i
ii xpxpH

1
2)(log)(of the original signal, where N is the number of possible

values xi (the output of the ADC) and)(ixp is the probability mass function of xi, and the

information entropy 2
1

() log ()
N

d i i
i

H p d p d


   of the differentiated signal.

Dataset Samples ss 
dd  H Hd

LU_ID84_T 64913 7.21±3.16 -2.87·10-5±0.05 10.07 4.05

LU_ID84_H 64913 87.04±8.04 1.12·10-4±0.55 10.08 5.85

Table 2. Statistical characteristics of the datasets.

In the following, we first show the compression ratios achieved by LEC and compare them
with the ones achieved by S-LZW and three well-known compression algorithms. We also
discuss the complexity of LEC and S-LZW. Then, we investigate the dependence of the
compression performance of LEC on the correlation between consecutive samples of the
signal to be compressed and show how semi-adaptive and adaptive Huffman coding can
help LEC to increase the compression ratios. Finally, we introduce a problem that affects
LEC and in general all the differential compression algorithms and discuss how this
problem can be solved without considerably penalizing the compression ratios achieved by
LEC.

3.1 Compression ratios and complexity
The performance of a compression algorithm is usually computed by using the compression
ratio (CR) defined as:

 _100 (1)
_

comp sizeCR
orig size

   (2)

where comp_size and orig_size are, respectively, the sizes in bits of the compressed and the
uncompressed bitstreams. Considering that uncompressed samples are normally byte-
aligned, both temperature and relative humidity samples are represented by 16-bit unsigned
integers. Thus, from Table 2, it is easy to compute orig_size for the given datasets.
Moreover, assuming that all samples have to be transmitted to the sink by using the lowest
number of messages so as to have power saving (Mainwaring et al., 2002) and supposing

that each packet can contain at most 29 bytes of payload (Croce et al., 2008), we can define
the packet compression ratio as:

_100 (1)
_

comp pktPCR
orig pkt

   (3)

where comp_pkt and orig_pkt represent the number of packets necessary to deliver the
compressed and the uncompressed bitstreams, respectively.
Table 3 shows the results obtained by LEC in terms of CR and PCR on the two datasets. As
expected, the LEC algorithm achieves higher compression ratios on the temperature dataset
which is characterized by a lower entropy dH and, in general, a low variability between
consecutive samples (that is, low values of the mean and standard deviation of the
differences between consecutive samples).

 Dataset orig_size comp_size CR(%) orig_pkt comp_pkt PCR(%)

LEC
LU_ID84_T 1038608 303194 70.81 4477 1307 70.81

LU_ID84_H 1038608 396442 61.83 4477 1709 61.83

Table 3. Compression ratios obtained by LEC on the two datasets.

To assess the goodness of the results shown in Table 3, we have also applied the S-LZW
algorithm and three well-known compression methods to the same datasets. S-LZW is a
lossless compression algorithm purposely developed to be embedded in sensor nodes. S-
LZW splits the uncompressed input bitstream into fixed size blocks and then compresses
separately each block. During the block compression, for each new string, that is, a string
which is not already in the dictionary, a new entry is added to the dictionary. For each new
block, the dictionary used in the compression is re-initialized by using the 256 codes which
represent the standard character set. Due to the poor storage resources of sensor nodes, the
size of the dictionary has to be limited. Thus, since each new string in the input bitstream
produces a new entry in the dictionary, the dictionary might become full. If this occurs, an
appropriate strategy has to be adopted. For instance, the dictionary can be frozen and used
as-is to compress the remainder of the data in the block (in the worst case, by using the code
of each character), or it can be reset and started from scratch. To take advantage of the
repetitive behaviour of sensor data, a mini-cache is added to S-LZW: the mini-cache is a
hash-indexed dictionary of size N, where N is a power of 2, that stores recently used and
created dictionary entries. Further, the repetitive behaviour can be used to pre-process the
raw data so as to build appropriately structured datasets, which can perform better with the
compression algorithm.
In (Sadler & Martonosi, 2006), the authors show that the use of structured datasets and the
introduction of the mini-cache increase the compression ratios without introducing
appreciable computational overhead. It follows that S-LZW has to balance four major inter-
related parameters: the size (BLOCK_SIZE) of the data block, the maximum number
(MAX_DICT_ENTRIES) of dictionary entries, the strategy (DICTIONARY_STRATEGY) to
follow when the dictionary is full and the number (MINI-CACHE_ENTRIES) of mini-cache

www.intechopen.com

Enabling Compression in Tiny Wireless Sensor Nodes 7

and raw_h are converted into measures t and h expressed, respectively, in Celsius degrees
(°C) and percentage (%) as described in (Sensirion, 2009). The datasets corresponding to the
deployments store measures t and h. On the other hand, the LEC algorithm works on raw_t
and raw_h. Thus, before applying the algorithm, we extracted raw_t and raw_h from t and h,
respectively, by using the inverted versions of the conversion functions in (Sensirion, 2009).
Table 2 shows some statistical characteristics of the two datasets. In particular, we have
computed the mean s and the standard deviation s of the samples, the mean d and the
standard deviation d of the differences between consecutive samples, the information

entropy 



N

i
ii xpxpH

1
2)(log)(of the original signal, where N is the number of possible

values xi (the output of the ADC) and)(ixp is the probability mass function of xi, and the

information entropy 2
1

() log ()
N

d i i
i

H p d p d


   of the differentiated signal.

Dataset Samples ss 
dd  H Hd

LU_ID84_T 64913 7.21±3.16 -2.87·10-5±0.05 10.07 4.05

LU_ID84_H 64913 87.04±8.04 1.12·10-4±0.55 10.08 5.85

Table 2. Statistical characteristics of the datasets.

In the following, we first show the compression ratios achieved by LEC and compare them
with the ones achieved by S-LZW and three well-known compression algorithms. We also
discuss the complexity of LEC and S-LZW. Then, we investigate the dependence of the
compression performance of LEC on the correlation between consecutive samples of the
signal to be compressed and show how semi-adaptive and adaptive Huffman coding can
help LEC to increase the compression ratios. Finally, we introduce a problem that affects
LEC and in general all the differential compression algorithms and discuss how this
problem can be solved without considerably penalizing the compression ratios achieved by
LEC.

3.1 Compression ratios and complexity
The performance of a compression algorithm is usually computed by using the compression
ratio (CR) defined as:

 _100 (1)
_

comp sizeCR
orig size

   (2)

where comp_size and orig_size are, respectively, the sizes in bits of the compressed and the
uncompressed bitstreams. Considering that uncompressed samples are normally byte-
aligned, both temperature and relative humidity samples are represented by 16-bit unsigned
integers. Thus, from Table 2, it is easy to compute orig_size for the given datasets.
Moreover, assuming that all samples have to be transmitted to the sink by using the lowest
number of messages so as to have power saving (Mainwaring et al., 2002) and supposing

that each packet can contain at most 29 bytes of payload (Croce et al., 2008), we can define
the packet compression ratio as:

_100 (1)
_

comp pktPCR
orig pkt

   (3)

where comp_pkt and orig_pkt represent the number of packets necessary to deliver the
compressed and the uncompressed bitstreams, respectively.
Table 3 shows the results obtained by LEC in terms of CR and PCR on the two datasets. As
expected, the LEC algorithm achieves higher compression ratios on the temperature dataset
which is characterized by a lower entropy dH and, in general, a low variability between
consecutive samples (that is, low values of the mean and standard deviation of the
differences between consecutive samples).

 Dataset orig_size comp_size CR(%) orig_pkt comp_pkt PCR(%)

LEC
LU_ID84_T 1038608 303194 70.81 4477 1307 70.81

LU_ID84_H 1038608 396442 61.83 4477 1709 61.83

Table 3. Compression ratios obtained by LEC on the two datasets.

To assess the goodness of the results shown in Table 3, we have also applied the S-LZW
algorithm and three well-known compression methods to the same datasets. S-LZW is a
lossless compression algorithm purposely developed to be embedded in sensor nodes. S-
LZW splits the uncompressed input bitstream into fixed size blocks and then compresses
separately each block. During the block compression, for each new string, that is, a string
which is not already in the dictionary, a new entry is added to the dictionary. For each new
block, the dictionary used in the compression is re-initialized by using the 256 codes which
represent the standard character set. Due to the poor storage resources of sensor nodes, the
size of the dictionary has to be limited. Thus, since each new string in the input bitstream
produces a new entry in the dictionary, the dictionary might become full. If this occurs, an
appropriate strategy has to be adopted. For instance, the dictionary can be frozen and used
as-is to compress the remainder of the data in the block (in the worst case, by using the code
of each character), or it can be reset and started from scratch. To take advantage of the
repetitive behaviour of sensor data, a mini-cache is added to S-LZW: the mini-cache is a
hash-indexed dictionary of size N, where N is a power of 2, that stores recently used and
created dictionary entries. Further, the repetitive behaviour can be used to pre-process the
raw data so as to build appropriately structured datasets, which can perform better with the
compression algorithm.
In (Sadler & Martonosi, 2006), the authors show that the use of structured datasets and the
introduction of the mini-cache increase the compression ratios without introducing
appreciable computational overhead. It follows that S-LZW has to balance four major inter-
related parameters: the size (BLOCK_SIZE) of the data block, the maximum number
(MAX_DICT_ENTRIES) of dictionary entries, the strategy (DICTIONARY_STRATEGY) to
follow when the dictionary is full and the number (MINI-CACHE_ENTRIES) of mini-cache

www.intechopen.com

entries. With the aim of putting S-LZW in its best situation, we adopted the values
suggested in (Sadler & Martonosi, 2006): a block size of 528 bytes, a dictionary of 512 entries
that is maintained once full and a mini-cache of 32 entries.
As regards the well-known compression methods, we have considered gzip, bzip2 and rar.
These methods have a parameter which allows setting the compression level. This
parameter is between 1 and 9 (default 6) for gzip and bzip2, and between 1 and 5 (default 3)
for rar. We fixed this paramater to the maximum possible compression (9 for gzip and bzip2
and 5 for rar).
Table 4 shows the results obtained by the four algorithms. We can observe that LEC
outperforms the other algorithms. In the table, we have not shown the PCRs for gzip, bzip2
e rar. Indeed, these algorithms have been used only as benchmarks to validate the
compression ratios obtained by applying LEC. Actually, as already observed in (Ganesan et
al., 2003) (Kimura & Latifi, 2005) (Sadler & Martonosi, 2006), these algorithms cannot be
executed in a sensor node, due to memory requirements and computational power needed
for their execution. Indeed, the executable codes are too large to be embedded in tiny sensor
nodes. Further, the compression ratios are obtained after collecting all the samples and
therefore all the samples have to be stored in memory. This implies that large datasets
cannot be managed. In addition, the compression cannot be performed on the fly. Finally,
during their execution, these algorithms require a large memory to manage some step of the
execution.

Dataset Algorithm CR(%) PCR(%)

LU_ID84_T

S-LZW 48.99 48.98

gzip 48.87 -

bzip2 69.24 -

rar 69.16 -

LU_ID84_H

S-LZW 31.24 31.22

gzip 37.86 -

bzip2 57.82 -

rar 59.03 -

Table 4. Compression ratios obtained by S-LZW, gzip, bzip2 e rar algorithms on the two
datasets.

As regards complexity of LEC and S-LZW, we have performed a comparative analysis on
the number of instructions required by both the algorithms to compress data. To this aim,
we have adopted the Sim-It Arm simulator (Sim-It, 2009), since there already exists a free
available version of S-LZW implemented for this simulator by the same authors of this
compression algorithm. Sim-It Arm is an instruction-set simulator that runs both system-
level and user-level ARM programs. Since S-LZW compresses each dataset block by block,
we executed the two algorithms on Sim-It Arm simulator to compress the first block of each

dataset. A block consists of 528 bytes (corresponding to 264 samples of 16 bits). Table 5
shows the number of instructions required for compressing one block, the number of saved
bits and the number of instructions per saved bit for the temperature and relative humidity
datasets, respectively.
We note that, though the LEC algorithm achieves a higher compression ratio than S-LZW, it
requires a lower number of instructions. In particular, we observe that, the LEC algorithm
executes, for instance, 15.33 instructions for each saved bit against 29.93 executed by S-LZW
for compressing the first block of the temperature dataset.

LEC S-LZW

 Temperature Relative
Humidity Temperature Relative

Humidity
number of

instructions 44784 62817 63207 63207

number of saved
bits 2922 2086 2112 96

number of
instructions per

saved bit
15.33 30.11 29.93 658.41

Table 5. Complexity of LEC and S-LZW.

3.2 Compression ratio versus correlation between consecutive samples
In the previous section we have adopted the default Huffman table for compressing the two
datasets so as to show the effectiveness of the LEC algorithm when dealing with high
correlated datasets. In this section, we analyze the behaviour of LEC when the correlation
between consecutive samples decreases. To this aim, we performed the following
experiment: we simulated different lengths of the sampling interval by downsampling the
sequence of data. Since in the original datasets, samples are obtained by measuring
temperature and relative humidity at intervals of 30 seconds along 25 days, we considered
downsampling factors of 2, 4, 8, 16, 60 and 120, which correspond, respectively, to consider
time intervals of 1, 2, 4, 8, 30 and 60 minutes. We expect that, like for all compression
algorithms based on differential coding, the sampling rate affects the achievable
compression ratio: when the sampling interval is long, the correlation between consecutive
samples typically decreases, thus reducing the performance of the LEC algorithm. The
significance of this reduction depends on the variability of the signal.
Figure 2 shows the results obtained by compressing the downsampled temperature and
relative humidity datasets. We can observe that the compression ratios decrease with the
increase of the downsampling factors. For instance, for the temperature, we pass from a
compression ratio of 70.81% with the original data (downsampling factor equal to 0) to a
compression ratio of 41.38% with a downsampling factor equal to 120. As expected, the
decrease of the compression ratios is therefore quite relevant. On the other hand, the
Huffman table shown in Table 1 has been proposed for data with high correlation, where
high probabilities are associated with differences between consecutive samples very close to
0. Actually, these differences are characterized by a high occurrence frequency. By
downsampling the original signal with factors from 16 to 120, this assumption is not true

www.intechopen.com

Enabling Compression in Tiny Wireless Sensor Nodes 9

entries. With the aim of putting S-LZW in its best situation, we adopted the values
suggested in (Sadler & Martonosi, 2006): a block size of 528 bytes, a dictionary of 512 entries
that is maintained once full and a mini-cache of 32 entries.
As regards the well-known compression methods, we have considered gzip, bzip2 and rar.
These methods have a parameter which allows setting the compression level. This
parameter is between 1 and 9 (default 6) for gzip and bzip2, and between 1 and 5 (default 3)
for rar. We fixed this paramater to the maximum possible compression (9 for gzip and bzip2
and 5 for rar).
Table 4 shows the results obtained by the four algorithms. We can observe that LEC
outperforms the other algorithms. In the table, we have not shown the PCRs for gzip, bzip2
e rar. Indeed, these algorithms have been used only as benchmarks to validate the
compression ratios obtained by applying LEC. Actually, as already observed in (Ganesan et
al., 2003) (Kimura & Latifi, 2005) (Sadler & Martonosi, 2006), these algorithms cannot be
executed in a sensor node, due to memory requirements and computational power needed
for their execution. Indeed, the executable codes are too large to be embedded in tiny sensor
nodes. Further, the compression ratios are obtained after collecting all the samples and
therefore all the samples have to be stored in memory. This implies that large datasets
cannot be managed. In addition, the compression cannot be performed on the fly. Finally,
during their execution, these algorithms require a large memory to manage some step of the
execution.

Dataset Algorithm CR(%) PCR(%)

LU_ID84_T

S-LZW 48.99 48.98

gzip 48.87 -

bzip2 69.24 -

rar 69.16 -

LU_ID84_H

S-LZW 31.24 31.22

gzip 37.86 -

bzip2 57.82 -

rar 59.03 -

Table 4. Compression ratios obtained by S-LZW, gzip, bzip2 e rar algorithms on the two
datasets.

As regards complexity of LEC and S-LZW, we have performed a comparative analysis on
the number of instructions required by both the algorithms to compress data. To this aim,
we have adopted the Sim-It Arm simulator (Sim-It, 2009), since there already exists a free
available version of S-LZW implemented for this simulator by the same authors of this
compression algorithm. Sim-It Arm is an instruction-set simulator that runs both system-
level and user-level ARM programs. Since S-LZW compresses each dataset block by block,
we executed the two algorithms on Sim-It Arm simulator to compress the first block of each

dataset. A block consists of 528 bytes (corresponding to 264 samples of 16 bits). Table 5
shows the number of instructions required for compressing one block, the number of saved
bits and the number of instructions per saved bit for the temperature and relative humidity
datasets, respectively.
We note that, though the LEC algorithm achieves a higher compression ratio than S-LZW, it
requires a lower number of instructions. In particular, we observe that, the LEC algorithm
executes, for instance, 15.33 instructions for each saved bit against 29.93 executed by S-LZW
for compressing the first block of the temperature dataset.

LEC S-LZW

 Temperature Relative
Humidity Temperature Relative

Humidity
number of

instructions 44784 62817 63207 63207

number of saved
bits 2922 2086 2112 96

number of
instructions per

saved bit
15.33 30.11 29.93 658.41

Table 5. Complexity of LEC and S-LZW.

3.2 Compression ratio versus correlation between consecutive samples
In the previous section we have adopted the default Huffman table for compressing the two
datasets so as to show the effectiveness of the LEC algorithm when dealing with high
correlated datasets. In this section, we analyze the behaviour of LEC when the correlation
between consecutive samples decreases. To this aim, we performed the following
experiment: we simulated different lengths of the sampling interval by downsampling the
sequence of data. Since in the original datasets, samples are obtained by measuring
temperature and relative humidity at intervals of 30 seconds along 25 days, we considered
downsampling factors of 2, 4, 8, 16, 60 and 120, which correspond, respectively, to consider
time intervals of 1, 2, 4, 8, 30 and 60 minutes. We expect that, like for all compression
algorithms based on differential coding, the sampling rate affects the achievable
compression ratio: when the sampling interval is long, the correlation between consecutive
samples typically decreases, thus reducing the performance of the LEC algorithm. The
significance of this reduction depends on the variability of the signal.
Figure 2 shows the results obtained by compressing the downsampled temperature and
relative humidity datasets. We can observe that the compression ratios decrease with the
increase of the downsampling factors. For instance, for the temperature, we pass from a
compression ratio of 70.81% with the original data (downsampling factor equal to 0) to a
compression ratio of 41.38% with a downsampling factor equal to 120. As expected, the
decrease of the compression ratios is therefore quite relevant. On the other hand, the
Huffman table shown in Table 1 has been proposed for data with high correlation, where
high probabilities are associated with differences between consecutive samples very close to
0. Actually, these differences are characterized by a high occurrence frequency. By
downsampling the original signal with factors from 16 to 120, this assumption is not true

www.intechopen.com

anymore. To be fair in the experiment, we should compute again the occurrence frequencies
of the differences between consecutive samples (this approach is known in the literature as
semi-adaptive Huffman coding (Salomon, 2007)) and modify appropriately the Huffman
table used in the compression.

Fig. 2. Compression ratios obtained by using the default Huffman table on the temperature
and humidity datasets sampled with different downsampling factors.

Figure 3 shows the results obtained by semi-adaptive Huffman coding. We can observe that
the compression ratios still decrease with respect to increasing downsampling factors (on
the other hand, the correlation between consecutive samples is lower), but now this decrease
is less significant. To take on-line these variations of difference distributions into account, in
the literature adaptive Huffman coding has been proposed. The method was originally
developed by Faller (Faller, 1973) and Gallager (Gallager, 1978) with substantial
improvements by Knuth (Knuth, 1985).
Figure 4 shows the results obtained by using the adaptive Huffman coding in LEC.
Obviously, the use of the adaptive coding increases the compression ratios with respect to
the use of a fixed table, but does not allow outperforming the use of the semi-adaptive
Huffman coding. On the other hand, unlike fixed table and adaptive Huffman coding, semi-
adaptive Huffman coding exploits the knowledge of all data. Obviously, this knowledge
cannot be assumed in real applications. Thus, the compression ratios obtained by using the
semi-adaptive Huffman coding can be considered as an upper limit. However, we observe
that the compression ratios achieved with the adaptive Huffman coding are very close to the
ones obtained with the semi-adaptive Huffman coding. On the other hand, we have to
consider that the use of the adaptive Huffman coding increases the complexity of LEC.
Further, since the adaptive coding/decoding scheme is symmetric, a possible loss of one

70,81 68,01 64,98
61,48

57,58

48,61
41,38

61,83 58,66
55,44 51,87

47,74

39,17
33,86

0

10

20

30

40

50

60

70

80

0 2 4 8 16 60 120

C
R

 (%
)

downsampling factors

The Effects of Downsampling (Default Table)

Temperature

packet makes the decompression process completely unreliable. Thus, in real applications of
WSNs the use of a fixed table is certainly desirable and practically mandatory.

Fig. 3. Compression ratios obtained by using the semi-adaptive Huffman coding on the
temperature and humidity datasets sampled with different downsampling factors.

Fig. 4. Compression ratios obtained by using the adaptive Huffman coding on the
temperature and humidity datasets sampled with different downsampling factors.

73,54 70,31 67,11
63,57

59,85

53,06 48,83

62,51 59,96 57,55 54,98 52,16
46,56 43,73

0

10

20

30

40

50

60

70

80

0 2 4 8 16 60 120

C
R

 (%
)

downsampling factors

The Effects of Downsampling (Semi-Adaptive)

Temperature

73,50 70,28 67,05
63,46

59,69

52,59 47,82

62,46 59,88 57,45 54,89 51,93
45,91

42,63

0

10

20

30

40

50

60

70

80

0 2 4 8 16 60 120
C

R
 (%

)

downsampling factors

The Effects of Downsampling (Adaptive)

Temperature

www.intechopen.com

Enabling Compression in Tiny Wireless Sensor Nodes 11

anymore. To be fair in the experiment, we should compute again the occurrence frequencies
of the differences between consecutive samples (this approach is known in the literature as
semi-adaptive Huffman coding (Salomon, 2007)) and modify appropriately the Huffman
table used in the compression.

Fig. 2. Compression ratios obtained by using the default Huffman table on the temperature
and humidity datasets sampled with different downsampling factors.

Figure 3 shows the results obtained by semi-adaptive Huffman coding. We can observe that
the compression ratios still decrease with respect to increasing downsampling factors (on
the other hand, the correlation between consecutive samples is lower), but now this decrease
is less significant. To take on-line these variations of difference distributions into account, in
the literature adaptive Huffman coding has been proposed. The method was originally
developed by Faller (Faller, 1973) and Gallager (Gallager, 1978) with substantial
improvements by Knuth (Knuth, 1985).
Figure 4 shows the results obtained by using the adaptive Huffman coding in LEC.
Obviously, the use of the adaptive coding increases the compression ratios with respect to
the use of a fixed table, but does not allow outperforming the use of the semi-adaptive
Huffman coding. On the other hand, unlike fixed table and adaptive Huffman coding, semi-
adaptive Huffman coding exploits the knowledge of all data. Obviously, this knowledge
cannot be assumed in real applications. Thus, the compression ratios obtained by using the
semi-adaptive Huffman coding can be considered as an upper limit. However, we observe
that the compression ratios achieved with the adaptive Huffman coding are very close to the
ones obtained with the semi-adaptive Huffman coding. On the other hand, we have to
consider that the use of the adaptive Huffman coding increases the complexity of LEC.
Further, since the adaptive coding/decoding scheme is symmetric, a possible loss of one

70,81 68,01 64,98
61,48

57,58

48,61
41,38

61,83 58,66
55,44 51,87

47,74

39,17
33,86

0

10

20

30

40

50

60

70

80

0 2 4 8 16 60 120

C
R

 (%
)

downsampling factors

The Effects of Downsampling (Default Table)

Temperature

packet makes the decompression process completely unreliable. Thus, in real applications of
WSNs the use of a fixed table is certainly desirable and practically mandatory.

Fig. 3. Compression ratios obtained by using the semi-adaptive Huffman coding on the
temperature and humidity datasets sampled with different downsampling factors.

Fig. 4. Compression ratios obtained by using the adaptive Huffman coding on the
temperature and humidity datasets sampled with different downsampling factors.

73,54 70,31 67,11
63,57

59,85

53,06 48,83

62,51 59,96 57,55 54,98 52,16
46,56 43,73

0

10

20

30

40

50

60

70

80

0 2 4 8 16 60 120

C
R

 (%
)

downsampling factors

The Effects of Downsampling (Semi-Adaptive)

Temperature

73,50 70,28 67,05
63,46

59,69

52,59 47,82

62,46 59,88 57,45 54,89 51,93
45,91

42,63

0

10

20

30

40

50

60

70

80

0 2 4 8 16 60 120

C
R

 (%
)

downsampling factors

The Effects of Downsampling (Adaptive)

Temperature

www.intechopen.com

The fixed Huffman table used in the original version of LEC can guarantee satisfactory
performance when the correlation between consecutive samples is high. However, when the
correlation is not high, we can find a fixed Huffman table suitable for the specific
application. Indeed, we would like to remark that, in real habitat monitoring applications,
the sampling rate is a parameter of the application domain: once fixed, rarely it is modified.
Since the trend of the environmental signals is generally known, this allows us to make quite
reliable assumptions on the distributions of the differences, thus permitting us to generate
fixed Huffman tables which guarantee high compression ratios. We could also consider to
adopt a two-phase approach. In the first phase, we collect an appropriate number of samples
so as to perform an analysis of occurrence frequency of the differences. Then, in the second
phase, we use the fixed Huffman table generated by the analysis performed in the first
phase to compress the data on the fly.
To highlight that the lack of sample correlation does not affect only LEC, but in general all
the compression algorithms, we have also applied S-LZW to the temperature and humidity
datasets sampled with downsampling factors of 2, 4, 8, 16, 60 and 120. Figure 5 compares the
compression ratios obtained by S-LZW with the ones achieved by the LEC algorithm
executed by using the default table. As expected, we can observe that also the performance
of S-LZW are considerably affected by downsampling.

Fig. 5. Comparison between S-LZW and LEC executed with default table on the temperature
and humidity datasets sampled with different downsampling factors.

4.3 The problem of the first sample
LEC, as all the differential compression algorithms, suffers from the following problem. In
order to reconstruct the original samples, the decoder must know the value of the first

0

10

20

30

40

50

60

70

80

0 2 4 8 16 60 120

C
R

 (%
)

downsampling factors

The Effects of Downsampling (Comparison)

Temperature (LEC
Default)

sample: if the first sample has been lost or corrupted, all the other samples are not correctly
decoded. In our case, the compressed bitstream is sent by wireless communication to the
collector, which takes the decompression process in charge. Since the transmission can be
non-reliable, the first packet could be lost and thus also the first value, making correct
reconstruction of samples impossible.
To make communication reliable, a number of solutions have been proposed. In general,
these solutions involve protocols based on acknowledgements which act at Transport layer.
Obviously, these protocols require a higher number of message exchanges between nodes
and this increases the power consumption. A review of these algorithms is out of the scope
of this chapter. Anyway, a solution to this problem can be also provided at the application
layer without modifying the protocols of the underlying layers: when we insert the first
sample into the payload of a new packet, we do not insert the difference between the current
and the previous sample, but rather the difference between the current sample and a
reference value known to the decoder (for instance, the central value of the ADC). Thus, the
decoding of each packet is independent of the reception of the previous packets. Table 6
compares the PCRs obtained by using this expedient (this PCR will be denoted as PCR*)
with those shown in Table 3: we can note that the decrease of PCR is not high. Further, the
PCR*s are still higher than those achieved by S-LZW. Thus, we can conclude that the LEC
scheme can be made more robust without significantly affecting its performance.

Dataset PCR(%) PCR*(%)

LU_ID84_T 70.81 68.19

LU_ID84_H 61.83 58.21

Table 6. PCRs obtained without (PCR) and by (PCR*s) transmitting the first value in each
packet.

5. From Lossless to Lossy

In some WSN applications, like environmental monitoring, the accurateness of the measures
is less important than the sensor cheapness. Thus, often commercial wireless nodes are
equipped with sensors which, though cheap, collect measures affected by considerable
noise. In this context, the use of lossless compression algorithms can be penalising. Indeed,
noise increases the entropy of the signal and therefore hinders the lossless compression
algorithm to achieve considerable compression ratios. The ideal solution would be to adopt
on the sensor node, a lossy compression algorithm in which the loss of information would
be just the noise. Thus, we could achieve high compression ratios without losing relevant
information. To this aim, we exploit the observation that data typically collected by WSNs
are strongly correlated. Thus, differences between consecutive samples should be regular
and generally very small. If this does not occur, it is likely that samples are affected by noise.
To de-noise and simultaneously compress the samples, we introduce a lossy version of LEC.
In this version, the difference di = ri - ri-1 is not directly encoded, but is first quantized and
then encoded following the Differential Pulse Code Modulation (DPCM) scheme often used
for digital audio signal compression. The schemes of the lossy versions of the compressor
and uncompressor are shown in Fig. 6.

www.intechopen.com

Enabling Compression in Tiny Wireless Sensor Nodes 13

The fixed Huffman table used in the original version of LEC can guarantee satisfactory
performance when the correlation between consecutive samples is high. However, when the
correlation is not high, we can find a fixed Huffman table suitable for the specific
application. Indeed, we would like to remark that, in real habitat monitoring applications,
the sampling rate is a parameter of the application domain: once fixed, rarely it is modified.
Since the trend of the environmental signals is generally known, this allows us to make quite
reliable assumptions on the distributions of the differences, thus permitting us to generate
fixed Huffman tables which guarantee high compression ratios. We could also consider to
adopt a two-phase approach. In the first phase, we collect an appropriate number of samples
so as to perform an analysis of occurrence frequency of the differences. Then, in the second
phase, we use the fixed Huffman table generated by the analysis performed in the first
phase to compress the data on the fly.
To highlight that the lack of sample correlation does not affect only LEC, but in general all
the compression algorithms, we have also applied S-LZW to the temperature and humidity
datasets sampled with downsampling factors of 2, 4, 8, 16, 60 and 120. Figure 5 compares the
compression ratios obtained by S-LZW with the ones achieved by the LEC algorithm
executed by using the default table. As expected, we can observe that also the performance
of S-LZW are considerably affected by downsampling.

Fig. 5. Comparison between S-LZW and LEC executed with default table on the temperature
and humidity datasets sampled with different downsampling factors.

4.3 The problem of the first sample
LEC, as all the differential compression algorithms, suffers from the following problem. In
order to reconstruct the original samples, the decoder must know the value of the first

0

10

20

30

40

50

60

70

80

0 2 4 8 16 60 120

C
R

 (%
)

downsampling factors

The Effects of Downsampling (Comparison)

Temperature (LEC
Default)

sample: if the first sample has been lost or corrupted, all the other samples are not correctly
decoded. In our case, the compressed bitstream is sent by wireless communication to the
collector, which takes the decompression process in charge. Since the transmission can be
non-reliable, the first packet could be lost and thus also the first value, making correct
reconstruction of samples impossible.
To make communication reliable, a number of solutions have been proposed. In general,
these solutions involve protocols based on acknowledgements which act at Transport layer.
Obviously, these protocols require a higher number of message exchanges between nodes
and this increases the power consumption. A review of these algorithms is out of the scope
of this chapter. Anyway, a solution to this problem can be also provided at the application
layer without modifying the protocols of the underlying layers: when we insert the first
sample into the payload of a new packet, we do not insert the difference between the current
and the previous sample, but rather the difference between the current sample and a
reference value known to the decoder (for instance, the central value of the ADC). Thus, the
decoding of each packet is independent of the reception of the previous packets. Table 6
compares the PCRs obtained by using this expedient (this PCR will be denoted as PCR*)
with those shown in Table 3: we can note that the decrease of PCR is not high. Further, the
PCR*s are still higher than those achieved by S-LZW. Thus, we can conclude that the LEC
scheme can be made more robust without significantly affecting its performance.

Dataset PCR(%) PCR*(%)

LU_ID84_T 70.81 68.19

LU_ID84_H 61.83 58.21

Table 6. PCRs obtained without (PCR) and by (PCR*s) transmitting the first value in each
packet.

5. From Lossless to Lossy

In some WSN applications, like environmental monitoring, the accurateness of the measures
is less important than the sensor cheapness. Thus, often commercial wireless nodes are
equipped with sensors which, though cheap, collect measures affected by considerable
noise. In this context, the use of lossless compression algorithms can be penalising. Indeed,
noise increases the entropy of the signal and therefore hinders the lossless compression
algorithm to achieve considerable compression ratios. The ideal solution would be to adopt
on the sensor node, a lossy compression algorithm in which the loss of information would
be just the noise. Thus, we could achieve high compression ratios without losing relevant
information. To this aim, we exploit the observation that data typically collected by WSNs
are strongly correlated. Thus, differences between consecutive samples should be regular
and generally very small. If this does not occur, it is likely that samples are affected by noise.
To de-noise and simultaneously compress the samples, we introduce a lossy version of LEC.
In this version, the difference di = ri - ri-1 is not directly encoded, but is first quantized and
then encoded following the Differential Pulse Code Modulation (DPCM) scheme often used
for digital audio signal compression. The schemes of the lossy versions of the compressor
and uncompressor are shown in Fig. 6.

www.intechopen.com

 COMPRESSOR

DELAY

ENCODER
ri id bsi

DELAY
++

QUANTIZER
+

-

ˆ
iI(d)

+ +1ˆ ir

îr

UNCOMPRESSOR

DECODER
bsi

DEQUANTIZER

ˆ
iI(d)ˆ

id

1ˆ ir

îr

ˆ
id

Fig. 6. Block diagram of the encoding/decoding schemes.

Actually to avoid the well-known problem of the accumulation of the error (Salomon, 2007),
we quantize the difference between sample ri and the most recent reconstructed value 1îr  .
The problem originates from the following consideration: the compressor can compute the
exact differences di from the original data samples ri and ri-1, while the uncompressor can
work only with quantized differences îd . The uncompressor uses ˆ

id to generate the

reconstructed samples îr (1
ˆˆ ˆi i ir r d ) rather than the original samples ri. The generic nth

reconstructed sample n̂r at the uncompressor will contain the sum of the quantization errors
accumulated during the reconstruction of the previous n-1 samples plus the quantization
error of the current sample:

1

ˆ


 
n

n n i
i

r r q (3)

where qi is the quantization error.
To overcome this problem, the compressor is modified so as to compute the generic
difference 1ˆi i id r r   , that is, to calculate difference id by subtracting the most recent
reconstructed value 1îr  (which both the compressor and the uncompressor have) from the
current original sample ri. Thus, the uncompressor first decodifies r0. Then, when it receives
the first quantized difference 1̂d , it computes 1 0 1 0 1 1 1 1

ˆr̂ r d r d q r q       . When it

receives the second quantized difference 2d̂ , it computes

2 1 2 1 2 2 1 2 1 2 2 2
ˆˆ ˆ ˆ ˆ ˆr r d r d q r r r q r q           . The decoded value 2̂r contains just the single

quantization error 2q , and in general, the decoded value îr contains just the quantization
error iq .

Difference id is input to the block QUANTIZER that outputs the quantization level îd

assigned to id and the index  ˆ
iI d of ˆ

id . The index  ˆ
iI d is input to the ENCODER block,

which generates the codeword ibs using the same bijection defined in (1) for mapping
integer inputs to natural values, and the same combination of unary and binary codes
described in Section 2. The ENCODER block, therefore, encodes the quantization index
corresponding to the quantized difference rather than the difference as in LEC. Again, the
dictionary table used to produce the codes should be generated based on the occurrence
frequency of the quantization indexes. In these preliminary experiments, we have decided
to adopt the same dictionary used in Table 1, where in place of id , the reader should read

îd . Since the number of quantization levels îd is lower than the number of possible id , the
table might have a lower number of entries.
In the uncompressor, the codeword ibs is analyzed by the DECODER block which outputs

the index  ˆ
iI d , exploiting the same dictionary table. This index is elaborated by the block

DEQUANTIZER to produce ˆ
id which is added to 1îr  to output îr .

Currently, we are simply adopting a uniform quantization. In this case, the unique
parameter to be fixed is the difference D between two consecutive levels. This parameter is
very important because it affects the value of the quantization error and indirectly the
compression ratio. To show the performance of the lossy version of LEC, we set D to six
different values: 10%, 20%, 30%, 40%, 50% and 60% of the Manufactured Error (ME) of the
sensor used to collect data. In the case of the sensors (Sensirion SHT75) used in our
experiments, ME = ± 0.3 oC and ME = ± 1.8% for temperature and relative humidity,
respectively (Sensirion, 2009). Table 7 shows the compression ratios and the root mean
squared errors (RMSEs) obtained on the temperature and relative humidity datasets.
RMSE is computed as:

  2

1

1 ˆ


 
N

i i
i

RMSE r r
N

 (5)

where ir is the original sample, îr is the reconstructed sample and N is the number of
samples of the signal. We observe that, as expected, the compression ratios are higher than
the ones obtained by the original version of LEC. On the other hand, the lossy version
introduces an error on the reconstructed signal. Anyway, this error is lower than ME, which
represents a sort of uncertainty of the measure.
To assess the results shown in Table 7, we have applied LTC to the same datasets. LTC is an
efficient and simple lossy compression technique for the context of habitat monitoring. LTC
generates a set of line segments which form a piecewise continuous function. This function
approximates the original dataset in such a way that no original sample is farther than a
fixed error e from the closest line segment. Thus, before executing the LTC algorithm, we
have to set error e. To perform a fair comparison with the lossy version of LEC, we have set e
to the 10%, 20% and 30% of the ME of the sensor. This allows obtaining RMSEs comparable
with the ones obtained by the lossy version of LEC when D is equal to the 20%, 40% and
60% of the ME. Table 8 shows the compression ratios and the RMSEs obtained on the

www.intechopen.com

Enabling Compression in Tiny Wireless Sensor Nodes 15

 COMPRESSOR

DELAY

ENCODER
ri id bsi

DELAY
++

QUANTIZER
+

-

ˆ
iI(d)

+ +1ˆ ir

îr

UNCOMPRESSOR

DECODER
bsi

DEQUANTIZER

ˆ
iI(d)ˆ

id

1ˆ ir

îr

ˆ
id

Fig. 6. Block diagram of the encoding/decoding schemes.

Actually to avoid the well-known problem of the accumulation of the error (Salomon, 2007),
we quantize the difference between sample ri and the most recent reconstructed value 1îr  .
The problem originates from the following consideration: the compressor can compute the
exact differences di from the original data samples ri and ri-1, while the uncompressor can
work only with quantized differences îd . The uncompressor uses ˆ

id to generate the

reconstructed samples îr (1
ˆˆ ˆi i ir r d ) rather than the original samples ri. The generic nth

reconstructed sample n̂r at the uncompressor will contain the sum of the quantization errors
accumulated during the reconstruction of the previous n-1 samples plus the quantization
error of the current sample:

1

ˆ


 
n

n n i
i

r r q (3)

where qi is the quantization error.
To overcome this problem, the compressor is modified so as to compute the generic
difference 1ˆi i id r r   , that is, to calculate difference id by subtracting the most recent
reconstructed value 1îr  (which both the compressor and the uncompressor have) from the
current original sample ri. Thus, the uncompressor first decodifies r0. Then, when it receives
the first quantized difference 1̂d , it computes 1 0 1 0 1 1 1 1

ˆr̂ r d r d q r q       . When it

receives the second quantized difference 2d̂ , it computes

2 1 2 1 2 2 1 2 1 2 2 2
ˆˆ ˆ ˆ ˆ ˆr r d r d q r r r q r q           . The decoded value 2̂r contains just the single

quantization error 2q , and in general, the decoded value îr contains just the quantization
error iq .

Difference id is input to the block QUANTIZER that outputs the quantization level îd

assigned to id and the index  ˆ
iI d of ˆ

id . The index  ˆ
iI d is input to the ENCODER block,

which generates the codeword ibs using the same bijection defined in (1) for mapping
integer inputs to natural values, and the same combination of unary and binary codes
described in Section 2. The ENCODER block, therefore, encodes the quantization index
corresponding to the quantized difference rather than the difference as in LEC. Again, the
dictionary table used to produce the codes should be generated based on the occurrence
frequency of the quantization indexes. In these preliminary experiments, we have decided
to adopt the same dictionary used in Table 1, where in place of id , the reader should read

îd . Since the number of quantization levels îd is lower than the number of possible id , the
table might have a lower number of entries.
In the uncompressor, the codeword ibs is analyzed by the DECODER block which outputs

the index  ˆ
iI d , exploiting the same dictionary table. This index is elaborated by the block

DEQUANTIZER to produce ˆ
id which is added to 1îr  to output îr .

Currently, we are simply adopting a uniform quantization. In this case, the unique
parameter to be fixed is the difference D between two consecutive levels. This parameter is
very important because it affects the value of the quantization error and indirectly the
compression ratio. To show the performance of the lossy version of LEC, we set D to six
different values: 10%, 20%, 30%, 40%, 50% and 60% of the Manufactured Error (ME) of the
sensor used to collect data. In the case of the sensors (Sensirion SHT75) used in our
experiments, ME = ± 0.3 oC and ME = ± 1.8% for temperature and relative humidity,
respectively (Sensirion, 2009). Table 7 shows the compression ratios and the root mean
squared errors (RMSEs) obtained on the temperature and relative humidity datasets.
RMSE is computed as:

  2

1

1 ˆ


 
N

i i
i

RMSE r r
N

 (5)

where ir is the original sample, îr is the reconstructed sample and N is the number of
samples of the signal. We observe that, as expected, the compression ratios are higher than
the ones obtained by the original version of LEC. On the other hand, the lossy version
introduces an error on the reconstructed signal. Anyway, this error is lower than ME, which
represents a sort of uncertainty of the measure.
To assess the results shown in Table 7, we have applied LTC to the same datasets. LTC is an
efficient and simple lossy compression technique for the context of habitat monitoring. LTC
generates a set of line segments which form a piecewise continuous function. This function
approximates the original dataset in such a way that no original sample is farther than a
fixed error e from the closest line segment. Thus, before executing the LTC algorithm, we
have to set error e. To perform a fair comparison with the lossy version of LEC, we have set e
to the 10%, 20% and 30% of the ME of the sensor. This allows obtaining RMSEs comparable
with the ones obtained by the lossy version of LEC when D is equal to the 20%, 40% and
60% of the ME. Table 8 shows the compression ratios and the RMSEs obtained on the

www.intechopen.com

temperature and relative humidity datasets. We can observe that the lossy version of LEC
outperforms LTC in terms of CR for comparable RMSEs, thus proving the good
characteristics of the proposed lossy compression algorithm.

Dataset Algorithm CR(%) RMSE

 0.1·ME 78.18 0.0082

 0.2·ME 81.26 0.0171

LU_ID84_T 0.3·ME 83.45 0.0256

0.4·ME 83.46 0.0353

0.5·ME 84.94 0.0428

0.6·ME 86.14 0.0517

 0.1·ME 74.65 0.0450

 0.2·ME 78.83 0.0872

LU_ID84_H 0.3·ME 80.89 0.1296

0.4·ME 82.13 0.1721

0.5·ME 82.97 0.2166

0.6·ME 83.61 0.2598

Table 7. Compression ratios obtained by the lossy version of LEC on the two datasets.

Dataset Algorithm CR(%) RMSE

LU_ID84_T

0.1·ME 55.00 0.0190

0.2·ME 77.53 0.0348

0.3·ME 86.12 0.0502

LU_ID84_H

0.1·ME 26.49 0.0824

0.2·ME 55.97 0.1681

0.3·ME 70.99 0.2496

Table 8. Compression ratios obtained by the LTC algorithm on the two datasets.

6. Conclusions

In this chapter, we have discussed how enabling compression helps in wireless sensor
nodes. First, we have briefly introduced LEC, a lossless compression algorithm we proposed
in a previous paper. LEC divides the alphabet of differences between consecutive samples
into groups whose sizes increase exponentially. Each codeword is a hybrid of unary and
binary codes: in particular, the unary code (a variable-length code) specifies the group,
while the binary code (a fixed-length code) represents the index within the group. In the
original version, we used the Huffman table proposed in JPEG for coding the groups. Here,
we have investigated semi-adaptive and adaptive Huffman coding and carried out a
comparison in terms of compression ratios with the LEC algorithm with fixed Huffman
table. We have shown that semi-adaptive and adaptive Huffman coding can increase the
compression ratios when the correlation between consecutive samples decreases. We have
compared all the approaches with S-LZW, a compression algorithm specifically proposed
for sensor nodes, and with three classical compression algorithms, namely gzip, bzip2 and
rar, though these algorithms are not embeddable in tiny sensor nodes. We have shown that
the different versions of LEC can achieve considerable compression ratios in all the datasets
considered in the experiments. Finally, we have discussed how LEC can be transformed into
a lossy compression algorithm and have shown that this lossy version outperforms LTC, a
lossy compression algorithm specifically designed for being embedded in tiny sensor nodes.

7. Acknowledgements

This work was supported by the Italian Ministry of University and Research (MIUR) under
the PRIN project #2005090483_005 “Wireless sensor networks for monitoring natural
phenomena” and the FIRB project “Adaptive Infrastructure for Decentralized Organization
(ArtDecO)”.

8. References

Anastasi, G., Conti, M., Di Francesco, M. & Passarella, A. (2009) Energy conservation in
wireless sensor networks: A survey. Ad Hoc Networks, Vol. 7, 537-568.

Barr, K. C. and Asanović, K. (2006) Energy-aware lossless data compression. ACM Trans.
Comput. Syst., Vol. 24, 250-291.

Boulis, A., Ganeriwal, S. & Srivastava, M.B. (2003) Aggregation in sensor networks: an
energy– trade-off. Ad Hoc Networks, Vol. 1, 317–331.

Chen, H., Li, J. & Mohapatra, P. (2004) RACE: time series compression with rate adaptivity
and error bound for sensor networks. Proceedings of the First IEEE International
Conference on Mobile Ad-hoc and Sensor Systems, pp. 124-133, Fort Lauderdale,
FL, USA, 24-27 October,. IEEE, Piscataway, NJ, USA.

Ciancio, A. & Ortega, A. (2005) A distributed wavelet compression algorithm for wireless
multihop sensor networks using lifting. Proceedings of IEEE International
Conference on Acoustics, Speech, and Signal Processing, pp. 825-828, Philadelphia,
PA, USA, 18-23 March,. IEEE, Piscataway, NJ, USA.

Ciancio, A., Pattem, S., Ortega, A. & Krishnamachari, B. (2006) Energy-efficient data
representation and routing for wireless sensor networks based on a distributed

www.intechopen.com

Enabling Compression in Tiny Wireless Sensor Nodes 17

temperature and relative humidity datasets. We can observe that the lossy version of LEC
outperforms LTC in terms of CR for comparable RMSEs, thus proving the good
characteristics of the proposed lossy compression algorithm.

Dataset Algorithm CR(%) RMSE

 0.1·ME 78.18 0.0082

 0.2·ME 81.26 0.0171

LU_ID84_T 0.3·ME 83.45 0.0256

0.4·ME 83.46 0.0353

0.5·ME 84.94 0.0428

0.6·ME 86.14 0.0517

 0.1·ME 74.65 0.0450

 0.2·ME 78.83 0.0872

LU_ID84_H 0.3·ME 80.89 0.1296

0.4·ME 82.13 0.1721

0.5·ME 82.97 0.2166

0.6·ME 83.61 0.2598

Table 7. Compression ratios obtained by the lossy version of LEC on the two datasets.

Dataset Algorithm CR(%) RMSE

LU_ID84_T

0.1·ME 55.00 0.0190

0.2·ME 77.53 0.0348

0.3·ME 86.12 0.0502

LU_ID84_H

0.1·ME 26.49 0.0824

0.2·ME 55.97 0.1681

0.3·ME 70.99 0.2496

Table 8. Compression ratios obtained by the LTC algorithm on the two datasets.

6. Conclusions

In this chapter, we have discussed how enabling compression helps in wireless sensor
nodes. First, we have briefly introduced LEC, a lossless compression algorithm we proposed
in a previous paper. LEC divides the alphabet of differences between consecutive samples
into groups whose sizes increase exponentially. Each codeword is a hybrid of unary and
binary codes: in particular, the unary code (a variable-length code) specifies the group,
while the binary code (a fixed-length code) represents the index within the group. In the
original version, we used the Huffman table proposed in JPEG for coding the groups. Here,
we have investigated semi-adaptive and adaptive Huffman coding and carried out a
comparison in terms of compression ratios with the LEC algorithm with fixed Huffman
table. We have shown that semi-adaptive and adaptive Huffman coding can increase the
compression ratios when the correlation between consecutive samples decreases. We have
compared all the approaches with S-LZW, a compression algorithm specifically proposed
for sensor nodes, and with three classical compression algorithms, namely gzip, bzip2 and
rar, though these algorithms are not embeddable in tiny sensor nodes. We have shown that
the different versions of LEC can achieve considerable compression ratios in all the datasets
considered in the experiments. Finally, we have discussed how LEC can be transformed into
a lossy compression algorithm and have shown that this lossy version outperforms LTC, a
lossy compression algorithm specifically designed for being embedded in tiny sensor nodes.

7. Acknowledgements

This work was supported by the Italian Ministry of University and Research (MIUR) under
the PRIN project #2005090483_005 “Wireless sensor networks for monitoring natural
phenomena” and the FIRB project “Adaptive Infrastructure for Decentralized Organization
(ArtDecO)”.

8. References

Anastasi, G., Conti, M., Di Francesco, M. & Passarella, A. (2009) Energy conservation in
wireless sensor networks: A survey. Ad Hoc Networks, Vol. 7, 537-568.

Barr, K. C. and Asanović, K. (2006) Energy-aware lossless data compression. ACM Trans.
Comput. Syst., Vol. 24, 250-291.

Boulis, A., Ganeriwal, S. & Srivastava, M.B. (2003) Aggregation in sensor networks: an
energy– trade-off. Ad Hoc Networks, Vol. 1, 317–331.

Chen, H., Li, J. & Mohapatra, P. (2004) RACE: time series compression with rate adaptivity
and error bound for sensor networks. Proceedings of the First IEEE International
Conference on Mobile Ad-hoc and Sensor Systems, pp. 124-133, Fort Lauderdale,
FL, USA, 24-27 October,. IEEE, Piscataway, NJ, USA.

Ciancio, A. & Ortega, A. (2005) A distributed wavelet compression algorithm for wireless
multihop sensor networks using lifting. Proceedings of IEEE International
Conference on Acoustics, Speech, and Signal Processing, pp. 825-828, Philadelphia,
PA, USA, 18-23 March,. IEEE, Piscataway, NJ, USA.

Ciancio, A., Pattem, S., Ortega, A. & Krishnamachari, B. (2006) Energy-efficient data
representation and routing for wireless sensor networks based on a distributed

www.intechopen.com

wavelet compression algorithm. Proceedings of the Fifth international Conference
on Information Processing in Sensor Networks, pp. 309-316, Nashville, TN, USA,
19-21 April, ACM, New York, NY, USA.

Croce, S., Marcelloni, F. & Vecchio, M. (2008) Reducing power consumption in wireless
sensor networks using a novel approach to data aggregation. The Computer Journal,
Vol. 51, No. 2, 227–239.

Deligiannakis, A., Kotidis, Y. & Roussopoulos, N. (2004) Compressing historical information
in sensor networks. Proceedings of the 2004 ACM SIGMOD International
Conference on Management of Data, pp. 527-538, Paris, France, 13-18 June, ACM,
New York, NY, USA.

Di Bacco, G., Melodia, T. & Cuomo, F. (2004) A MAC protocol for delay-bounded
applications in wireless sensor networks. Proceedings of the Third Annual
Mediterranean Ad Hoc Networking Workshop, pp. 208-220, Bodrum, Turkey, 27-30
June, available on-line: http://www.ece.osu.edu/medhoc04/.

Elias, P. (1975) Universal codeword sets and representations of the integers. IEEE Transaction
on Information Theory, Vol. 21, No. 2, 194–203.

Faller, N. (1973) An adaptive system for data compression. Proceedings of the 7th Asilomar
Conference on Circuits, Systems, and Computers, pp. 593–597, Pacific Grove, CA,
USA, November, IEEE Press, Piscataway, NJ, USA.

Fan, K-W, Liu, S. & Sinha, P. (2007) Structure-free data aggregation in sensor networks. IEEE
Transactions on Mobile Computing, Vol. 6, 929-942.

Fasolo, E., Rossi, M., Widmer, J. & Zorzi, M. (2007) In-network aggregation techniques for
wireless sensor networks: a survey. Wireless Communications, Vol. 14, 70-87.

Gallager, R. G. (1978) Variations on a theme by Huffman. IEEE Transactions on Information
Theory, Vol. 24, No. 6, 668-674.

Ganesan, D., Estrin, D. & Heidemann, J. (2003) DIMENSIONS: why do we need a new data
handling architecture for sensor networks?, SIGCOMM Comput. Commun. Rev., Vol.
33, 143-148.

Gastpar, M., Dragotti, P. L. & Vetterli, M. (2006) The distributed Karhunen-Loève transform.
IEEE Transactions on Information Theory, Vol. 52, No. 12, 5177-5196.

Girod, B., Aaron, A., Rane, S. & Rebollo-Monedero, D. (2005) Distributed video coding.
Proceedings of the IEEE, Special Issue Advances Video Coding, Delivery, Vol. 93, No.
1, 71–83.

Golomb, S. W. (1966) Run-length encodings. IEEE Transactions on Information Theory, Vol. 12,
No. 3, 399-401.

Guestrin, C., Bodi, P., Thibau, R., Paski, M. & Madden, S. (2004) Distributed regression: an
efficient framework for modelling sensor network data. Proceedings of the Third
International Symposium on Information Processing in Sensor Networks, pp.1-10,
Berkeley, CA, USA, 26-27 April, ACM, New York, NY, USA.

Intanagonwiwat, C., Govindan, R., Estrin, D., Heidemann, J. & Silva, F. (2003) Directed
diffusion for wireless sensor networking. IEEE/ACM Trans. Netw., Vol. 11, 2-16.

Kimura, N. & Latifi, S. (2005) A survey on data compression in wireless sensor networks.
Proceedings of the International Conference on Information Technology: Coding
and Computing, pp. 8-13, Las Vegas, NV, USA, 4-6 April, IEEE Computer Society,
Washington, DC, USA.

Knuth, D. E. (1985) Dynamic Huffman Coding. Journal of Algorithms, Vol. 6, 163-180.

Lin, S., Kalogeraki, V., Gunopulos, D. & Lonardi, S. (2006) Online information compression
in sensor networks. Proceedings of the IEEE International Conference on
Communications, pp. 3371-3376, Istanbul, Turkey, 11-15 June, IEEE Press,
Piscataway, NJ, USA.

Lindsey, S., Raghavendra, C. & Sivalingam, K. M. (2002) Data gathering algorithms in
sensor networks using energy metrics. IEEE Trans. Parallel Distrib. Syst., Vol. 13,
924-935.

Lynch, J. P., Wang, Y., Sundararajan, A., Law, K. H. & Kiremidjian, A. S. (2004) Wireless
sensing for structural health monitoring of civil structures. Proceedings of the
International Workshop on Integrated Life-Cycle Management of Infrastructures,
Hong Kong, 9-11 December.

LZO (2008) http://www.oberhumer.com/opensource/lzo/
Madden, S., Franklin, M. J., Hellerstein, J. M. & Hong, W. (2002) TAG: a Tiny AGgregation

service for ad-hoc sensor networks. SIGOPS Oper. Syst. Rev., Vol. 36, 131-146.
Mainwaring, A., Culler, D., Polastre, J., Szewczyk, R. & Anderson, J. (2002) Wireless sensor

networks for habitat monitoring. Proceedings of the First ACM international
Workshop on Wireless Sensor Networks and Applications, pp. 88-97, Atlanta, GA,
USA, 28 September, ACM, New York, NY, USA.

Marcelloni, F. & Vecchio, M. (2009) An efficient lossless compression algorithm for tiny
nodes of monitoring wireless sensor networks, The Computer Journal, Section B:
Networks and Computer Systems, Advance Access, doi:10.1093/comjnl/bxp035.

Pennebaker, W. B. & Mitchell, J. L. (1992) JPEG still image data compression standard. Kluwer
Academic Publishers, Norwell, MA, USA.

Pradhan, S. Kusuma, J. & Ramchandran, K. (2002) Distributed compression in a dense
microsensor network, IEEE Signal Processing Mag., Vol. 19, 51–60.

Rebollo-Monedero, D. (2007) Quantization and transforms for distributed source coding.
PhD thesis The Department of Electrical Engineering and the Committee on
Graduate Studies of Stanford University.

Sadler, C. M. & Martonosi, M. (2006) Data compression algorithms for energy-constrained
devices in delay tolerant networks. Proceedings of the 4th ACM International
Conference on Embedded networked sensor systems, pp. 265-278, Boulder,
Colorado, USA, October 31 - November 3, ACM, New York, NY, USA.

Salomon, D. (2007) Data Compression: The Complete Reference, Springer Verlag, London, UK.
Schoellhammer, T., Osterweil, E., Greenstein, B., Wimbrow, M. & Estrin, D. (2004)

Lightweight temporal compression of microclimate datasets. Proceedings of the
29th Annual IEEE International Conference on Local Computer Networks, pp. 516-
524, Tampa, FL, USA, 16-18 November, IEEE Computer Society, Washington, DC,
USA.

Sensirion (2009) Sensirion homepage, www.sensirion.com
SensorScope (2009), SensorScope deployments homepage

http://sensorscope.epfl.ch/index.php/Main_Page
Sim-It (2009) Sim-It Simulator homepage, http://simit-arm.sourceforge.net/
Tang, C. & Raghavendra, C. S. (2004) Compression techniques for wireless sensor networks.

In: Wireless Sensor Networks, Raghavendra, C. S., Sivalingam, K. M. and Znati, T.
(Ed.), Kluwer Academic Publishers, Norwell, MA, USA.

www.intechopen.com

Enabling Compression in Tiny Wireless Sensor Nodes 19

wavelet compression algorithm. Proceedings of the Fifth international Conference
on Information Processing in Sensor Networks, pp. 309-316, Nashville, TN, USA,
19-21 April, ACM, New York, NY, USA.

Croce, S., Marcelloni, F. & Vecchio, M. (2008) Reducing power consumption in wireless
sensor networks using a novel approach to data aggregation. The Computer Journal,
Vol. 51, No. 2, 227–239.

Deligiannakis, A., Kotidis, Y. & Roussopoulos, N. (2004) Compressing historical information
in sensor networks. Proceedings of the 2004 ACM SIGMOD International
Conference on Management of Data, pp. 527-538, Paris, France, 13-18 June, ACM,
New York, NY, USA.

Di Bacco, G., Melodia, T. & Cuomo, F. (2004) A MAC protocol for delay-bounded
applications in wireless sensor networks. Proceedings of the Third Annual
Mediterranean Ad Hoc Networking Workshop, pp. 208-220, Bodrum, Turkey, 27-30
June, available on-line: http://www.ece.osu.edu/medhoc04/.

Elias, P. (1975) Universal codeword sets and representations of the integers. IEEE Transaction
on Information Theory, Vol. 21, No. 2, 194–203.

Faller, N. (1973) An adaptive system for data compression. Proceedings of the 7th Asilomar
Conference on Circuits, Systems, and Computers, pp. 593–597, Pacific Grove, CA,
USA, November, IEEE Press, Piscataway, NJ, USA.

Fan, K-W, Liu, S. & Sinha, P. (2007) Structure-free data aggregation in sensor networks. IEEE
Transactions on Mobile Computing, Vol. 6, 929-942.

Fasolo, E., Rossi, M., Widmer, J. & Zorzi, M. (2007) In-network aggregation techniques for
wireless sensor networks: a survey. Wireless Communications, Vol. 14, 70-87.

Gallager, R. G. (1978) Variations on a theme by Huffman. IEEE Transactions on Information
Theory, Vol. 24, No. 6, 668-674.

Ganesan, D., Estrin, D. & Heidemann, J. (2003) DIMENSIONS: why do we need a new data
handling architecture for sensor networks?, SIGCOMM Comput. Commun. Rev., Vol.
33, 143-148.

Gastpar, M., Dragotti, P. L. & Vetterli, M. (2006) The distributed Karhunen-Loève transform.
IEEE Transactions on Information Theory, Vol. 52, No. 12, 5177-5196.

Girod, B., Aaron, A., Rane, S. & Rebollo-Monedero, D. (2005) Distributed video coding.
Proceedings of the IEEE, Special Issue Advances Video Coding, Delivery, Vol. 93, No.
1, 71–83.

Golomb, S. W. (1966) Run-length encodings. IEEE Transactions on Information Theory, Vol. 12,
No. 3, 399-401.

Guestrin, C., Bodi, P., Thibau, R., Paski, M. & Madden, S. (2004) Distributed regression: an
efficient framework for modelling sensor network data. Proceedings of the Third
International Symposium on Information Processing in Sensor Networks, pp.1-10,
Berkeley, CA, USA, 26-27 April, ACM, New York, NY, USA.

Intanagonwiwat, C., Govindan, R., Estrin, D., Heidemann, J. & Silva, F. (2003) Directed
diffusion for wireless sensor networking. IEEE/ACM Trans. Netw., Vol. 11, 2-16.

Kimura, N. & Latifi, S. (2005) A survey on data compression in wireless sensor networks.
Proceedings of the International Conference on Information Technology: Coding
and Computing, pp. 8-13, Las Vegas, NV, USA, 4-6 April, IEEE Computer Society,
Washington, DC, USA.

Knuth, D. E. (1985) Dynamic Huffman Coding. Journal of Algorithms, Vol. 6, 163-180.

Lin, S., Kalogeraki, V., Gunopulos, D. & Lonardi, S. (2006) Online information compression
in sensor networks. Proceedings of the IEEE International Conference on
Communications, pp. 3371-3376, Istanbul, Turkey, 11-15 June, IEEE Press,
Piscataway, NJ, USA.

Lindsey, S., Raghavendra, C. & Sivalingam, K. M. (2002) Data gathering algorithms in
sensor networks using energy metrics. IEEE Trans. Parallel Distrib. Syst., Vol. 13,
924-935.

Lynch, J. P., Wang, Y., Sundararajan, A., Law, K. H. & Kiremidjian, A. S. (2004) Wireless
sensing for structural health monitoring of civil structures. Proceedings of the
International Workshop on Integrated Life-Cycle Management of Infrastructures,
Hong Kong, 9-11 December.

LZO (2008) http://www.oberhumer.com/opensource/lzo/
Madden, S., Franklin, M. J., Hellerstein, J. M. & Hong, W. (2002) TAG: a Tiny AGgregation

service for ad-hoc sensor networks. SIGOPS Oper. Syst. Rev., Vol. 36, 131-146.
Mainwaring, A., Culler, D., Polastre, J., Szewczyk, R. & Anderson, J. (2002) Wireless sensor

networks for habitat monitoring. Proceedings of the First ACM international
Workshop on Wireless Sensor Networks and Applications, pp. 88-97, Atlanta, GA,
USA, 28 September, ACM, New York, NY, USA.

Marcelloni, F. & Vecchio, M. (2009) An efficient lossless compression algorithm for tiny
nodes of monitoring wireless sensor networks, The Computer Journal, Section B:
Networks and Computer Systems, Advance Access, doi:10.1093/comjnl/bxp035.

Pennebaker, W. B. & Mitchell, J. L. (1992) JPEG still image data compression standard. Kluwer
Academic Publishers, Norwell, MA, USA.

Pradhan, S. Kusuma, J. & Ramchandran, K. (2002) Distributed compression in a dense
microsensor network, IEEE Signal Processing Mag., Vol. 19, 51–60.

Rebollo-Monedero, D. (2007) Quantization and transforms for distributed source coding.
PhD thesis The Department of Electrical Engineering and the Committee on
Graduate Studies of Stanford University.

Sadler, C. M. & Martonosi, M. (2006) Data compression algorithms for energy-constrained
devices in delay tolerant networks. Proceedings of the 4th ACM International
Conference on Embedded networked sensor systems, pp. 265-278, Boulder,
Colorado, USA, October 31 - November 3, ACM, New York, NY, USA.

Salomon, D. (2007) Data Compression: The Complete Reference, Springer Verlag, London, UK.
Schoellhammer, T., Osterweil, E., Greenstein, B., Wimbrow, M. & Estrin, D. (2004)

Lightweight temporal compression of microclimate datasets. Proceedings of the
29th Annual IEEE International Conference on Local Computer Networks, pp. 516-
524, Tampa, FL, USA, 16-18 November, IEEE Computer Society, Washington, DC,
USA.

Sensirion (2009) Sensirion homepage, www.sensirion.com
SensorScope (2009), SensorScope deployments homepage

http://sensorscope.epfl.ch/index.php/Main_Page
Sim-It (2009) Sim-It Simulator homepage, http://simit-arm.sourceforge.net/
Tang, C. & Raghavendra, C. S. (2004) Compression techniques for wireless sensor networks.

In: Wireless Sensor Networks, Raghavendra, C. S., Sivalingam, K. M. and Znati, T.
(Ed.), Kluwer Academic Publishers, Norwell, MA, USA.

www.intechopen.com

Teuhola, J. (1978) A Compression Method for Clustered Bit-Vectors. Information Processing
Letters, Vol. 7, 308-311.

TinyNode (2009) TinyNode homepage, http://www.tinynode.com
Wagner, R. S., Baraniuk, R. G., Du, S., Johnson, D. B. & Cohen, A. (2006) An architecture for

distributed wavelet analysis and processing in sensor networks. Proceedings of the
Fifth International Conference on Information Processing in Sensor Networks, pp.
243-250, Nashville, TN, USA, 19-21 April, ACM, New York, NY, USA.

Welch, T.A. (1984) A technique for high-performance data compression, Computer, Vol. 17,
8-19.

Ziv, J. & Lempel, A. (1977) A universal algorithm for sequential data compression, IEEE
Transactions on Information Theory, Vol. 23, 337-343.

Zixiang, X., Liveris, A.D. & Cheng, S. (2004) Distributed source coding for sensor networks.
IEEE Signal Processing Magazine, Vol. 21, No. 5, 80-94.

www.intechopen.com

Wireless Sensor Networks

Edited by

ISBN 978-953-307-325-5

Hard cover, 342 pages

Publisher InTech

Published online 29, June, 2011

Published in print edition June, 2011

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Francesco Marcelloni and Massimo Vecchio (2011). Enabling Compression in Tiny Wireless Sensor Nodes,

Wireless Sensor Networks, (Ed.), ISBN: 978-953-307-325-5, InTech, Available from:

http://www.intechopen.com/books/wireless-sensor-networks/enabling-compression-in-tiny-wireless-sensor-

nodes

© 2011 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.

