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1. Introduction 

In most of the electromagnetic problems, the number of unknowns to evaluate the scattered 
fields grows whenever the size of the antenna, device or scenario increases or the working 
frequency becomes higher. In this context, the rigorous full-wave methods –e.g. Method of 
Moments (MoM), Fast Multipole Method (FMM) (Engheta et al., 1992), Finite-Difference 
Time-Domain (FDTD) (Taflove & Umashankar, 1987) or Finite-Difference Frequency-
Domain (FDFD) (Rappaport & McCartin, 1991), Finite Element Method (FEM) (Kempel et 
al., 1998) – can not tackle the analysis of such problems beyond an upper limit determined 
by the computational requirements in terms of time and memory. High frequency 
techniques consist in the asymptotic evaluation of the Maxwell’s equations. As a 
consequence, they provide good accuracy when dealing with electrically large geometries 
meanwhile the computational needs diminish with respect to the aforementioned methods. 
Within the high frequency techniques, the Geometrical Optics (GO) and the Physical Optics 
(PO) approximation are the most extended methods due to the successful results obtained in 
various fields such as Radar Cross Section (RCS), design of reflector antennas or 
radioelectric coverage calculation. Since the Physical Optics approximation is detailed in the 
following section, the Geometrical Optics is briefly summarised.   
The main interest in the GO lies in the fact that incident, reflected and transmitted 
electromagnetic waves are studied based on the conservation of the energy flux along a ray 
tube between a source and an observation point. Therefore, the Geometrical Optics is 
usually referred to as Ray Optics. The GO comprises two different methodologies (Rossi & 
Gabillet, 2002): Ray Tracing (Glassner, 1989) – the starting point is the receiver or 
observation point and a path to the source is sought analysing the reflections on walls, 
buildings, mountains – and Ray Launching – multiple rays are launched from the source, so 
they are independently followed until an observation point or the receiver is reached. One 
of the common applications of the GO is the evaluation of radio electric coverage or the 
channel characterization in urban scenarios. 
Both the GO and the PO techniques require of an additional method to compute the 
contribution due to the diffraction phenomenon. The GO can be complemented by means of 
the Geometrical Theory of Diffraction (GTD) (Keller, 1962) or the Uniform Theory of 
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Diffraction (UTD) (Pathak & Kouyoumjian, 1974). On the other hand, the Physical Theory of 
Diffraction (PTD) (Ufimtsev, 1962) is applied in joint with the PO formulation. 
This chapter focuses on the PO approximation and especially on its extension to dielectric 
and lossy materials, namely the Modified Equivalent Current Approximation (MECA) 
method. In section 2, the PO approximation is presented and the formulation is obtained 
from the equivalence principle. Then the MECA method is introduced, so the equivalent 
current densities are obtained at the end of section 3.1.3. In order to complete the 
expressions, the reflection coefficients are then calculated and the determination of the 
electromagnetic field levels at the observation points based on an analytical solution of the 
radiation integral is accomplished in section 3.2. A couple of validation examples are 
studied before continuing to describe the algorithms for solving the visibility problem and, 
specifically, the Pyramid method in section 4. Afterwards, some of the applications of 
MECA are listed in “Application examples” where an example of radio electric coverage 
evaluation is also shown. “Conclusion” and “References” closes the chapter.  

2. The Physical Optics (PO) approximation 

The Physical Optics (PO) approximation (Harrington, 2001; Balanis, 1989) is a well-known 
high frequency technique based on the determination of the equivalent current densities 
induced on the surface of an illuminated perfect electric conductor (PEC) plane. The final 
expressions can be achieved through the equivalence principle as it will be shown in section 
2.1, so once these equivalent or PO current densities are obtained, both electric and magnetic 
field levels can be calculated from the corresponding radiation integrals. 
In order to be in compliance with the constraints introduced by the PO approximation, some 
aspects have to be evaluated prior to the selection of this technique to tackle any 
electromagnetic problem:  
 The geometry must be made of electrically large obstacles with a smooth variation of 

their surfaces.  
 Given a radiating source, a distinction between lit and non-lit regions must be possible 

to perform.  
The latter implies the need of a complementary algorithm to identify line of sight (LOS) 
directions from a specific point of view. Some methods will be commented in section 4.  

Henceforth, for the sake of simplicity, a time-harmonic variation, j te  , of the electromagnetic 
fields and current densities is assumed. Likewise, the spatial dependence of those variables 
is not explicitly written.  

2.1 PO formulation 
The expressions for the electric and magnetic equivalent current densities, POJ  and POM  
respectively, can be derived from the physical equivalent (Balanis, 1989) in Fig. 1(left), 
where a scheme consisting of two different media is presented: a PEC on the left and a 
medium with permittivity ε1, permeability μ1 and conductivity σ1 on the right. 
Consequently, the boundary S between the first and the second media is a PEC plane with 
the outward normal unit vector n̂  pointing to the right.  
The incident electric and magnetic fields due to external sources and in absence of any 
obstacle are 1

incE  and 1
incH . On the other hand, the total fields inside the PEC are null 

( tot tot
PEC PECE H  0 ), while in the second medium 1

totE  and 1
totH  are calculated by adding 
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those incident fields to the reflected ones denoted by 1
refE  and 1

refH . Therefore the electric 
and magnetic induced current densities, J  and M ,  at the boundary S can be obtained from 
the tangential components of the total fields as: 
 

 
Fig. 1. Equivalence principle and Physical Optics approximation. 

 
   

   
1 1 1 1SS S

1 1 1 1SS S

ˆ ˆ ˆ

ˆ ˆ ˆ

reftot tot tot inc
PEC

reftot tot tot inc
PEC

J n H H n H n H H

M n E E n E n E E

       

            0
 (1) 

Fig. 1 (centre) shows the equivalent problem for the non-PEC medium. In order to keep the 
same boundary conditions, this medium has been extended replacing the PEC part and the 

total fields are now 1
incE  and 1

incH  at the left side of S and 1
refE  and 1

refH  at its right side.  

Considering the characterization of the boundary S as a PEC plane in Fig. 1(right) and 
taking into account the expressions in Eq. (1), the Physical Optics approximation states that 

1
incH  and 1

refH  at the boundary S are in phase and also have the same amplitude. Thus,  
POJ and  POM  can be expressed as:  

 
 

 
1 11 SS

1 1
S

ˆ ˆ2

ˆ

refPO inc inc

refPO inc

J n H H n H

M n E E

    

     0
 (2) 

At this point, an additional consideration to complete the PO formulation is included: when 
dealing with finite geometries, the PO current density is null in the regions not illuminated 
by the source:  

 
1 S

ˆ2 lit region

non lit region

inc
PO n H

J
    0

 (3) 
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This is the reason why the distinction between shadowed and illuminated parts of the 
scenario is one of the aforementioned constraints to correctly apply the PO 
approximation.  

3. The Modified Equivalent Current Approximation (MECA) method: a PO 
extension for penetrable and non-metallic objects 

Even though several electromagnetic problems fulfil the restrictions by the PO 
approximation in terms of electric size or radius of curvature, the characterization of the 
obstacles as perfect electric conductors reduces the scope of application of this high 
frequency technique.  
Previous works (Rengarajan & Gillespie, 1988; Hodges & Rahmat-Samii, 1993, Sáez de 
Adana et al., 2004) agree that the extension of the PO approximation for penetrable and non-
metallic objects have to account for the reflection coefficients R in order to apply the 
boundary conditions at the interface between the two media –one of the media uses to be 
the air. In this context, it is convenient to accomplish a decomposition of the incident fields 
into their transversal electric (TE) and transversal magnetic (TM) components to 
independently insert RTE and RTM in the evaluation of the equivalent current densities: 

 
inc inc
TE TMˆ ˆE Einc inc inc

TE TM TE TME E E e e     (4) 

 

where ˆ
TEe  and ˆ

TMe  are the unit vectors in the direction of the TE and TM components of the 

incident electric field respectively. Likewise, the incident magnetic field can be written in an 
analogous way.  
The Modified Equivalent Current Approximation (MECA) method (Meana et al., 2010) is a 
new high frequency technique based on the evaluation of a set of equivalent currents to 
calculate electromagnetic field levels at any observation point. The most important features 
of this method are: 
 MECA deals with electrically large scenarios consisting of dielectric and lossy surfaces 

due to both electric and magnetic equivalent currents, MECAJ  and MECAM , are taken 
into account. 

 MECA reduces to the PO expressions when considering PEC obstacles. Therefore, it can 
be seen as an extension and an improvement of the classic Physical Optics 
approximation. 

 Reflection coefficients are calculated in a rigorous manner.  
 A constant amplitude and linear phase current density distribution on the surface of the 

facets is adopted to analytically solve the radiation integral. 

3.1 MECA formulation 
Let us suppose a skew plane wave impinging on the interface S  with an angle of 

incidence denoted by θinc and a unit incident vector ˆinck . The two media are now 
characterised by their respective permittivities ( 1 , 2 ), permeabilities ( 1 , 2 ) and 

conductivities ( 1 , 2 ). The analysis of the TE and TM components will be presented 

separately. 
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3.1.1 TE component 

For the incident wave, the coordinate system ˆ ˆ ˆ, ,inc
TM TEk e e 

   where 

 

ˆ ˆ
ˆ

ˆ ˆ

ˆˆ ˆTM TE

inc

TE inc

inc

k n
e

k n

e e k






 

 (5) 

 
 

 
Fig. 2. Field decomposition. TE component. 

has been chosen (see Fig. 2). Substituting ˆ inck  by the unit reflection vector ˆrefk , the 
coordinate system ˆˆ ˆ ˆ, ,ref

TM TE TEs k s e    is defined. Then, the incident electric and magnetic 
fields are rewritten in terms of these unit vectors: 

  
inc
TE

inc inc
TE TE

1

ˆE

1 ˆˆ ˆH E

inc
TE TE

inc inc
TE TM TE

E e

H e k e




   
 (6) 

where the intrinsic impedance of the first medium 1 is i
i

i i

j
j




 



, i 1,2 . 

From the Snell law, the angle of reflection θref is equal to θinc. Therefore, ˆrefk  can be 
expressed as:  
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  ˆ ˆ ˆˆ ˆ2ref inc inck k n k n    (7) 

Inserting the TE reflection coefficient RTE, the electric ref
TEE  and magnetic ref

TEH  reflected fields 

are: 

  
ref

TE TE

inc inc
TE TE TE TE

1 1

ˆR E

1 1 ˆˆ ˆR E R E

ref
TETE

ref
TM ref TETE

E e

H s k e
 



  
 (8) 

Considering that   

 
, , ,

, , ,

reftot inc
TE TM TE TM TE TM

reftot inc
TE TM TE TM TE TM

E E E

H H H

 

 
 (9) 

and introducing Eq. (8) in Eq. (9), the total fields for the TE component are:   

 

 

   

inc
TE TE

inc
TE TE

1

ˆE 1 R

1 ˆ ˆˆ ˆE R

tot
TE TE

reftot inc
TE TE TE

E e

H k e k e


 

     
 (10) 

3.1.2 TM component 
 

 
Fig. 3. Field decomposition. TM component. 
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In Fig. 3 the same directions of incidence, reflection and transmission as well as the 
boundary S are again depicted. In addition, the TM components of the fields are plotted. In 
accordance with the reasoning in the previous section, the expressions for the total fields can 
be obtained, leading to: 

 

 
 

inc
TM TM

inc
TM TM

1

ˆˆ ˆE R

1 ˆE 1 R

reftot
TM TM TE

tot
TM TE

E e k e

H e


    

 
 (11) 

3.1.3 MECA equivalent currents 
Adding the contributions of the TE and TM components in Eqs. (10) and (11), the total 
electric and magnetic fields can be written as a function of the incident electric field, the 
reflection coefficients, the intrinsic impedance of the first medium, the propagation vectors 
and the unit vector ˆ

TEe :  

 

 
 

inc inc
TE TE TM TM

inc inc
TE TE TM TM

1 1

ˆˆ ˆR E R E

1 1ˆ ˆ ˆ ˆR E R E

reftot inc
TE TE

reftot inc inc
TE TE

E E e k e

H k E k e e
 

   

      

 (12) 

Going back to the boundary conditions, the MECA equivalent current densities are 
reckoned from the total fields at S in Eq. (12), being the magnetic ones no longer zero: 

      
     

S

inc inc inc
TE TE TM TM

1 S

inc inc inc
TE TE TM TMS S

ˆ

1 ˆ ˆ ˆE cos 1 R E 1 R

ˆ ˆ ˆ ˆE 1 R E cos 1 R

MECA tot

TE TE

MECA tot
TE TE

J n H

e n e

M n E e n e






  

    

       

 (13) 

As it can be seen and remarked in the previous expressions, the amplitude and phase of the 
current densities depend on the polarization and also on the angle of incidence θinc of the 
incident wave.      

3.1.4 TE and TM reflection coefficients 
In order to complete the evaluation of the MECA current densities, RTE and RTM have to be 
determined before moving to the calculation of the electromagnetic fields at the observation 
points. For this task, the boundary condition for the continuity of the tangential components 
of the electric and magnetic fields at the boundary S is utilised. 
The general dispersion relation applied to the second isotropic medium allows the 

evaluation of the transmission propagation vector ˆtrak  (its real part is depicted in Fig. 2 and 
Fig. 3) due to   

 
2 i

i i
j

k k


  


    
 

 (14) 
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where  1 2 3k k kk   denotes any propagation vector, the subscript i refers to the first 
( i 1 ) or second medium ( i 2 ) and 2 f  , with f  being the working frequency. If 

i 0  , the right hand side of Eq. (14) is a complex number and the analysis is better 
performed introducing the real and imaginary parts of the vector k , denoted by  k  and 
 k  respectively. Particularising for the reflection and transmission propagation vectors: 

 

   
   

   
   

2 2
2

1 1

2 2
2

2 2

2 2

2 0

2

ref ref

ref ref

tra tra

tra tra

k k

k k

k k

k k

  

  

 

   

  




   

    

 (15) 

The continuity condition at S for the first component of the propagation vector means that  

      inc ref tra inc
1 1 1

1

2
k k k sin

 


     (16) 

where 1  is the wavelength in the first medium and 

      inc ref tra
1 1 1k k k 0       (17) 

Inserting Eqs. (16) and (17) in Eq. (15), the real and imaginary parts of the third component 
of the transmission propagation vector are obtained as: 

 

       

   
 

1
22 2

tra 2 2 inc 2 2 inc 2
3

1 1

2
tra
3 tra

3

1 2 2
k sin sin

2

k
2 k

tra tra tra

tra

k k k

k

  
 

                      


 



 (18) 

Once    tra tra tra
3 3 3k k j k     is determined, RTE is (Staelin et al., 1993)  

 

inc tra
2 1 3

1
TE inc tra

2 1 3
1

2 cos k
R

2 cos k

  
  





 (19) 

and the corresponding RTM is  

 

inc tra2
2 1 3

1
TM

inc tra2
2 1 3

1

2j cos k
R

2j cos k

    
    

   
  
   
 

 (20) 
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In case of working with non-metallic obstacles, the reflection coefficients become the well-
known and simpler Snell’s expressions where the calculation of RTE and RTM is 
straightforward.  
When the second medium is a PEC ( 2  ), the absolute value of the third component of 

trak  tends to infinite and consequently TER 1   as well as TMR 1  .  Substituting these 

values in Eq. (12), the total magnetic field equals 2 incH at the boundary S. Therefore, MECAJ  

and  MECAM in Eq. (13) reduces to POJ  and POM  in Eq. (2).    

3.2 Electromagnetic field levels 
Once MECAJ  and  MECAM  can be calculated with the inclusion of the reflection coefficients 
in the previous section, the evaluation of the scattered fields due to this set of equivalent 
current densities on the surface of an obstacle requires solving a radiation integral. For 
arbitrary distributions and geometries, an analytical solution can not be reached. As a 
consequence, two assumptions are imposed (Arias et al. 2000; Lorenzo et al., 2005): 
 The incident wave is a plane wave. 
 The obstacle consists of flat triangular facets. 
With the objective of distinguishing between the reflected fields at the boundary and the 

scattered fields at the observation points, the latter are denoted by sE  and sH . Note that 
these do not take into account the contribution of the diffraction phenomenon. 

3.2.1 Incident plane wave approximation 
The position vector 'r


 of a point on the surface of a flat triangular facet can be written as: 

 ' ''ir r r 
  

 (21) 

where ir


 is the position vector of the barycentre of the i-th facet and ''r


 is the vector from 
the barycentre to the source point (see Fig. 4).  
The current densities are particularised for the i-th facet, MECA

iJ  and MECA
iM , having 

constant amplitudes , 0
i

MECA MECA
i i

r r
J J


    and 0

MECA MECA
i i

r r i
M M


    and a linear phase 

distribution which varies with the unit direction of the Poynting vector as:   

 
  
  

*

*
ˆ

inc inc
i i

i
inc inc
i i

E H

p

E H

 

 

 (22) 

where inc
iE  and inc

iH  are the incident electric and magnetic fields at ir


 respectively, and * 

denotes the complex conjugate value of the complex vector in brackets. Therefore, in a 
medium where the working wavelength is  1,  

 
 

 
0

1

0
1

2 ˆexp j ''

2 ˆexp j ''

MECA MECA
i i i

MECA MECA
i i i

J J p r

M M p r







 

 




 (23) 
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The reason to introduce the linear phase variation is that this technique allows employing 
larger facets than when assuming a constant phase distribution. 

3.2.2 Application to flat triangular facets 
In order to analytically evaluate the radiation integral, the observation points r


 are 

supposed to be in the far field of the radiating facet – but not necessarily in the far field of 
the whole scenario. Most of times this constraint is not an additional restriction because 
applications, such us radar cross section, directly impose huge distances between the object 
under test and the coordinates where the fields are determined. 
Mathematically, the magnitude of the vector between the source point 'r


 and the 

observation point r


 is approximated (Balanis, 1989) by the magnitude of the latter 

' rR r r r   
   

. The phase is taken as ˆ' r- 'R r r r r      
   

, where ˆ rr
r



  . 

The formulation to compute the scattered fields can be derived from the Maxwell’s 
equations, e.g. using the magnetic vector potential A  and the electric potential vector F  
separately and combining both solutions. The resulting expressions are written in terms of 
the Green’s function in unbounded media G  and its gradient G . The far field 
approximation allows expressing these functions as: 

 

     1 1

1

1 1
1

2 2exp j exp j r1 1 2 ˆG exp j '
4 4 r

1ˆ2 2 ˆG j G 1 j G
2j R

R
r r

R

R r

 
  

 

 
 



 
  

 
        
 




 (24) 

 

 
Fig. 4. Coordinate system and nomenclature for the triangular facets: on the left, for section 
3.2.1 and on the right, for section 3.2.2. 
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Consequently, the scattered fields are: 

 

     
   

1
1

11

1

11 1

2exp j rj 2ˆ ˆ ˆ ˆexp j ' s'
2 r

2exp j rj 1 2ˆ ˆ ˆ ˆexp j ' s'
2 r

s MECA MECA

S

s MECA MECA

S

E r M r J r r r

H r J r r M r r


  


 

 


        

   
         

   









 (25) 

and they can be simplified inserting the auxiliary vectors aE  and aH   

 

 
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1

1
1

1

1 1
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2exp j rj 1 ˆ
2 r
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

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




 


    

  
    

 

 (26) 

with 

 
 
 

1

1

2ˆ ˆexp j ' s'

2ˆ ˆexp j ' s'

a MECA

S

a MECA

S
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





   

   








 (27) 

Considering that the expressions of aE  and aH  are quite similar, the following reasoning is 
only performed for the magnetic fields, so the contribution due to the electric current 

density MECAJ on the i-th facet at the observation point kr


 is given by: 

       i
1 1

2 2ˆ ˆ ˆexp j exp j '' s '
i

a MECA
ik ik i ik i ik

S

H r r r J r r 
     

   (28) 

where Si refers to the surface of the i-th facet  and îkr is the unit vector from the barycentre of 

that facet to the observation point k . Substituting MECA
iJ  by its expression in Eq. (23), where 

the constant amplitude and linear phase variation distributions were inserted and extracting 
the terms from the integrand, Eq. (28) is rewritten as: 

 
  

  
0

1

i
1

2 ˆ ˆ ˆexp j I( )

2ˆ ˆ ˆI( ) exp j '' s '
i

a MECA
ik ik i ik i ik

ik i
S

H r r r J r

r r p r







  

   



  (29) 

In case of dealing with flat triangular facets, ''r


 can be expressed as a function of the vectors 

mnv


 in Fig. 4: 

 01 12 13'' f gr v v v  
   

 (30) 
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with n mmnv P P 
 

, being lP


 the position vector of the vertices l 1,2,3  of the facet and 0P


, 

the position vector of the barycentre. f  and g  are real coefficients. Taking into account this 

transformation, the integral in Eq. (29) is converted into: 

     
1 1 f

0 0

a bˆI 2A exp -j exp j af bg g f
3

r
     

 
   (31) 

where A  is the area of the facet and the values of a  and b  are defined as: 

 
 

 
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2 ˆ ˆa
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i

v r p

v r p






  

  




 (32) 

The solution to the Eq. (31) is obtained by parts, but in order to overcome some singularities, 
five different cases are detailed (Arias et al. 2000) in Table 1. 
 

a  b   ˆI r  

Any Any 
   

 
aexp jb bexp ja b aa b

2A exp -j
3 a-b ab

    
  

   
 

0 Any 
 

2

1 jb exp jbb
2A exp -j

3 b

   
  
  

 

Any 0 
 

2

1 ja exp jaa
2A exp -j

3 a

   
  
  

 

0 0 A  

Any a 
  

2

exp ja 1 ja 12a
2A exp -j

3 a

   
  
  

 

Table 1. Solution to the integral in Eq. (31). Different cases are presented to overcome the 
singularities in the original expression. 

The formulation of the Modified Equivalent Current Approximation method is completed 
once all the intermediate results that have been described in this section are combined to 
evaluate the scattered fields at a specific observation point because of one radiating facet. 
Until this point, the steps to follow are summarised in:  
 Decompose the incident electric field into its TE and TM components. 
 Obtain the reflection coefficients in Eqs. (19) and (20). 
 Calculate the MECA electric and magnetic current densities in Eq. (13). 
 Particularise the expressions for the barycentre of every radiating facet. 
 Compute the integral ˆI( )ikr  with the help of Table 1. 

www.intechopen.com



High Frequency Techniques: the Physical Optics Approximation and 
the Modified Equivalent Current Approximation (MECA) 

 

219 

 Evaluate the auxiliary fields aE  and aH  introducing the expressions of the MECA 
current densities and the result of the radiation integral. 

 Calculate the scattered fields sE  and sH  
Afterwards, the superposition theorem is employed to add the contribution due to all the 
radiating facets in the geometry for the observation point k: 

 
i

s s
k ikH H  (33) 

If an evaluation of the line of sight between the radiating sources and the obstacle were 
necessary because of its shape, this task would be faced at the beginning of the whole.   

3.3 Validation schemes 
In this section, two canonical examples for different constitutive parameters and geometries 
are presented: one assures the good behaviour in high frequency and the other consists in 
the analysis of electrically large surfaces. In the first scenario, the validation is accomplished 
in terms of the Radar Cross Section (RCS) which is calculated as: 

 
2

2
2RCS 4 lim r

r inc

E

E



  (34) 

Since the field levels due to the diffraction contribution are not significant in the selected 
examples, this effect can be neglected in the computation of the RCS. Consequently, the term 
in the numerator E  only takes into account the electric field levels owing to reflections on 
the surface. 
The methods to contrast the results provided by MECA are an analytical solution taken 
from the references and the full-wave technique the Method of Moments (MoM) (Medgyesi-
Mitschang et al., 1994).  

3.3.1 High frequency behaviour 
As a high frequency technique, MECA has to show an accurate behaviour when the 
dimensions of the obstacle are large in comparison with the working wavelength. A good 
example to test this is a sphere, whose monostatic RCS can be obtained theoretically for both 
PEC (Balanis, 1989) and non-metallic (Van-Bladel, 2007) characterisations. A frequency 
sweep is performed for a sphere of radius a  with relative permittivity and permeability of 

r 2.2  , r 1.1   respectively and conductivity of 07  , being 12
0 8.854 10 F/m   , 

for the lossy case. The region in Fig. 5  for 2 r 10
   corresponds to the high frequency 

zone where a great coincidence in the results can be observed. 

3.3.2 Electrically large surfaces 
In this setup, a resonant horizontal dipole is placed at a fixed position whose height is of 
h=1.5 metres above an electrically large flat surface as depicted in Fig. 6. The position of the 
observation point obsP  is determined by two correlated variables: the horizontal distance 
from the source to obsP , denoted by d  and the height of obsP , denoted by H . The angle υ is 
defined with the purpose of representing the results. 
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Fig. 5. Monostatic RCS of a sphere. PEC and lossy characterization ( r 2.2  , r 1.1  , 

07  ). 

 

 
Fig. 6. Scheme for testing electrically large surfaces. The dipole is placed horizontally at a 
height h. The position of the observation points varies with the distance from the dipole d. 
For the sake of clarity in the representation of the results, the angle υ has been inserted. 

For the working frequency of 1800 MHz and the values of H  ranging from 1 to 35 metres, 
the magnitude of the total electric field totE , including the direct illumination from the 
source, is evaluated. In Fig. 6 MECA results are compared with those by MoM (Medgyesi-
Mitschang, 1994) for the following constitutive parameters: r 3.5  , r 1   and 

0.5 S/m  . On the left, totE  is plotted as a function of υ, while on the right the variable is 
the logarithm of the distance d  in wavelengths, d , so the small deviation –less than 2dB in 
the worst case- can be appreciated. Consequently, a high degree of overlapping in the 
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curves of MoM and MECA clearly demonstrates the accuracy of the high frequency 
technique. 
 

 
Fig. 7. Magnitude of the total electric field for the electrically large surface configuration. On 
the left, the results have been represented as a function of the angle υ and on the right, as a 
function of the logarithm of the distance in wavelengths. MECA and MoM show a great 
coincidence. 

4. Fast visibility algorithm for solving the visibility problem 

Because MECA (also PO) predicts null equivalent current densities in shadowed regions 
and non-null equivalent current densities in those regions with line of sight from the source 
point, a distinction between non-illuminated and illuminated surfaces is mandatory prior to 
the evaluation of electromagnetic levels at the observation points. This distinction is known 
as the visibility problem and it is widely found in computer graphics (Dewey, 1988; Foley, 
1992; Bittner & Wonka, 2003), e.g. virtual reality or games, but also in the context of 
electromagnetic problems such as radio electric coverage evaluation or tracking applications 
in radar. 
Within the classic algorithms, the Z-buffer and the Painter’s algorithm can be cited. 
Assuming the screen in the XY plane, both are based on the identification of the z-
coordinate of the elements in the geometry to finally project the nearest parts of the objects. 
Another method is the Binary Space Partitioning (BSP) (Fuch et al. 1980; Gordon & Chen, 
1991) which recursively divides the space into front and back semi-spaces, creating a binary 
tree at the same time. Afterwards, and in accordance with the target direction, the tree is 
walked and a priority list of the facets can be built.  
Most of the techniques to solve the visibility problem are thought to project an image onto a 
display unit, so the algorithm itself has not better resolution than the pixel size. Therefore, 
an error is introduced, although almost imperceptible to the human eye. In order to 
overcome it, solutions where no approximations are made can be implemented. For 
example, in the Trimming method (Meana et al., 2009) when a piece of surface is partially 
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occluded by other one, only the region in shadow is trimmed and removed from the original 
geometry. At the end, the remaining surface is the exact part that can be seen from a specific 
point of view. This type of algorithms is very time consuming but its precision counteracts 
this disadvantage. 
To speed up the computation of the existing techniques, some modifications in the phase of 
preprocessing can be inserted. One option to carry out this is to split the scenario into 
parallelepipedic or conic macrodomains. Then the facets are classified in one or other 
macrodomain depending on their position. As a consequence, a preliminary discrimination 
is accomplished by blocks, so the facets are discarded faster. In this category, the Angular Z-
buffer (AZB) (Cátedra et al., 1998) or the Space Volumetric Partitioning (SVP) (Cátedra & 
Arriaga, 1999) is included.    
Additional acceleration can be achieved when the same algorithms are developed in 
Graphic Processing Units (GPUs) instead of Central Process Units (CPUs) (Ricks & Kuhlen, 
2010). Fortunately, this is not restricted to visibility algorithms but it is suitable for all kind 
of algorithms consisting of loops, matrix operations, etc. As a consequence, generic GPUs 
are being extensively utilised to run the codes with smaller costs in comparison with CPU 
parallelisation. Even more, thanks to the use of libraries, e.g. DirectX or OpenGL (Shreiner, 
2004) or the interaction between Matlab® and the graphic cards by means of the free plug-in 
by Nvidia® or Jacket by AccelerEyes®, the implementation of the routines turns into less 
complex programming. 
In the following section the Pyramid method (Meana et al., 2009) is described due to its 
suitability to deal with flat triangular facets. Briefly, a right pyramid is built so that its vertex 
coincides with the source point. The i-th wall is the plane containing the source point and 
the i-th edge of the facet under test. Thus, a point behind this facet and inside the walls of 
the pyramid is occluded. This is a fast operation that is accomplished by substituting the 
coordinates of the observation point in the equation of the plane for all the walls.  

4.1 Pyramid method 
The scenario consists of N  facets which have been sorted by their distance from the source 
point s


 to their barycentres, so the closest facet, denoted by 1F , is always seen. Additionally, 

the origin of the coordinate system has been moved to the coordinates of s


. 
In order to know whether a facet jF  occludes a generic point in the geometry P


, the plane 

in which jF   is contained is defined:  

   0ˆ x y z 0jjn P  


 (35) 

where ˆ jn  is the unit outward normal vector and 0
jP


 is the barycentre of jF . Similarly, the 
three planes containing one of the edges of the jF  and s


 are written as:  
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j j

j j
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  
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1 3
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j j

j j

V V
P

V V


 



  
   (36) 

with j
iV


 being the position vector of the i-th vertex ( i 1,2,3 ) of jF . These planes constitute 
the walls of the pyramid whose base is the facet under test. There are two conditions to 
conclude that P


 can not be seen from the source point: 
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Fig. 8. Pyramid method. In the image, a projection plane in light yellow has been selected in 
order to clearly remark that the facet jF  occludes the observation point 1P


. On the other 

hand, 2P


 has line of sight with the source s


. 

 P


 is behind the plane in Eq. (35) 

  0ˆ 0jjn P P  
 

 (37) 

 P


 is inside the three walls. An easy way to compute this is: 

 
3

i 1 i

i 1 i 1 i

sign 3
j j

j j

V V
P

V V



 

 
   
  


  
   (38) 

where 4 1
j jV V
 

 and the vertices are supposed to be in clockwise or counterclockwise order. 
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The algorithm determines the occlusion of points by a triangular facet as depicted in Fig. 8 , 
but the Pyramid method can be applied to determine the existence of line of sight among 
facets. The process to perform this is based on simplifying the representation of the triangles 
choosing some important points like the barycentre, vertices, inner points and executing the 
algorithm for them. 
Even though the expressions have been particularised for the case of triangular facets, the 
implementation can be accomplished for any polygon by including additional walls in the 
pyramid and substituting the upper limit of the summatory in Eq. (38). 
A quite similar algorithm to the Pyramid method is the Cone method (Meana et al., 2009), 
but a right cone is defined instead of a right pyramid. Its radius is a mean value of the 
distances from the barycentre of the facet under test to each of its vertices. Analogically, any 
point behind that facet and inside the cone is occluded. This is a faster algorithm because 
only one operation comparing the cone angle and the angle between the observation point 
and the axis of the cone is carried out. On the other hand, the exactness diminishes.  

5. Application examples 

The scope of application of the Modified Equivalent Current Approximation comprises all 
the problems which have been analysed by means of the Physical Optics traditionally, but 
also the extension to dielectric and lossy materials. In the following paragraphs some of 
these fields where MECA could be employed are summarised.  
The RCS computation is one of the most cited topics in the literature: from canonical 
geometries (e.g. spheres, flat plates and dihedrals) (Griesser & Balanis, 1987; Ross, 1966) for 
contrasting and validating results to electrically large random surfaces and complex targets 
(ships or airplanes) (Adana et al., 2000; Uluisik et al., 2008) with a remarkable decrease in the 
computational time in comparison to full wave techniques. The consideration of absorbing 
materials allows studying the reduction in the radar signature of aircrafts or missiles. 
In order to deal with more realistic scenarios in the RCS computation, the analysis of open-
ended cavities including reflections and resonances (Burkholder & Lundin, 2005) is also a 
line of investigation MECA can face. Likewise, MECA has proven a good accuracy when 
dealing with electrically large rough surfaces (Meana et al., 2010) that can model the sea 
surface or the orography of a rural environment. Therefore, the evaluation of the 
electromagnetic levels for RCS or other applications can consider not only the target itself 
but also its surroundings.   
Another field of application is the design of reflector antennas (Boag & Letrou, 2003; 
Lorenzo et al., 2005) with or without dielectric radomes because of their electric size. They 
are usually fed by an array of antennas whose radiation pattern is determined to compute 
the equivalent current densities and to calculate the fields at distances much larger than the 
wavelength afterwards.  
On the other hand, the Physical Optics approximation and its extensions can also provide 
some reference values to validate new algorithms or the results by some imaging or shape 
reconstruction techniques (Saeedfar & Barkeshli, 2006). Due to the fact that the illuminating 
sources are known a priori, the simulation of a set of constitutive parameters and the shape 
of the objects can be tackled in a fast manner.   
Although the high frequency techniques have lost relevance in the recent years due to the 
Fast Multipole Method (FMM) –developed by Rohklin in the field of acoustic dispersion 
(Rohklin, 1985; Rohklin, 1990) and then extended to electromagnetic dispersion (Engheta et 
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al., 1992) – in joint with multilevel schemes and other acceleration methodologies, the 
advances in the terahertz band will become notable again in the foreseeable future. This 
means similar applications but working at higher frequencies where the wavelength is 
smaller than 1 mm and, as a consequence, most of the obstacles and objects is electrically 
large. Some papers have already proven the validity of the asymptotic approximations at 
these frequencies.  
In addition to the previously enumerated fields of application of the MECA method and in 
spite of the typical employment of Ray Tracing and Launching in joint with empirical 
models to deal with the radioelectric coverage evaluation (Papkelis et al., 2007), this problem 
must be added to that list. The reason is that it fulfils all the requisites detailed through this 
chapter. In the next section an application example will be shown.   
 
 

 
Fig. 9. Rural environment for evaluating the radioelectric coverage. The scenario is 17 km 
long by 10 km width and the 13 base stations have been depicted in red at their real 
emplacements. 

5.1 Radioelectric coverage 
Network planning and optimization in rural and urban environments can be studied for 
different radiocommunication systems (Global System for Mobile Communications –GSM –, 
Universal Mobile Telecommunications System –UMTS – or radio and television broadcasting). 
This example focuses on the radioelectric coverage evaluation of the General Packet Radio 
Service –GPRS – at the working frequency of 1800 MHz, where the scenario consists of a 
rural terrain of 17 km long by 10 km wide with a uniform soil characterization, r 3  , 

r 1  , 0.001 S/m  . Some relevant information about the scenario is that is mainly 

compound of mountains and valleys where there are not big villages. Thus, regions with no 
coverage are expected there while, on the other hand, a town on the right and a freeway at 
the bottom of the map suggest a better coverage in these areas.  
The radio electric stations are located at their real emplacements (see Fig. 10) simulating 
their electromagnetic behaviour based on the available data, such as configuration 
parameters (e.g. power, gain), provided by the telecommunications company. As a 
consequence, the radiation patterns were synthesised assuming a dipole array with a 
different number of elements for every different antenna. Once the illumination from the 
sources is explicitly determined, the MECA equivalent current densities are computed and 
the electromagnetic field levels are calculated. 
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The power density at the observation points situated at 1.5 metres above the terrain is 
represented in Fig. 10. A threshold has been obtained by taking into account the sensibility 
of the receivers, so that the minimum in the colorbar has been fixed in a lower value. This 
means that any region in dark blue can not initiate or maintain a communication with the 
base station. In order to improve the coverage in specific zones, new base stations could be 
added and a fast evaluation can be accomplished by computing only the direct illumination 
due to those stations.   
 

 
Fig. 10. Power density in dBW/m2 for the rural scenario with MECA. The electromagnetic 
field levels have been evaluated for a penetrable characterization of the terrain given by 

r 3  , r 1  , 0.001 S/m  . 

6. Conclusion 

In this chapter “High frequency techniques: the Physical Optics approximation and the Modified 
Equivalent Current Approximation (MECA)” the whole process to compute electromagnetic 
field levels based on the high frequency technique Modified Equivalent Current 
Approximation has been presented. MECA is an extension of the Physical Optics 
formulation for penetrable and non-metallic objects based on the equivalence principle, so 
not only electric but also magnetic equivalent current densities are taken into account for 
dielectric and lossy materials. 
One of the most relevant features of MECA is that the reflection coefficients are calculated 
from the general dispersion relation for the transversal electric and transversal magnetic 
components independently. Therefore any conductivity and relative permittivity and 
permeability are allowed.  Then, they are inserted in the corresponding TE/TM analysis 
which was shown in Fig. 2 and Fig. 3, to be finally combined in order to obtain the MECA 
equivalent current densities. With the objective of determining the electromagnetic fields at 
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the observation points analytically, the incident wave is supposed to be a plane wave which 
impinges on the surface and generates a current density distribution with constant 
amplitude and linear phase variation. Assuming a flat triangular facet, the radiation integral 
can be solved by parts. 
The good behaviour was proven in the validation examples, where the results from the 
frequency sweep in the high frequency region agreed the theoretical values. Likewise, an 
excellent overlapping was obtained for different angles of incidence when dealing with a 
non-PEC electrically large surface.  
Because one of the constraints to employ PO and MECA is the determination of line of sight 
between the source and the observation points, some algorithms to solve the visibility 
problem were described. The classic methods are complemented by acceleration techniques 
and then, they are translated into the GPU programming languages. The Pyramid method 
was explained as an example of fast algorithm which was specifically developed for 
evaluating the occlusion by flat facets. Undoubtedly, this can be employed in joint with the  
MECA formulation, but the Pyramid method can also be helpful in other disciplines of 
engineering. 
Throughout the section “Application examples”, the way MECA becomes a powerful and 
efficient method to tackle different scattering problems for electrically large scenarios was 
satisfactorily demonstrated by means of the example consisting in the evaluation of the 
radio electric coverage in a rural environment. In addition to this, other fields of application 
were suggested from the RCS computation to imaging techniques, covering a wide range of 
electromagnetic problems.  
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