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1. Introduction 

Let us consider the interface S between two media having different electrophysical 
properties. On each of its side the magnetic-field and magnetic-inductance vectors as well as 
the electric-field and electric-displacement vectors are finite and continuous; however, at the 
surface S they can experience a discontinuity of the first kind. Furthermore, at the interface 
there arise induced surface charges ǔ and surface currents i (whose vectors lie in the plane 
tangential to the surface S) under the action of an external electric field. 
The existence of a surface charge at the interface S between the two media having different 
electrophysical properties is clearly demonstrated by the following example. We will consider 
the traverse of a direct current through a flat capacitor filled with two dielectric materials 
having relative permittivities ε1 and ε2 and electrical conductivities ǌ1 and ǌ2. A direct-current 
voltage U is applied to the capacitor plates; the total resistance of the capacitor is R (Fig. 1). It is 
necessary to calculate the surface electric charge induced by the electric current. 
From the electric-charge conservation law follows the constancy of flow in a circuit; 
therefore, the following equation is fulfilled: 

 
 

1 21 2 /n nE E U RS  
 (1) 

where 
1nE and 

2nE  are the normal components of the electric-field vector. 
At the interface between the dielectrics, the normal components of the electric-inductance 

vector change spasmodically under the action of the electric field by a value equal to the 

value of the induced surface charge ǔ: 
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 1 20 1 0 2n nE E     
 (2) 

 

 

Fig. 1. Dielectric media inside a flat capacitor 

Solving the system of Eqs. (see Equations 1 and 2), we obtain the expression for ǔ 

      0 1 1 2 2/ / /U RS           (3) 

It follows from (see Equation 3) that the charge ǔ is determined by the current and the 

multiplier accounting for the properties of the medium. If 

    1 1 2 2/ / 0      (4) 

a surface charge ǔ is not formed. What is more, recent trends are toward increased use of 

micromachines and engines made from plastic materials, where the appearance of a surface 

charge is undesirable. For oiling of elements of such machines, it is best to use an oil with a 

permittivity oil satisfying the relation 

 1 2oil     (5) 

This oil makes it possible to decrease the electrization of the moving machine parts made 

from dielectric materials. In addition to the charge ǔ, a contact potential difference arises 

always independently of the current. 

An electric field interacting with a material is investigated with the use of the Maxwell 
equation (1857) 

 
,total     j H D

 (6) 

 , 0
t


     

B

E B  (7) 

where 0 0; ;total
t

  
   


D

j E B H D E . In this case, at the interface S the above system of 

equations is supplemented with the boundary conditions (Monzon, I.; Yonte,T.; Sanchez-

Soto, L., 2003; Eremin,Y. & Wriedt,T., 2002) 
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1 2n nD D    (8) 

 
1 2

0E E    (9) 

 
1 2

0n nB B   (10) 

 
1 2      H H i n

   (11) 

The indices (subscripts) n and Ǖ denote the normal and tangential components of the vectors 
to the surface S, and the indices 1 and 2 denote the adjacent media with different 
electrophysical properties. The index Ǖ denotes any direction tangential to the discontinuity 
surface. At the same time, a closing relation is absent for the induced surface charge ǔ, 
which generates a need for the introduction of an impedance matrix (Wei Hu & Hong Guo, 
2002; Danae, D. et al., 2002; Larruquert, J. I., 2001; Koludzija, B. M., 1999; Ehlers, R. A. & 
Metaxas, A. C., 2003) that is determined experimentally or, in some cases, theoretically from 
quantum representations (Barta, O.; Pistora, I.; Vesec, I. et al., 2001; Broe, I. & Keller, O., 
2002; Keller, 1995; Keller, O., 1995; Keller, O., 1997). 
The induced surface charge ǔ not only characterizes the properties of a surface, but also 
represents a function of the process, i.e., ǔ(E(∂E/∂t, H(∂H/∂t))); therefore, the surface 
impedances (Wei Hu & Hong Guo, 2002; Danae, D. et al., 2002; Larruquert, J. I., 2001; 
Koludzija, B. M., 1999; Ehlers, R. A. & Metaxas, A. C., 2003) are true for the conditions under 
which they are determined. These impedances cannot be used in experiments conducted 
under other experimental conditions. 
The problem of determination of surface charge and surface current on metal-electrolyte 

boundaries becomes even more complicated in investigating and modeling nonstationary 

electrochemical processes, e.g., pulse electrolysis, when lumped parameters L, C, and R 

cannot be used in principle. 

We will show that ǔ can be calculated using the Maxwell phenomenological macroscopic 
electromagnetic equations and the electric-charge conservation law accounting for the 
special features of the interface between the adjacent media. 

Separate consideration will be given to ion conductors. In constructing a 

physicomathematical model, we take into account that E


 and H


 are not independent 

functions; therefore, the wave equation for E


 or H


 is more preferable than the system of 

equations (see Equations 6 and 7). 

2. Electron conductors. New closing relations on the boundaries of adjacent 
media 

2.1 Generalized wave equation for E


 and conditions on the boundaries in the 
presence of strong discontinuities of the electromagnetic field 
2.1.1 Physicomathematical model 
We will formulate a physicomathematical model of propagation of an electromagnetic field 

in a heterogeneous medium. Let us multiply the left and right sides of the equation for the 

total current (see Equation 6) by ǍǍ0 and differentiate it with respect to time. Acting by the 

operator rot on the left and right sides of the first equation of Eq. (see Equation 7) on 

condition that Ǎ=const we obtain 
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  2

0 0

1 1total grad div
t  


  


j

E E  (12) 

In Cartesian coordinates, Eq. (see Equation 12) will take the form 

 
2 2 2

2 2 2
0 0

1 1 ytotalx x x x x z
EE E E E E

t x x y zx y z 

        
                   

j  (13) 

 
2 2 2

2 2 2
0 0

1 1totaly y y y yx z
E E E EE E

t y x y zx y z 

                         

j
 (14) 

 
2 2 2

2 2 2
0 0

1 1 ytotalz z z z x z
EE E E E E

t z x y zx y z 

        
                   

j  (15) 

At the interface, the following relation (Eremin,Y. & Wriedt,T., 2002) is also true: 

 
1 2qx qxdiv I I

t



   


i  (16) 

Let us write conditions (see Equations 8–11) in the Cartesian coordinate system: 

 
1 2x xD D    (17) 

 
1 2

0y yE E   (18) 

 1 2
0z zE E 

 (19) 

 1 2
0x xB B 

 (20) 

 
1 2y y zH H i   (21) 

 
1 2z z yH H i   (22) 

where iǕ = iyj + izk is the surface-current density, and the coordinate x is directed along the 

normal to the interface. The densities iy and iz of the surface currents represent the electric 

charge carried in unit time by a segment of unit length positioned on the surface drawing 

the current perpendicularly to its direction. 

The order of the system of differential equations (see Equations 13–15) is equal to 18. 

Therefore, at the interface S, it is necessary to set, by and large, nine boundary conditions. 

Moreover, the three additional conditions (see Equation 17, 21, and 22) containing (prior to 

the solution) unknown quantities should be fulfilled at this interface. Consequently, the total 

number of conjugation conditions at the boundary S should be equal to 12 for a correct 

solution of the problem. 

Differentiating expression (see Equation 17) with respect to time and using relation (see 

Equation 16), we obtain the following condition for the normal components of the total 

current at the medium-medium interface: 
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1 2totalx totalxdiv   i j j  (23) 

 

that allows one to disregard the surface charge ǔ. Let us introduce the arbitrary function f: 

  1 20 0x xx
f f f     

  . In this case, expression (see Equation 23) will take the form 

 
1

0totalx
x

div  
   i j  (24) 

 

It is assumed that, at the medium-medium interface, Ex is a continuous function of y and z. 

Then, differentiating Eq. (see Equation 23) with respect to y and z, we obtain 

 
 

1totalx

x

div

y y





  
    

i
j  (25) 

 
 

1totalx

x

div

z z





      

i
j  (26) 

 

Let us differentiate conditions (see Equations 20–22) for the magnetic induction and the 

magnetic-field strength with respect to time. On condition that B=ǍǍ0H 

 
0 0

1 1
0, ,

y yx z z

x xx

B iB i B

t t t t t 
  

                      
 (27) 

 

Using Eq. (see Equation 7) and expressing (see Equation 27) in terms of projections of the 

electric-field rotor, we obtain 

 
  0x x
rot


E  and 0

yz

x

EE

y z


 
    

 (28) 

 
0

1 z
y

x

i
rot

t





  
   

E  or 
0

1 x z z

x

E E i

z x t





           
 (29) 

 
0

1 z
z

x

i
rot

t





  
   

E  or 
0

1 y x z

x

E E i

x y t





   
         

 (30) 

 

Here, Eq. (see Equation 28) is the normal projection of the electric-field rotor, Eq. (see 

Equation 29) is the tangential projection of the rotor on y, and Eq. (see Equation 30) is the 

rotor projection on z. 

Assuming that Ey and Ez are continuous differentiable functions of the coordinates y and z, 

from conditions (see Equations 18 and 19) we find 
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 `

0, 0

0, 0

y y

x x

z z

xx

E E

y z

E E

y z

 



 



    
        

          

 (31) 

In accordance with the condition that the tangential projections of the electric field on z and 
y are equal and in accordance with conditions (see Equations 18 and 19), the expressions for 
the densities of the surface currents iz and iy take the form 

 ,z z y yx x
i E i E

 
 

 
   (32) 

where 

  1 2

1

2 x 
  


   (33) 

is the average value of the electrical conductivity at the interface between the adjacent media 
in accordance with the Dirichlet theorem for a piecewise-smooth, piecewise-differentiable 
function. 
Consequently, formulas (see Equations 31–33) yield 

 0
x

divi 
   


 (34a) 

Relation (see Equation 34) and hence the equality of the normal components of the total 

current were obtained (in a different manner) by G.A. Grinberg and V.A. Fok (Grinberg, 

G.A. & Fok, V.A., 1948). In this work, it has been shown that condition (34a) leads to the 

equality of the derivatives of the electric field strength along the normal to the surface 

 0x

x

E

x 

    
 (34b) 

With allowance for the foregoing we have twelve conditions at the interface between the 
adjacent media that are necessary for solving the complete system of equations (see 
Equations 13–15): 
a. the functions Ey and Ez are determined from Eqs. (see Equations 18 and 19); 
b. Ex is determined from condition (see Equation 24); 
c. the values of ∂Ex⁄∂y, ∂Ex⁄∂z, and ∂Ex⁄∂x are determined from relations (see Equations 25 

and 26) with the use of the condition of continuity of the total-current normal 
component at the interface (see Equation 24) and the continuity of the derivative of the 
total current with respect to the coordinate x; 

d. the values of ∂Ey⁄∂y, ∂Ey⁄∂z, and ∂Ez⁄∂z are determined from conditions (see Equations 31 
and 32) in consequence of the continuity of the tangential components of the electric 
field along y and z; 

e. the derivatives ∂Ey⁄∂x and ∂Ez⁄∂x are determined from conditions (see Equations 29 and 
30) as a consequence of the equality of the tangential components of the electric-field 
rotor along y and z. 
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Note that condition (see Equation 23) was used by us in (Grinchik, N. N. & Dostanko, A. P., 
2005) in the numerical simulation of the pulsed electrochemical processes in the one-
dimensional case. Condition (see Equation 28) for the normal component of the electric-field 
rotor represents a linear combination of conditions (see Equations 31 and 32); therefore, rotxE = 
0 and there is no need to use it in the subsequent discussion. The specificity of the expression 
for the general law of electric-charge conservation at the interface is that the components ∂Ey⁄∂y 
and ∂Ez⁄∂z are determined from conditions (see Equations 31 and 32) that follow from the 
equality and continuity of the tangential components Ey and Ez at the boundary S. 
Thus, at the interface between the adjacent media the following conditions are fulfilled: the 
equality of the total-current normal components; the equality of the tangential projections of 
the electric-field rotor; the electric-charge conservation law; the equality of the electric-field 
tangential components and their derivatives in the tangential direction; the equality of the 
derivatives of the total-current normal components in the direction tangential to the 
interface between the adjacent media, determined with account for the surface currents and 
without explicit introduction of a surface charge. They are true at each cross section of the 
sample being investigated. 

2.1.2 Features of calculation of the propagation of electromagnetic waves in layered 
media 
The electromagnetic effects arising at the interface between different media under the action 
of plane electromagnetic waves have a profound impact on the equipment because all real 
devices are bounded by the surfaces and are inhomogeneous in space. At the same time, the 
study of the propagation of waves in layered conducting media and, according to (Born, 
1970), in thin films is reduced to the calculation of the reflection and transmission 
coefficients; the function E(x) is not determined in the thickness of a film, i.e., the 
geometrical-optics approximation is used. 
The physicomathematical model proposed allows one to investigate the propagation of an 
electromagnetic wave in a layered medium without recourse to the assumptions used in 
(Wei Hu & Hong Guo, 2002; Danae, D. et al., 2002; Larruquert, J. I., 2001; Ehlers, R. A. & 
Metaxas, A. C., 2003). 
Since conditions (see Equations 23-32) are true at each cross section of a layered medium, we 
will use schemes of through counting without an explicit definition of the interface between 
the media. In this case, it is proposed to calculate Ex at the interface in the following way. 
In accordance with Eq. (see Equation 17), Ex1≠Ex2, i.e., Ex(x) experiences a discontinuity of the 

first kind. Let us determine the strength of the electric field at the discontinuity point x = ξ 
on condition that Ex(x) is a piecewise-smooth, piecewise-differentiable function having finite 

one-sided derivatives ( )
x

E x  and ( )
x

E x . At the discontinuity points xi, 

    
0

0
( ) lim

i

i i i
ix x

i

E x x E x
E x

x


 

   
 


 (35) 

    
0

0
( ) lim

i

i i i
ix x

i

E x x E x
E x

x


 

   
 


 (36) 

In this case, in accordance with the Dirichlet theorem (Kudryavtsev, 1970), the Fourier series 
of the function E(x) at each point x, including the discontinuity point ξ, converges and its 
sum is equal to 
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    1
0 0

2
xE E E           (37) 

The Dirichlet condition (see Equation 37) also has a physical meaning. In the case of contact of 
two solid conductors, e.g., dielectrics or electrolytes in different combinations (metal-
electrolyte, dielectric-electrolyte, metal-vacuum, and so on), at the interface between the 
adjacent media there always arises an electric double layer (EDL) with an unknown (as a rule) 
structure that, however, substantially influences the electrokinetic effects, the rate of the 
electrochemical processes, and so on. It is significant that, in reality, the electrophysical 
characteristics ǌ, ε, and E(x) change uninterruptedly in the electric double layer; therefore, (see 
Equation 37) is true for the case where the thickness of the electric double layer, i.e., the 
thickness of the interphase boundary, is much smaller than the characteristic size of a 
homogeneous medium. In a composite, e.g., in a metal with embedments of dielectric balls, 
where the concentration of both components is fairly large and their characteristic sizes are 
small, the interphase boundaries can overlap and condition (see Equation 37) can break down. 
If the thickness of the electric double layer is much smaller than the characteristic size L of an 
object, (see Equation 37) also follows from the condition that E(x) changes linearly in the EDL 
region. In reality, the thickness of the electric double layer depends on the kind of contacting 
materials and can comprise several tens of angstroms (Frumkin, 1987). In accordance with the 
modern views, the outer coat of the electric double layer consists of two parts, the first of 
which is formed by the ions immediately attracted to the surface of the metal (a "dense" or a 
"Helmholtz" layer of thickness h), and the second is formed by the ions separated by distances 
larger than the ion radius from the surface of the layer, and the number of these ions decreases 
as the distance between them and the interface (the "diffusion layer") increases. The 
distribution of the potential in the dense and diffusion parts of the electric double layer is 
exponential in actual practice (Frumkin, 1987), i.e., the condition that E(x) changes linearly 
breaks down; in this case, the sum of the charges of the dense and diffusion parts of the outer 
coat of the electric double layer is equal to the charge of its inner coat (the metal surface). 
However, if the thickness of the electric double layer h is much smaller than the characteristic 
size of an object, the expansion of E(x) into a power series is valid and one can restrict oneself 
to the consideration of a linear approximation. In accordance with the more general Dirichlet 
theorem (1829), a knowledge of this function in the EDL region is not necessary to substantiate 
Eq. (see Equation 37). Nonetheless, the above-indicated physical features of the electric double 
layer lend support to the validity of condition (see Equation 37). 
The condition at interfaces, analogous to Eq. (see Equation 37), has been obtain earlier 

(Tikhonov, A. N. & Samarskii, A. A., 1977) for the potential field (where rot E = 0) on the 

basis of introduction of the surface potential, the use of the Green formula, and the 

consideration of the discontinuity of the potential of the double layer. In (Tikhonov, A. N. & 

Samarskii, A. A., 1977), it is also noted that the consideration of the thickness of the double 

layer and the change in its potential at h/L≪1 makes no sense in general; therefore, it is 

advantageous to consider, instead of the volume potential, the surface potential of any 

density. Condition (see Equation 37) can be obtained, as was shown in (Kudryavtsev, 1970), 

from the more general Dirichlet theorem for a nonpotential vorticity field (Tikhonov, A. N. 

& Samarskii, A. A., 1977). 

Thus, the foregoing and the validity of conditions (see Equations 17-19 and 25-.32) at each 
cross section of a layered medium show that, for numerical solution of the problem being 
considered it is advantageous to use schemes of through counting and make the 
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discretization of the medium in such a way that the boundaries of the layers have common 
points. 
The medium was divided into finite elements so that the nodes of a finite-element grid, 
lying on the separation surface between the media with different electrophysical properties, 
were shared by these media at a time. In this case, the total currents or the current flows at 
the interface should be equal if the Dirichlet condition (see Equation 37) is fulfilled. 

2.1.3 Results of numerical simulation of the propagation of electromagnetic waves in 
layered media 
Let us analyze the propagation of an electromagnetic wave through a layered medium that 
consists of several layers with different electrophysical properties in the case where an 
electromagnetic-radiation source is positioned on the upper plane of the medium. It is 
assumed that the normal component of the electric-field vector Ex = 0 and its tangential 
component Ey = a sin (ωt), where a is the electromagnetic-wave amplitude (Fig. 2). 
In this example, for the purpose of correct specification of the conditions at the lower 
boundary of the medium, an additional layer is introduced downstream of layer 6; this layer 
has a larger conductivity and, therefore, the electromagnetic wave is damped out rapidly in 
it. In this case, the condition Ey = Ez = 0 can be set at the lower boundary of the medium. The 
above manipulations were made to limit the size of the medium being considered because, 
in the general case, the electromagnetic wave is attenuated completely at an infinite distance 
from the electromagnetic-radiation source. 
Numerical calculations of the propagation of an electromagnetic wave in the layered 

medium with electrophysical parameters ε1 = ε2 = 1, ǌ1 = 100, ǌ2 = 1000, and Ǎ1 = Ǎ2 = 1 were 

carried out. Two values of the cyclic frequency ω = 2Ǒ/T were used: in the first case, the 

electromagnetic-wave frequency was assumed to be equal to ω = 1014 Hz (infrared 

radiation), and, in the second case, the cyclic frequency was taken to be ω = 109 Hz 

(radiofrequency radiation). 

 

 

Fig. 2. Scheme of a layered medium: layers 1, 3, and 5 are characterized by the 
electrophysical parameters ε1, ǌ1, and Ǎ1, and layers 2, 4, and 6 — by ε2, ǌ2, Ǎ2. 

As a result of the numerical solution of the system of equations (see Equations 13–15) with 
the use of conditions S (see Equations 24-34) at the interfaces, we obtained the time 
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dependences of the electric-field strength at different distances from the surface of the 
layered medium (Fig. 3). 
 

 

Fig. 3. Time change in the tangential component of the electric-field strength at a distance of 
1 Ǎm (1), 5 Ǎm (2), and 10 Ǎm (3) from the surface of the medium at ǌ 1 = 100, ǌ 2 = 1000, ε1 = 
ε 2 = 1, Ǎ1 = Ǎ2 = 1, and ω = 1014 Hz. t, sec. 

The results of our simulation (Fig. 4) have shown that a high-frequency electromagnetic 
wave propagating in a layered medium is damped out rapidly, whereas a low-frequency 
electromagnetic wave penetrates into such a medium to a greater depth. The model 
developed was also used for calculating the propagation of a modulated signal of frequency 
20 kHz in a layered medium. As a result of our simulation (Fig. 5), we obtained changes in 
the electric-field strength at different depths of the layered medium, which points to the fact 
that the model proposed can be used to advantage for calculating the propagation of 
polyharmonic waves in layered media; such a calculation cannot be performed on the basis 
of the Helmholtz equation. 
 

 

Fig. 4. Distribution of the amplitude of the electric-field-strength at the cross section of the 
layered medium: ω = 1014 (1) and 109 Hz (2). y, Ǎm. 
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Fig. 5. Time change in the electric-field strength at a distance of 1 (1), 5 (2), and 10 Ǎm (3) 
from the surface of the medium. t, sec. 

The physicomathematical model developed can also be used to advantage for simulation of 
the propagation of electromagnetic waves in media with complex geometric parameters and 
large discontinuities of the electromagnetic field (Fig. 6). 
 
 

 
 

(a) Distribution of the amplitude of the electric-
field strength in the two-dimensional medium 

(b) Distribution of the amplitude of the 
electric-field strength in depth 

Fig. 6. Distribution of the amplitude of the electric-field strength in the two-dimensional 
medium and in depth at ε1 = 15, ε2 = 20, ǌ1 = 10-6, ǌ2 = 10, Ǎ1 = Ǎ2 = 1, and ω= 109 Hz (the dark 
background denotes medium 1, and the light background – medium 2). x, y, mm; E, V/m. 

www.intechopen.com



 
Electromagnetic Waves Propagation in Complex Matter 

 

36

Figure 6a shows the cross-sectional view of a cellular structure representing a set  
of parallelepipeds with different cross sections in the form of squares. The parameters 
of the materials in the large parallelepiped are denoted by index 1, and the parameters of 
the materials in the small parallelepipeds (the squares in the figure) are denoted by 
index 2. 
An electromagnetic wave propagates in the parallelepipeds (channels) in the transverse 

direction. It is seen from Fig. 6b that, in the cellular structure there are "silence regions," 

where the amplitude of the electromagnetic-wave strength is close to zero, as well as inner 

regions where the signal has a marked value downstream of the "silence" zone formed as a 

result of the interference. 

2.1.4 Results of numerical simulation of the scattering of electromagnetic waves in 
angular structures 
It is radiolocation and radio-communication problems that are among the main challenges 
in the set of problems solved using radio-engineering devices. 
Knowledge of the space-time characteristics of diffraction fields of electromagnetic waves 

scattered by an object of location into the environment is necessary for solving successfully 

any radiolocation problem. Irradiated object have a very intricate architecture and geometric 

shape of the surface consisting of smooth portions and numerous wedge-shaped for 

formations of different type-angular joints of smooth portions, surface fractures, sharp 

edges, etc. – with rounded radii much smaller than the probing-signal wavelength. 

Therefore, solution of radiolocation problems requires that the methods of calculation of the 

diffraction fields of electromagnetic waves excited and scattered by different surface 

portions of the objects, in particular, by wedge-shaped formations, be known, since the latter 

are among the main sources of scattered waves. 

For another topical problem, i.e., radio communication effected between objects, the most 

difficult are the issues of designing of antennas arranged on an object, since their 

operating efficiency is closely related to the geometric and radiophysical properties of its 

surface. 

The issues of diffraction of an electromagnetic wave in wedge-shaped regions are the focus 

of numerous of the problems for a perfectly conducting and impedance wedge for 

monochromatic waves is representation of the diffraction field in an angular region in the 

form of a Sommerfeld integral (Kryachko, A.F. et al., 2009). 

Substitution of Sommerfeld integrals into the system of boundary conditions gives a 

system of recurrence functional equations for unknown analytical integrands. The 

system’s coefficients are Fresnel coefficients defining the reflection of plane media or their 

refraction into the opposite medium. From the system of functional equations, one 

determines, in a recurrence manner, sequences of integrand poles and residues in these 

poles. 

The edge diffraction field in both media is determined using a pair of Fredholm- 

type singular integral equations of the second kind which are obtained from the  

above-indicated systems of functional equations with subsequent computation of 

Sommerfeld integrals by the saddle-point approximation. The branching points of the 

integrands condition the presence of creeping waves excited by the edge of the dielectric 

wedge. 
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The proposed method is only true of monochromatic waves and of the approximate 

Leontovich boundary conditions, when the field of the electromagnetic wave slowly varies 

from point to point on a wavelength scale (Leontovich, 1948). 

We note that the existing approximate Leontovich conditions have a number of other 

constants and should be used with caution (Leontovich, 1948). 

In actual fact, the proposed calculation method does not work in the presence of, e.g., two 

wedges, when the sharp angles are pointed at each other, i.e., an optical knife, or in 

diffraction of the electromagnetic wave on a system of parallel lobes, when the gap between 

the lobes is in the region of microns, and the electromagnetic field is strongly “cut” 

throughout the space with a step much than the wavelength. 

A) Optical Knife 

Figure 7 shows the field of an electromagnetic wave in its diffraction on the optical knife. 

The parameters of the wave at entry and at exit are Ex=104sin(1010t), Ey=104cos (1010t).  

The electrophysical characteristics are as follows: the wedge is manufactured from 

aluminum: ε=1; Ǎ=1; ǔ=3.774·107 S/m; the ambient medium is air. 

The dimensions of the computational domain are 0.1×0.05 m. The calculation time 10-9 sec, 

and the time step is 10-11 sec. 

Numerical solution of the system of equations (13)-(15) yields the dependences of the 
distribution Ex (x,y) и Ey (x,y) on the optical knife. The calculations results are in good 
agreement with the existing experimental data and experiments specially conducted at the 
Department of the Physics and Chemistry of Nonequilibrium Media of the A.V. Luikov 
Heat and Mass Transfer Institute of the National Academy of Sciences by A.I. Bereznyak. 
The experiments were carried out with an optical-range laser and were tentative in character 

but the obtained experimental photographs of diffraction fields and the calculated results 

turned out to be in good qualitative agreement. The authors express their thanks to A.I. 

Bereznyak for the conducting of the experiments. 

B) Diffraction Grating 

The parameters of the wave and the interfacial conditions are the same, as those for the case 
“optical knife”. The electrophysical characteristics are as follows: 2D lobes, ε=12; and ǔ=100 
S/m; the ambient medium is air; the characteristics of the prism and the square are identical 
to those of the lobes. 
Figure 8 corresponds to a calculation time of 10-10 sec; the time step is 10-12 sec. Figure 9 

corresponds to a calculation time of 10-9 sec; the time step is 10-11 sec. 

It is seen from the modeling results that the proposed “comb” cab be used as a filter of a 

high-frequency signal. Furthermore, we carried out numerical calculations of a modulated 

signal at a frequency of 20 kHz. The results of the modulated-signal calculations are not 

given. To analyze the difference scheme for stability was analyzed by the initial data. When 

the time and space steps are large there appear oscillations of the grid solution and of its 

“derivatives” (“ripple”) which strongly decrease the accuracy of the scheme. Undoubtedly, 

this issue calls for separate consideration. The proposed algorithm of solution of Maxwell 

equations allows circuitry-engineering modeling of high-frequency radio-engineering 

devices and investigation of the propagation of electromagnetic waves in media of intricate 

geometry in the presence of strong discontinuities of electromagnetic field. 

The result of Para 2.1 were published in part (Grinchik, N.N et al., 2009). 
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(a) Mesh 

  
(b) Amplitude Ex (c) Amplitude Ex 

  
(d) Isolines Ex (e) Amplitude Ey 

  
(f) Amplitude Ey (g) Isolines Ey 

 

Fig. 7. Mesh, amplitude Ex  and isolines, amplitude Ey  and isolines of the electromagnetic 
field strength 

www.intechopen.com



Fundamental Problems of the Electrodynamics of Heterogeneous  
Media with Boundary Conditions Corresponding to the Total-Current Continuity 

 

39 

  

(a) Amplitude Ex (b) Isolines Ex 

  

(c) Amplitude Ey (d) Isolines Ey 

Fig. 8. Amplitude Ex and isolines, amplitude Ey and isolines of the electromagnetic field 
strength 

 

  

(a) Amplitude Ex (b) Isolines Ex 

  

(c) Amplitude Ey (d) Isolines Ey 

Fig. 9. Amplitude Ex and isolines, amplitude Ey and isolines of the electromagnetic field 
strength 
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2.1.5 Conclusions 
We were the first to construct a consistent physicomathematical model of propagation of 
electromagnetic waves in layered media without recourse to the matrices of the induced-
surface-charge impedances. This model is based on the Maxwell equations, the electric-
charge conservation law, the total-current continuity, and the Dirichlet theorem. Our 
numerical investigations have shown that the physical and mathematical model proposed 
can be used to advantage for simulation of the propagation of a high-frequency 
electromagnetic wave in a medium consisting of layers having different electrophysical 
properties. 

2.2 Wave equation for H


and conditions on the boundaries in the presence of strong 
discontinuities of the electromagnetic field. numerical modeling of electrodynamic 
processes in the surface layer 
2.2.1 Introduction 
During the interaction of an external magnetic field and magnetic abrasive particles, the 
particles are magnetized, and magnetic dipoles with the moment oriented predominantly 
along the field are formed. "Chains" along the force lines of the field (Shul’man, Z. P. & 
Kordonskii ,V. I., 1982; Khomich, 2006) appear that periodically act on the processable 
surface with a frequency ω=l/v. A fixed elemental area of the material periodically 
experiences the effect of the magnetic field of one direction. Actually, the frequency and 
duration of the pulse will be still higher because of the rotation of the magnetic abrasive 
particle due to the presence of the moment of forces on contact and of the friction of the 
particle against the processable part. In what follows, we will not take into account the effect 
of rotation. 
We assume that the particle velocity on the polisher is v. If the particle radius is r, then the 

angular frequency is ω=2Ǒv/r, and precisely this frequency determines the frequency of the 

effect of the variable magnetic field component due to the fact that for a ferromagnetic Ǎ>1. 

The magnetic permeability Ǎ of ferromagnetics, which are usually used in magnetic abrasive 

polishing, is measured by thousands of units in weak fields. However, in polishing, the 

constant external magnetic field is strong and amounts to 105-106 A/m, and in this case the 

value of Ǎ for compounds of iron and nickel and for Heusler alloy decreases substantially. 

Because of the presence of a strong external magnetic field H0 the "small" absolute value of Ǎ 

of an abrasive particle leads to a periodic "increase" and "decrease" in the normal component 

of the magnetic induction near the processable surface. In the present work we used 

neodymium magnets (neodymium-iron-boron) with H0>485,000 A/m. The magnetic 

permeability of a magnetic abrasive particle based on carbonyl iron was assumed in this 

case to be equal to Ǎ1=100. 

Due to the continuity of the normal magnetic induction component Bn1=Bn2, where 
Bn1=Ǎ1Ǎ0H1; Bn2=Ǎ2Ǎ0H2. For example, in glasses (Ǎ2=1; therefore at the boundary of contact 
of the glass with the magnetic abrasive particle an additional variable magnetic field of 
strength H1 > H0 appears. 
In (Levin, M. N. et al., 2003; Orlov, A. M. et al., 2001; Makara, V. A. et al., 2001; Rakomsin, 

2000), magnetic field-induced effects in silicon are considered: a nonmonotonic change in 

the crystal lattice parameters in the surface layer of silicon, the gettering of defects on the 

surface, the change in the sorption properties of the silicon surface, and the change in the 

mobility of the edge dislocations and in the microhardness of silicon. 
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In (Golovin, Yu. I. et al.; Makara ,V. A. et al., 2008; Orlov, A. M. et al., 2003), the influence of 

an electromagnetic field on the domain boundaries, plasticity, strengthening, and on the 

reduction of metals and alloys was established. 

In view of the foregoing, it is of interest to find the relationship between the discrete-

impulse actions of a magnetic field of one direction on the surface layer of the processable 

material that contains domains. According to (Shul’man, Z. P. & Kordonskii ,V. I., 1982), the 

size of domains is as follows: 0.05 Ǎm in iron, 1.5 Ǎm in barium ferrite; 8 Ǎm in the MnBi 

compound, and 0.5-1 Ǎm in the acicular gamma ferric oxide. According to (Akulov, 1961), 

the size of a domain may reach 10-6 cm3 (obtained by the method of magnetic 

metallography). 

As a rule, an abrasive exhibits a distinct shape anisotropy, whereas the frequency of the 

effect is determined by the concentration of abrasive particles in a hydrophobic solution and 

by the velocity of its motion. We assume that on the surface of a processable crystal the 

magnetic field strength H(t)=H1 sin4(ωt) + H0. 

It is required to find the value of the magnetic field strength in the surface layer that has the 

characteristics ǌ1, ε1, and Ǎ1 and contains domains with electrophysical properties ǌ2, ε2, and 

Ǎ2. The domains may have the form of a triangular prism, a bar, a cylinder, etc. 

2.2.2 Physicomathematical model. wave equation for H


 
We will formulate a physicomathematical model of propagation of electromagnetic waves in 

a heterogeneous medium. The media in contact are considered homogeneous. We operate 

with the operator rot on the left- and right-hand sides of the first equation for the total 

current (see Equation 6) and multiply by Ǎ0Ǎ; then we differentiate the second equation in 

Eq. (see Equation 7) with respect to time. Taking into consideration the solenoidality of the 

magnetic field (see Equation 7) and the rule of repeated application of the operator ׏ to the 

vector H, we obtain 

 
2

2
0 0 02

1

tt
  


 

  


H H
H  (38) 

In the Cartesian coordinates Eq. (see Equation 38) will have the form 
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 (39) 

One fundamental electromagnetic field equation is the equation 0divB 


. The use of the 

Dirichlet theorem for approximation of the value of the magnetic field strength on the 

boundaries between adjacent media analogously to that of the electric field strength does 

not necessarily guarantees the observance of the condition of solenoidality of the magnetic 

field; furthermore, the magnetic properties of heterogeneous media were assumed constant 
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in deriving generalized wave equations. The experience of numerical calculations has 

shown that when it is necessary to model nonstationary magnetic phenomena it is better in 

many cases to use a generalized wave equation for E


, accordingly expressing  ,H t r
 

 by 

 ,E t r
 

 and, if need be, to perform backward recalculation to  ,H t r
 

. This approach is 

difficult to apply to modeling of heterogeneous media with different magnetic properties, 

when the magnetic permeability µ is dependent on coordinates. 
In media with a weak heterogeneity where Ǎ (x, y, z) is a piecewise continuous quantity, the 

application of the proposed method of through counting is quite justified. Indeed, the 

system of equations (see Equations 13-15, 39) yields that the function’s discontinuity on the 

boundaries between adjacent media is determined by the complexes which will be called the 

generalized permeability *
0 0  

 
and the generalized conductivity *

0  . Using the 

Direchlet theorem for *  and * , we obtain their values on the boundaries between adjacent 

media and the values for the electric field strength at the discontinuity point (see Equation 

37); here, we note that the value of the electric field strength is obtained without solving 

Maxwell equations. In fact, at the discontinuity point, we use linear interpolation of the 

function to obtain the values of * , * , and    1
0 0

2
xE E E          . Consequently, for 

piecewise continuous quantity Ǎ (x, y, z), the application of the proposed method of through 

counting is justified. We note that the equality of the derivatives of the electric field strength 

along the normal to the surface at the discontinuity point according to Eq. (see Equation 

34b) holds. When the wave equation for H


 is used for media with different magnetic 

permeabilities the condition of equality of the derivatives fails, i.e., 

0 0

x x

x x

H H

x x    

 


 
 

which is a consequence of Eq. (see Equation 10); therefore, the use of through-counting 

schemes for the wave equation for H


 is difficult. 

The generalized wave equation for E


 contains the term grad divE


 which directly allows for 

the influence of induced surface charges on the propagation of waves. We note that the 

proposed method of calculation can be used on condition that there are no built-in space 

charges and extraneous electromotive forces (Grinberg, G.A. & Fok, V.A., 1948). 
By virtue of what has been stated above, for modeling of the propagation of electromagnetic 

waves in glasses having roughness and defects, we used system (see Equations 13-15) with 

boundary conditions (see Equations 24-34) 

2.2.3 Results of numerical simulation 
The physicomathematical model developed can also efficiently be used in modeling the 

propagation of electromagnetic waves in media with complex geometries and strong 

electromagnetic field discontinuities. 

The transverse cut of a cellular structure represents a set of parallelepipeds and triangular 

prisms of various cross sections, as depicted in Fig. 10a and 11a. An electromagnetic wave 

propagates across the direction of parallelepipeds and triangular prisms (channels) along 

the coordinate x. 

www.intechopen.com



Fundamental Problems of the Electrodynamics of Heterogeneous  
Media with Boundary Conditions Corresponding to the Total-Current Continuity 

 

43 

  

(a) Amplitude Hx (b) Isolines 

Fig. 10. Amplitude Hx and isolines of the magnetic field strength 

The size of the investigated two-dimensional object is 14×20·10-6 m, and the sizes of the 
domains are 2–4 Ǎm. The frequency of the influence of the magnetic field is ω= 2Ǒ·106, and 
the strength of the field is 

  5 4 621 10 sin 2 10 /xH t A m    (40) 

 

  

(a) Amplitude Hy (b) Isolines 

Fig. 11. Amplitude Hy  and isolines of the magnetic field strength 

The electrophysical properties are as follows: of the large parallelepiped, Ǎ= 1, ε= 8, ǔ = 10-9 
Ω·m; of domains, Ǎ= 1, ε= 6, ǔ = 10-8 Ω·m. They correspond to the electrophysical properties 
of glasses. 
It was assumed that in a layer of thickness 15-20 Ǎm an electromagnetic wave propagates 

without attenuation; therefore, on all the faces of the large parallelepiped the fulfillment of 

condition (see Equation 40) was considered valid. On the faces of the parallelepiped that are 

parallel to the OX axis condition (see Equation 40) corresponded to the "transverse" 

tangential component of the wave; on the faces parallel to OY condition (see Equation 40) 

corresponded to the normal component of the field. 

The calculations were carried out with a time step of 10-13 sec up to a time instant of 10-10 sec. 

Figures 10a and 11a present the amplitude values of the magnetic field strength along Hx 

and Hy with a comparison scale, whereas Figs. 11b and 11b present the corresponding 

isolines. An analysis of these figures shows that at the places of discontinuity, on the 

wedges, force lines of the electromagnetic field concentrate. According to (Akulov, N. S., 
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1939), precisely wedges are often the sources and sinks of the vacancies that determine, for 

example, the hardness and plasticity of a solid body. 

Also, we modeled the propagation of waves in media, when domains possess magnetic 

properties. We assumed, in the calculations, that Ǎ=100; the remaining parameters 

correspond to the previous example of solution (Fig. 12) 

 

  
(a) Amplitude Hx (b) Amplitude Hy 

Fig. 12. Amplitude Hx  and Hy of the magnetic field strength 

Of interest is the interaction of the electromagnetic wave with the rough surface shown in 

Fig. 13 and 14. As in the previous examples, we observe the concentration of 

electromagnetic energy on angular structures. 

 

  
(a) Amplitude Hx (b) Isolines 

Fig. 13. Amplitude Hx  and isolines of the magnetic field strength 

 

  

(a) Amplitude Hx (b) Isolines 

Fig. 14. Amplitude Hy  and isolines  of the magnetic field strength 
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From Fig. 13 and 14, it is seen that electromagnetic heating of tapered structures may occur 
in addition to mechanical heating in magnetic abrasive machining. 

As we have mentioned above, for investigation of the propagation of electromagnetic waves 

in nonmagnetic materials, it is more expedient to use the generalized equation for E


. For 

the purpose of illustration we give an example of numerical calculation of an optical knife 

with the wave equation for H


 (Fig. 15). 
From Fig. 15, it is seen that the actual problem of diffraction on the optical knife remains to 
be solved, i.e., there is no “glow” on the optical-knife section, which is inconsistent with 
experimental data. 
 

  
(a) Amplitude Hx (b) Amplitude Hy 

Fig. 15. Amplitude Hx  and Hy of the magnetic field strength 

As is known (Bazarov, 1991), in thermodynamically equilibrium systems the temperature T 
and the electrical φ and chemical Ǎc potentials are constant along the entire system: 

 0, 0, 0cgrad T grad grad     (41) 

If these conditions are not fulfilled (grad T≠0, grad φ≠0, grad Ǎc≠0), irreversible processes of 
the transfer of mass, energy, electrical charge, etc. appear in the system. 
The chemical potential of the j-th component is determined, for example, as a change of the 

free energy with a change in the number of moles: 

  
,

/cj j
T V

F n     (42) 

Where 

 dF SdT PdV HdB     (43) 

The last term in Eq. (see Equation 43) takes into account the change in the free energy of a 
dielectric due to the change in the magnetic induction. The free energy of a unit volume of 
the dielectric in the magnetic field in this case has the form 

 
 

2

0 0,
2

H
F T D F  

 (44) 

We assume that changes in the temperature and volume of the dielectric are small. Then the 

mass flux is determined by a quantity proportional to the gradient of the chemical potential 

or, according to Eq. (see Equation 43), we obtain 
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  
c ciq D grad HdB D grad W      (45) 

where 
2

0
2

H
W   is the density of the magnetic field in the unit volume of the dielectric. 

In magnetic abrasive polishing on the sharp protrusions of domains the gradients of 
magnetic energy are great, which can lead to the origination of vacancy flows. 
An analysis of the results shows that the nonstationary component of the full 
electromagnetic energy is also concentrated in the region of fractures and wedges, i.e., at the 
sharp angles of domains, which may lead to the improvement of the structure of the 
sublayer of the treated surface due to the "micromagnetoplastic" effect. Maximum values of 
the nonstationary part of the total electromagnetic energy Wmax in the sublayer correspond 
to a maximum value of the function sin (2Ǒ·106 t) and occur for the time instants t = (n/4)10-6 
sec, where n is the integer, with the value of Wmax for a neodymium magnet and a 
magnetoabrasive particle on the basis of carboxyl iron amounting to a value of the order of 
(see Equations 5-6)·106 J/m3 . Having multiplied Wmax by the volume of a domain, vacancy, 
or atom, we may approximately obtain the corresponding energy. The density of the 
electromagnetic energy in all of the cases is much smaller than the bonding energy of atoms, 
10-18-10-19 J. However, a periodic change in the magnetic field in one direction leads to a 
ponderomotive force that may influence the motion of various defects and dislocations to 
create a stable and equilibrium structure of atoms and molecules in magnetic abrasive 
polishing and, in the long run, in obtaining a surface with improved characteristics due to 
the "micromagnetoplastic" effect. The result of Para 2.2 were published in part (Grinchik, 
N.N. et al., 2010). 

3. Interaction of nonstationary electric and thermal fields with allowance for 
relaxation processes 

We investigate electric and thermal fields created by macroscopic charges and currents in 
continuous media. Of practical interest is modeling of local heat releases in media on 
exposure to a high-frequency electromagnetic field. We should take into account the 
influence of the energy absorption on the propagation of an electromagnetic wave, since the 
transfer processes are interrelated. 
In an oscillatory circuit with continuously distributed parameters, the energy dissipation is 
linked (Kolesnikov, 2001) to the dielectric loss due to the dependence of the relative 
permittivity ε(ω) on frequency. In the general case ε is also complex, and the relationship 
between the electric displacement and electric field vectors has the form D=ε(ω)E, where 
ε(ω)= ε'(ω) – iε''(ω); here, ε' and ε'' are determined experimentally. As of now, the problems 
of dielectric heating of a continuous medium are reduced in many cases to consideration of 
an equivalent circuit based on lumped parameters, such as capacitance, inductance, loss 
angle, and relative-dielectric-loss factor (Skanavi, 1949; Perre P.; Turner I. W., 1996), that are 
established experimentally. 
With this approach, there arise substantial difficulties in determining the temperature field 
of equivalent circuits. Also, we have polarization and the occurrence of an electric double 
layer of a prescribed electric moment in contact of media with different properties. 
Equivalent circuits in lamellar media additionally involve empirical lumped parameters: 
surface capacitance and surface resistance (Jaeger, 1977). The total current can always be 
separated into a dissipative, or conduction current which is in phase with the applied 
voltage and a displacement current shifted in time relative to the voltage. The exact physical 
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meaning of these components of the current is largely dependent on selection of an 
equivalent electric circuit. A unique equivalent circuit – series or parallel connection of the 
capacitor, the resistor, and the inductor – does not exist; it is determined by a more or less 
adequate agreement with experimental data. 
In the case of electrolytic capacitors, the role of one plate is played by the electric double 
layer with a specific resistance much higher than the resistance of metallic plates. Therefore, 
decrease in the capacitance with frequency is observed, for such capacitors, even in the 
acoustic-frequency range (Jaeger, 1977). Circuits equivalent to an electrolytic capacitor are 
very bulky: up to 12 R, L, and C elements can be counted in them; therefore, it is difficult to 
obtain a true value of, e.g., the electrolyte capacitance. In (Jaeger, 1977) experimental 
methods of measurement of the dielectric properties of electrolyte solutions at different 
frequencies are given and ε' and ε" are determined. The frequency dependence of dispersion 
and absorption are essentially different consequences of one phenomenon: “dielectric-
polarization inertia” (Jaeger, 1977). In actual fact, the dependence ε(ω) is attributable to the 
presence of the resistance of the electric double layer and to the electrochemical cell in the 
electrolytic capacitor being a system with continuously distributed parameters, in which the 
signal velocity is a finite quantity. 
Actually, ε' and ε" are certain integral characteristics of a material at a prescribed constant 

temperature, which are determined by the geometry of the sample and the properties of the 

electric double layer. It is common knowledge that in the case of a field arbitrarily 

dependent on time any reliable calculation of the absorbed energy in terms of ε(ω) turns out 

to be impossible (Landau, L.D. & Lifshits, E.M., 1982). This can only be done for a specific 

dependence of the field E on time. For a quasimonochromatic field, we have (Landau, L.D. 

& Lifshits, E.M., 1982) 

      *
0 0

1

2
i t i tt t e t e    E E E  (46) 
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The values of Е0(t) and Н0(t), according to (Barash, Yu. & Ginzburg, V.L., 1976), must very 

slowly vary over the period Т = 2Ǒ/ω. Then, for absorbed energy, on averaging over the 

frequency ω, we obtain the expression (Barash, Yu. & Ginzburg, V.L., 1976) 
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 (48) 

where the derivatives with respect to frequency are taken at the carrier frequency ω. We 

note that for an arbitrary function Е(t), it is difficult to represent it in the form 

      cosE t a t t  (49) 

since we cannot unambiguously indicate the amplitude а(t) and the phase φ (t). The manner 
in which Е(t) is decomposed into factors а and cosφ is not clear. Even greater difficulties 
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appear in the case of going to the complex representation W(t)=U(t)+iV(t) when the real 
oscillation Е(t) is supplemented with the imaginary part V(t). The arising problems have 
been considered in (Vakman, D.E. & Vanshtein, L.A., 1977) in detail. In the indicated work, 
it has been emphasized that certain methods using a complex representation and claiming 
higher-than-average accuracy become trivial without an unambiguous determination of the 
amplitude, phase, and frequency. 
Summing up the aforesaid, we can state that calculation of the dielectric loss is mainly 

empirical in character. Construction of the equivalent circuit and allowance for the influence 

of the electric double layer and for the dependence of electrophysical properties on the 

field’s frequency are only true of the conditions under which they have been modeled; 

therefore, these are fundamental difficulties in modeling the propagation and absorption of 

electromagnetic energy. 

As we believe, the release of heat in media on exposure to nonstationary electric fields can 

be calculated on the basis of allowance for the interaction of electromagnetic and thermal 

fields as a system with continuously distributed parameters from the field equation and the 

energy equation which take account of the distinctive features of the boundary between 

adjacent media. When the electric field interacting with a material medium is considered we 

use Maxwell equations (see Equations 6–7). We assume that space charges are absent from 

the continuous medium at the initial instant of time and they do not appear throughout the 

process. The energy equation will be represented in the form  

    p

dT
C div k T grad T Q

dt
       (50) 

where Q is the dissipation of electromagnetic energy. 
According to (Choo, 1962), the electromagnetic energy converted to heat is determined by 
the expression 

 Eq

d d
Q H

dt dt
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 
    
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D B
E J  (51) 

In deriving this formula, we used the nonrelativistic approximation of Minkowski’s theory. 

If ε, Ǎ, and ǒ = const, there is no heat release; therefore, the intrinsic dielectric loss is linked 

to the introduction of ε'(ω) and ε"(ω). The quantity Q is affected by the change in the density 

of the substance ǒ(T). 

A characteristic feature of high frequencies is the lag of the polarization field behind the 

charge in the electric field in time. Therefore, the electric-polarization vector is expediently 

determined by solution of the equation P(t+Ǖe)=(ε-1)ε0Е(t) with allowance for the time of 

electric relaxation of dipoles Ǖe. Restricting ourselves to the first term of the expansion 

P(t+Ǖe) in a Taylor series, from this equation, we obtain 

        01e

d t
t t

dt
    

P
P E  (52) 

The solution (see Equation 52), on condition that Р=0 at the initial instant of time, will take 
the form 
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It is noteworthy that Eq. (see Equation 52) is based on the classical Debay model. According 

to this model, particles of a substance possess a constant electric dipole moment. The 

indicated polarization mechanism involves partial arrangement of dipoles along the electric 

field, which is opposed by the process of disorientation of dipoles because of thermal 

collisions. The restoring “force”, in accordance with Eq. (see Equation 52), does not lead to 

oscillations of electric polarization. It acts as if constant electric dipoles possessed strong 

damping. 

Molecules of many liquids and solids possess the Debay relaxation polarizability. Initially 
polarization aggregates of Debay oscillators turn back to the equilibrium state P(t)=Р(0)ехр(-
t/Ǖe). 
A dielectric is characterized, as a rule, by a large set of relaxation times with a characteristic 

distribution function, since the potential barrier limiting the motion of weakly coupled ions 

may have different values (Skanavi, 1949); therefore, the mean relaxation time of the 

ensemble of interacting dipoles should be meant by Ǖe in Eq. (see Equation 52). 

To eliminate the influence of initial conditions and transient processes we set t0 = -∞, Е(∞)=0, 

Н(∞)=0, as it is usually done. If the boundary regime acts for a fairly long time, the influence 

of initial data becomes weaker with time owing to the friction inherent in every real physical 

system. Thus, we naturally arrive at the problem without the initial conditions: 
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Let us consider the case of the harmonic field Е = Е0sinωt; then, using Eq. (see Equation 54) 

we have, for the electric induction vector 
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 (55) 

The electric induction vector is essentially the sum of two absolutely different physical 

quantities: the field strength and the polarization of a unit volume of the medium. 

If the change in the density of the substance is small, we obtain, from formula (see Equation 

51), for the local instantaneous heat release 

 
   

2
0 0 2 2

2 2

1
sin cos sin

1
e

e

Ed
t t t

dt

 
     

 


  


D
Q E  (56) 

when we write the mean value of Q over the total period Т: 
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For high frequencies (ω→∞), heat release ceases to be dependent on frequency, which is 
consistent with formula (see Equation 57) and experiment (Skanavi, 1949). 
When the relaxation equation for the electric field is used we must also take account of the 
delay of the magnetic field, when the magnetic polarization lags behind the change in the 
strength of the external magnetic field: 

      0i

d t
t t

dt
  

I
I H  (58) 

Formula (see Equation 57) is well known in the literature; it has been obtained by us without 
introducing complex parameters. In the case of “strong” heating of a material where the 
electrophysical properties of the material are dependent on temperature expression (see 
Equation 52) will have a more complicated form and the expression for Q can only be 
computed by numerical methods. Furthermore, in the presence of strong field 
discontinuities, we cannot in principle obtain the expression for Q because of the absence of 
closing relations for the induced surface charge and the surface current on the boundaries of 
adjacent media; therefore, the issue of energy relations in macroscopic electrodynamics is 
difficult, particularly, with allowance for absorption. 
Energy relations in a dispersive medium have repeatedly been considered; nonetheless, in 
the presence of absorption, the issue seems not clearly understood (or at least not 
sufficiently known), particularly in the determination of the expression of released heat on 
the boundaries of adjacent media. 
Indeed, it is known from the thermodynamics of dielectrics that the differential of the free 
energy F has the form 

 dF SdT pdV d    E D  (59) 

If the relative permittivity and the temperature and volume of the dielectric are constant 
quantities, from Eq. (see Equation 59) we have 

   2
0, 2F T F D D  (60) 

where F0 is the free energy of the dielectric in the absence of the field. 
The change of the internal energy of the dielectric during its polarization at constant 

temperature and volume can be found from the Gibbs-Helmholtz equation, in which the 

external parameter D is the electric displacement. Disregarding F0 which is independent of 

the field strength, we can obtain 

      , , DU T F T T dF dT D D  (61) 

If the relative dielectric constant is dependent on temperature (ε(T)), we obtain 

     2
0, 2 DU T E T d dT   D  (62) 

Expression (see Equation 62) determines the change in the internal energy of the dielectric in 

its isothermal polarization but with allowance for the energy transfer to a thermostat, if the 

polarization causes the dielectric temperature to change. A more detailed substantiation of 

Eq. (see Equation 62) will be given in the book. In the works on microwave heating, that we 

know, expression (see Equation 62) is not used. 
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A characteristic feature of high frequencies is that the polarization field lags behind the 
change in the external field in time; therefore, the polarization vector is expediently 
determined by solution of the equation 

       01e D
t T d dT t      P E  (63) 

With allowance for the relaxation time, i.e., restricting ourselves to the first term of the 

expansion  et P  in a Taylor series, we obtain 

         01e D
t d t dT T d dT t      P P E  (64) 

In the existing works on microwave heating with the use of complex parameters, they 
disregard the dependence ε"(T). In (Antonets, I.V.; Kotov, L.N.; Shavrov, V.G. & Shcheglov, 
V.I., 2009), consideration has been given to the incidence of a one-dimensional wave from a 
medium with arbitrary complex parameters on one or two boundaries of media whose 
parameters are also arbitrary. The amplitudes of waves reflected from and transmitted by 
each boundary have been found. The refection, transmission, and absorption coefficients 
have been obtained from the wave amplitudes. The well-known proposition that a 
traditional selection of determinations of the reflection, transmission, and absorption 
coefficients from energies (reflectivity, transmissivity, and absorptivity) in the case of 
complex parameters of media comes into conflict with the law of conservation of energy has 
been confirmed and exemplified. The necessity of allowing for ε"(T) still further complicates 
the problem of computation of the dissipation of electromagnetic energy in propagation of 
waves through the boundaries of media with complex parameters. 
The proposed method of computation of local heat release is free of the indicated drawbacks 

and makes it possible, for the first time, to construct a consistent model of propagation of 

nonmonochromatic waves in a heterogeneous medium with allowance for frequency 

dispersion without introducing complex parameters. 

In closing, we note that a monochromatic wave is infinite in space and time, has 

infinitesimal energy absorption in a material medium, and transfers infinitesimal energy, 

which is the idealization of real processes. However with these stringent constraints, too, the 

problem of propagation of waves through the boundary is open and far from being resolved 

even when the complex parameters of the medium are introduced and used. In reality, the 

boundary between adjacent media is not infinitely thin and has finite dimensions of the 

electric double layers; therefore, approaches based on through-counting schemes for a 

hyperbolic equation without explicit separation of the boundary between adjacent media are 

promising. 

6. Conclusion 

The consistent physicomathematical model of propagation of an electromagnetic wave in a 
heterogeneous medium has been constructed using the generalized wave equation and the 
Dirichlet theorem. Twelve conditions at the interfaces of adjacent media were obtained and 
justified without using a surface charge and surface current in explicit form. The conditions 
are fulfilled automatically in each section of the heterogeneous medium and are conjugate, 
which made it possible to use through-counting schemes for calculations. For the first time 
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the effect of concentration of "medium-frequency" waves with a length of the order of 
hundreds of meters at the fractures and wedges of domains of size 1-3 Ǎm has been 
established. Numerical calculations of the total electromagnetic energy on the wedges of 
domains were obtained. It is shown that the energy density in the region of wedges is 
maximum and in some cases may exert an influence on the motion, sinks, and the source of 
dislocations and vacancies and, in the final run, improve the near-surface layer of glass due 
to the "micromagnetoplastic" effect. 
The results of these calculations are of special importance for medicine, in particular, when 
microwaves are used in the therapy of various diseases. For a small, on the average, 
permissible level of electromagnetic irradiation, the concentration of electromagnetic energy 
in internal angular structures of a human body (cells, membranes, neurons, interlacements 
of vessels, etc) is possible. 
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