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1. Introduction

Structural Health Monitoring (SHM) is known as the process of in-service damage detection
for aerospace, civil and mechanical engineering objects and is a key element of strategies
for condition based maintenance and damage prognosis. It has been proven as especially
well suited for the monitoring of large infrastructure objects like buildings, bridges or wind
turbines. Recently, more attention has been drawn to the transfer of SHM methods to practical
applications, including issues of system integration.
In the field of wind turbines and within this field, especially for turbines erected off-shore,
monitoring systems could help to reduce maintenance costs. Off-shore turbines have a
limited access, particularly in times of strong winds with high production rates. Therefore,
it is desirable to be able to plan maintenance not only on a periodic schedule including
visual inspections but depending on the health state of the turbine’s components which are
monitored automatically.
While the monitoring of rotating parts and power train components of wind turbines (known
as Condition Monitoring) is common practice, the methods described in this paper are of use
for monitoring the integrity of structural parts. Due to several reasons, such a monitoring is
not common practice. Most of the systems proposed in the literature rely only on one damage
detection method, which might not be the best choice for all possible damage.
Within structural parts, the monitoring tasks cover the detection of cracks, monitoring of
fatigue and exceptional loads, and the detection of global damage. For each of these tasks,
at least one special monitoring method is available and described within this work: Acousto
Ultrasonics, Load Monitoring, and vibration analysis, respectively.
Farrar & Doebling (1997) describe four consecutive levels of monitoring proposed by Rytter
(1993). Starting with „Level 1: Determination that damage is present in the structure“, the
complexity of the monitoring task increases by adding the need for localising the damage
(level two) and the „quantification of the severity of the damaged“ for level three. Level four
is reached when a „prediction of the remaining service life of the structure“ is possible.
By using the monitoring systems described above, in our opinion only level 1 or in special
cases level 2 can be attained. For most customers, the expected results do not justify the
efforts that have to be made to install such a monitoring system.
In general, our work aims at developing a monitoring system that is able to perform
monitoring up to level 4. Therefore, we think it is necessary to combine different methods.
Even though the different monitoring approaches described in this paper differ in the type
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2 Will-be-set-by-IN-TECH

of sensors used or whether they are active or passive, local or global methods, their common
feature is that they can be implemented on smart sensor networks.
The development of miniaturized signal processing platforms offer interesting possibilities of
realizing a monitoring system which includes a high number of sensors widely distributed
over the large mechanical structure. This approach should considerably reduce the efforts
of cabling, even when using wire-connected sensor nodes, see Fig. 1. However, the use of
communication channels, especially wireless, raises challenges such as limited bandwidth
for the transmission of data, synchronization and reliable data transfer. Thus, it is desirable
to use the nodes of the sensor network not only for data acquisition and transmission, but
also for the local preprocessing of the data in order to compress the amount of transmitted
data. For instance, basic calculations like spectral estimation of the acquired data sequences
can be implemented. The microcontrollers usually applied in wireless sensor platforms are
mostly not capable of performing extensive calculations. Therefore, the algorithms for local
processing should involve a low computational effort.

Data acqusition
Data analysis Data analysis

Data acquisition

Communication
Preprocessing

Fig. 1. SHM system with centralized acquisition and processing unit versus system with
smart sensors.

2. Load Monitoring

2.1 Basic principles

The concept Load Monitoring is of major interests for technical applications in two ways:

• The reconstruction of the forces to which a structure is subjected (development phase)

• The determination of the residual life time of a structure (operational phase).

A knowledge of the forces resulting from ambient excitation such as wind or waves
enables the structural elements of wind turbines like towers, rotor blades or foundations
to be improved during the design phase. External forces must be reconstructed by using
indirect measuring techniques since they can not be measured directly. Reconstruction
measurement techniques are based on the transformation of force related measured quantities
like acceleration, velocity, deflection or strain. In general, this transformation is conducted via
the solution of the inverse problem:

y(t) =
∫ t

0
H(t − τ)F(τ) dτ (1)

where the system properties H(t) and the responses y(t) are known and the input forces F(t)
are unknown (Fritzen et al., 2008).
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Monitoring and Damage Detection in Structural Parts of Wind Turbines 3

Thus the inverse identification problem consists of finding the system inputs from the
dynamic responses, boundary conditions and a system model. The different methods
for identifying structural loads can be categorized into deterministic methods, stochastic
methods, and methods based on artificial intelligence. A review of methods for force
reconstruction is given by Uhl (2007).
Since monitoring wind turbines typically concerns the operational phase, the reconstruction
of forces is of secondary interest. In turn, more stress must be focussed on determining the
residual life time of a structure.
Determining the residual life time is based on the evaluation of cyclic loads. Structures
errected in the field are typically subjected to cyclic loads resulting from ambient excitation
such as wind or wave loads in the case of off-shore wind turbines or traffic loads for bridges.
A cyclic sinusoidal load is characterized by three specifications. Two specifications define
the load level, e.g. maximum stress Smax and minimum stress Smin or mean stress Sm and
stress amplitude Sa. The third specification is the number of load cycles N. Depending on the
stress ratio R = Smin/Smax, the cyclic load can be divided into the following cases: pulsating
compression load, alternating load, pulsating tensile load or static load, and into intermediate
tensile/compressive alternating load (Haibach, 2006).
A measure for the capacity of a structural component to withstand cyclic loads with constant
amplitude and constant mean value is given by its S/N-curve, also reffered to as Wöhler
curve, Fig. 2. Basically, the S/N-curve reveals the number of load cycles a component can
withstand under continuous or frequently repeated pulsating loads (DIN 50 100, 1978).
Three levels of endurance characterize the structural durability: low-cycle, high-cycle or
finite-life fatigue strength and the ultra-high cycle fatigue strength. The endurance strength
corresponds to the maximum stress amplitude Sa and a given mean stress Sm which a
structure can withstand when applied arbitrarily often (DIN 50 100, 1978) or more frequent
than a technically reasonable, relatively large number of cycles. However, the existence of
an endurance strength is contentious issue, since it has been demonstrated that component
failures are also caused in the high-cycle regime (Sonsino, 2005). The transition to finite-life
fatigue strength is characterized by a steep increase of the fatigue strength. The knee-point,
which seperates the long-life and the finite-life fatigue strength corresponds to a cycle number
of about ND = 106 − 107. Both, long-life and finite-life fatigue strength are dominated by
elastic strains. In contrast to this, low-cycle fatigue strength is dominated by plastic strains.
The transition from finite-life to low-cycle fatigue strength is in the area of the yield stress
(Radaj, 2003).
S/N-curves are derived from cyclic loading tests. The tests are carried out on unnotched or
notched specimens or on component-like specimens. Load profiles applied to the specimen
are either axial, bending or torsional. To derive one curve, the mean stress Sm or the minimum
stress Smin is left constant for all specimens, only the stress amplitude Sa or maximum stress
Smax is modified. The numbers of load cycles a specimen withstands up to a specific failure
criterion, e.g. rupture or a certain stiffness reduction, is plotted horizontaly against the
corresponding stress amplitude values (DIN 50 100, 1978; Radaj, 2003).
The previous considerations concern the durability of structures subjected to constant
amplitude loading. However, most structures under operational conditions experience
loading environments with variable mean loads and load amplitudes. This differentiation
is important since fatigue response may be very sensitve to the specifics of the loading type
(Heuler & Klätschke, 2005).
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Fig. 2. S/N-curve.
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Fig. 3. Load spectra derived by level
crossing counting from constant and
variable amplitude load-time histories,
after Haibach (1971).

The fatigue life curve, or: Gassner curve, is determined in similar tests but using defined
sequences of variable amplitude loads (Sonsino, 2004). Depending on the composition of the
load spectrum, the fatigue life curve deviates from the S/N-curve. The relation between both
curves is represented by a spectrum shape factor (Heuler & Klätschke, 2005).
The content of a variable load time history, e.g. the relative frequency of occurance of each
amplitude, can be illustrated in a load spectrum. Different cycle counting methods exist to
derive load spectra. An overview of the so called one-parameter counting methods is given in
DIN 45 667 (1969) and Westermann-Friedrich & Zenner (1988). Level crossing and range-pair
counting are historically well established one-parameter counting methods (Sonsino, 2004).
As an example Fig. 3 shows load spectra derived from constant amplitude and variable
amplitude load-time-history. The mean stress Sm and the maximum stress amplitude Smax

is common to the resulting load spectra. However, the constant amplitude load spectrum
reveals a high cycle number for the maximum amplitude, while the variable amplitude load
spectrum reveals high cycle numbers only for smaller amplitudes. Fig. 4 shows examples of
load spectra. In general, the fuller a load spectrum is, i.e. the more relatively large amplitudes
it contains, the less load cycles a structure withstands without damage, Fig. 4 (Haibach, 2006).
From today’s perspective, most of the one-parameter counting methods can be considered as
special cases of the two-parameter rainflow counting method (Haibach, 2006). The rainflow
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Fig. 4. Effect of different load spectra
on the fatigue life curve, after
Haibach (2006).
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Monitoring and Damage Detection in Structural Parts of Wind Turbines 5

counting method is the most recent and possibly the most widely accepted procedure for
load cycle counting (Boller & Buderath, 2006). Each loading cycle can be defined as a closed
hysteresis loop along the stress-strain path. The maximum and the mininum values or
the amplitude and the mean values of the closed hysteresis loops are charted as elements
into the rainflow matrix. Rainflow matrices allow distribution of the hysteresis loops to be
determined. A detailed description of the method is given by Haibach (2006), Radaj (2003)
and Westermann-Friedrich & Zenner (1988).
In order to provide representative load data, standardized load-spectra and load-time
histories (SLH) have been previously be developed. SLH are currently available for various
fields of application such as in the aircraft industry, automotive applications, steel mill
drives, as well as for wind turbines and off-shore structures. In particular, the SLH
WISPER/WISPERX (Have, 1992) and WashI (Schütz et al., 1989) exist for wind turbines and
off-shore structures, respectively (Heuler & Klätschke, 2005).
The residual life time of a component is estimated by means of a damage accumulation
hypothesis. For this reason, a load spectrum for the specific component, a description of the
stress concentration for notches in the component and an appropriate fatigue life curve are
required (Boller & Buderath, 2006). Within numerous damage accumulation hypotheses the
linear hypothesis of Palmgren and Miner plays an important role in practical applications.
Different modifications of the hypothesis exist. Basically, the idea of the hypothesis is to
determine the residual life time of a component via the sum of the load cycles which the
component experiences in relation to its corresponding fatigue life curve, Fig. 5. A partial
damage Dj is calculated for a certain load amplitude Sj with

Dj =
∆Nj

NFj
, (2)

where ∆Nj is the number of load cycles corresponding to Sj and NFj is the number of load
cycles with the same load amplitude corresponding to the fatigue failure curve, up to failure.
The total damage D resulting from the load cycles of different load amplitudes Sj with j =
1, 2, ..., n is yielded by:

D =
n

∑
j=1

Dj. (3)

According to the hypothesis the component fails when its total damage attaines unity, D = 1.
However, several studies demonstrate that in particular cases, the real total damage may
deviate significantly from unity. Prerequestives for the right choice of the S/N-curve are
that the material, the surface conditions, the specimen geometry and loading conditions are
appropriate (Radaj, 2003).

2.2 System description

To measure the operational loading, strain gauges are applied to the structure’s hot spots
determined during the development phase. The strain gauges can be connected to smart
sensor nodes placed adjacent to the spots (see Fig. 6). Running a rainflow counting algorithm
on the smart sensor nodes yields an analysis of the real operational loads the structure is
subjected to. Due to the data reduction using the rainflow counting, the amount of data to
be transmitted to a central unit is reduced to a minimum. Furthermore, the data are only
transmitted when an update of the residual life time is requested by the operator (e.g. every
10 minutes).
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strain gauge 1 connected
to smart sensor node 1

strain gauge 2 connected
to smart sensor node 2

strain gauge n connected
to smart sensor node n

Fig. 6. Load Monitoring system based on decentralized preprocessing with smart sensor
nodes.

Using the load spectra as input, damage accumulation is calculated on the central unit (see
Fig. 6 for the connection scheme of smart sensor nodes and the central unit). Next, the
residual life time can be determined by comparing those damage accumulation with the
endurable loading. Furthermore, with this Load Monitoring concept, exceptional loads can
be determined and used to trigger analyses of the structure’s integrity using other monitoring
methods.

2.3 Application: Model of a wind turbine

To test the performance of the decentralized Load Monitoring in the field, a structure is chosen
which is exposed to actual environmental excitations by wind loads. A small model of a wind
turbine (weight approx. 0.5 kg) is mounted on top of an aluminum beam, which serves as a
model for the tower (see Fig. 7). Although quite simple and small, the wind turbine model
possesses a gearbox with several stages which may serve as a potential noise source during
operation. For a test, the beam is instrumented with four strain gauges which are wired to a
Wheatstone bridge and mounted close to the bottom of the beam as shown in Fig. 7.
The left side of Fig. 8 shows a rainflow matrix calculated under wind excitation and the
associated damage accumulation. The implementation has been conducted to the effect, that
the smart sensor node determines the turning points from the strain signal before calculating
the rainflow matrix by using the rainflow counting algorithm. Following this, the rainflow
matrix was periodically (in this case every 10 minutes) sent to a central unit. By means of
this, the communication effort and the real time requirements between the two participants
in network have been reduced. Based on the data-update, the central unit (a desktop PC
in this case) estimates the current damage accumulation. The result of this is a damage
accumulation function growing over time steps of 10 minutes, as shown on the right side
of Fig. 8. The function rises slowly, caused by a small number of load cycles or a minor strain
signal amplitude. In contrast to this, the steep rising at about t = 200 min, is due to a large
number of load cycles or a large strain amplitude, as the case may be.
The Palmgren-Miner rule states that failure occurs when the value of the accumulate damage
is unity. In this test, with only a wind loading measured over a period of 220 minutes, the
calculated damage accumulation is remote from this critical value.
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Fig. 7. Experimental set-up. (a) A model of a wind turbine was exposed to actual
environmental excitations by wind loads on the top of a building. (b) Strain gauges were
mounted nearly at the bottom of the beam.
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Fig. 8. Left: A matrix calculated under wind excitation. Right: The damage accumulation
growing over time.

3. Vibration analysis

3.1 Basic principles

The process of monitoring the health state of a structure involves the observation of a
system over time by the means of dynamic response measurements, the extraction of
damage-sensitive features from these measurements, and the statistical analysis of these
features. Features are damage sensitive properties of a structure which allow difference
between the undamaged and the damaged structure to be distinguished (Sohn et al., 2004).
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Some vibration-based damage sensitive properties are described in the following.

Resonant frequencies. Monitoring methods based on resonant frequencies can be
categorized into the forward and the inverse problem. The forward problem consists of
determining frequency shifts due to known damage cases. Damage cases are typically
simulated using numerical models. Damages can then be identified by comparing the
simulated to the experimentally measured frequencies.

The inverse problem consists in determining damage parameters from shifts in resonant
frequencies. However, the major drawback of monitoring methods based on frequency
shifts is the low sensitivity of resonant frequencies to damage (Montalvão et al., 2006).

Mode shapes. Using mode shapes as a feature for damage detection is advantageous
over using methods based on resonant frequencies since mode shapes contain local
information about a structure which makes them sensitive to local damage. This is a major
advantage over resonant frequencies which are global parameters and thus can only detect
global damage. Furthermore, mode shapes are less sensitive to environmental effects
such as temperature. ’Traditional mode shape change methods’ are based on damage
identification from mode shape changes which are deteremined by comparing them to
finite element models or preliminary experimental tests. On the other hand, ’modern
signal processing methods’ can be applied alone to actual mode shape data from the
damaged structure. Here, the damage location can be revealed by detecting the local
disconinuity of a mode shape. A promissing feature of enhancing the damage sensitivity of
mode shape data is the use of mode shape curvatures. A curvature is the second derivative
of a mode shape. The modal strain energy-based methods can be considered as a special
case of the curvature-based method. The method uses changes of fractional modal strain
energies, which are directly related to mode shape curvatures. Within the modal strain
energy-based methods particular attention is paid to the damage index method (DIM) (Fan
& Qiao, 2010).

Frequency domain response functions. The use of non-modal frequency domain response
functions for monitoring can be advantageous over modal-based methods. In contrast to
response functions modal parameters are indirectly measured. Thus they can be falsified
by measurement errors and modal extraction faults. Further, the completeness of modal
data can not be guaranteed in most practical applications because a large number of
sensors is required (Lee & Shin, 2001). One approach to detecting the damage locations on
complex structures using directly measured frequency-domain response functions is based
on the Transmissibility Function (TF) (Siebel & Mayer, 2011). The TF for one element of a
structure is built from the ratio of the response functions of two adjacent points. TFs can be
calculated from system outputs without knowing the exact input forces. Hence, in order to
apply the method, information about the source of excitation is not neccessarily required
(Chesné & Deraemaeker, 2010).

In the technical literature, the topic of feature extraction has received much attention. Reviews
and case studies have been written by Sohn et al. (2004), Carden & Fanning (2004), Montalvão
et al. (2006), Humar et al. (2006), Fan & Qiao (2010) and, with special emphasis on the
monitoring of wind turbines, by Ciang et al. (2008) and Hameed et al. (2007).
The large size of wind turbines and the difficult accessibility complicates maintenance
and repair work. Thus, in order to guarantee safety and to improve availability, the
implementation of an autonomous monitoring system that regularly delivers data about the
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Monitoring and Damage Detection in Structural Parts of Wind Turbines 9

structural health is of practical interest. Furthermore, easy handling and installation, i.e. low
cabling effort, are required for practicability.
The implementation of vibration-based monitoring methods requires frequency or modal
data. Modal data of real structures can be extracted by methods of system identification.
The demands for autonomy of the montitoring system and for a regular data transfer makes
system identification a challenging task. That is, because vibration must be measured
under operating conditions and no defined force is applied. On off-shore wind turbines,
vibration is induced into the structure by ambient excitation, e.g. by wind or wave loads.
System identification methods handling these conditions are referred to as output-only system
identification methods, in-operation or as Operational Modal Analysis (OMA).
Important output-only system identification methods for the extraction of modal data (i.e.
natural frequency, damping ratio and mode shapes) are outlined below. The first four
categories of methods presented are based on time-domain responses, whereas the methods
of the last category use frequency-domain responses.

NExT. Traditional time domain multi-input multi-output (MIMO) Experimental Modal
Analysis (EMA) uses impulse response functions (IRF) to extract modal parameters.
The Natural Excitation Technique (NExT) adopts the EMA methodology by employing
Correlation Functions (COR) instead of IRF. COR can be obtained by different techniques
such as the Random Decrement (RD) technique, inverse Fourier Transform of the Auto
Spectral Density, or by direct estimates from the random response of a structure subjected
to broadband natural excitation. Both COR and IRF are time domain response functions
that can be expressed as sum of exponentially-decayed sinusoidals. The modal parameters
of each decaying sinusoidal are identical to those of the corresponding structural mode
(Zhang, 2004).

ARMA. The dynamic properties of a system in the time domain can be described by an
Auto-Regressive Moving Average (ARMA) model. In the case of a multivariate system,
the model is called Auto-Regressive Moving-Average Vector (ARMAV) (Andersen, 1997).

The parametric ARMAV model describes the relation of the system’s responses to
stationary zero-mean Gaussian white noise input and to AR (auto-regressive) and MA
(moving-average) matrices. The AR component describes the system dynamics on the
basis of the response history and the MA component regards the effect of external noise
and the white noise excitation. The ARMAV model can be expressed in the state-space
from which natural frequencies, damping ratios and mode shapes can be extracted
(Bodeux & Colinval, 2001).

A number of algorithms for the Prediction-Error Method (PEM) have been proposed in
order to identify modal parameters from ARMAV models. However, the PEM-ARMAV
type OMA procedures have the drawback of being computationally intensive and of
requiring an initial ’guess’ for the parameters which are to be identified (Zhang et al.,
2005).

Covariance-driven SSI. The covariance-driven Stochastic Subspace Identification (SSI)
methods allows state-space models to be estimated from measured vibration data. For
system realization, measured impulse response or covariance data are used to define a
Hankel matrix. The Hankel matrix can be factorized into the observability matrix and
the controllability matrix. The system matrices of the state-space model can then be
extracted from the observability and the controllability matrices. Various SSI methods
have been developed for the system realization, e.g. Principal Component (PC) method,
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Canonical Variant Analysis (CVA) and Un-weighted Principal Component (UPC) method.
The methods differ in the way the observability matrix is estimated, and also in how it
is used for finding the system matrices. The last step of the stochastic realization-based
OMA is the calculation of the modal parameters from the system matrices. These methods
are also referred to as stochastic realization-based procedures (Viberg, 1995; Zhang et al.,
2005).

Data-driven SSI. The advantage of the data-driven over the covariance-driven SSI is that
it makes direct use of stochastic response data without an estimation of covariance
as the first step. Furthermore, it is not restricted to white noise excitation, as is the
covariance-driven SSI, but it can also be employed for colored noise. The data-driven
SSI predicts the future system response from the past output data. Making use of state
prediction leads to a Kalman filter for a linear time-invariant system. It can be expressed
by a so-called innovation state-space equation model, where the state vector is substituted
by its prediction and where the two inputs (i.e. process noise and measurement noise) are
converted to an input process – the innovations. After computing the projection of the row
space of the future outputs on the row space of the past outputs and estimating a Kalman
filter state, the modal parameters are calculated as before with UPC, PC or CVA (Andersen
& Brincker, 2000; Zhang et al., 2005).

Frequency Domain Decomposition. The classical frequency-domain approach for OMA is
the Peak Picking (PP) technique. Modal frequencies can be directly obtained from the
peaks of the Auto Spectral Density (ASD) plot, the mode shapes can be extracted from the
column of the ASD matrix which corresponds to the same frequency. The PP method
gives reasonable estimates of the modes, it is fast and simple to use. However, PP
can be inaccurate when applied to complex structures, especially in the case of closely
spaced modes. The Frequency Domain Decomposition (FDD) is an extension of PP which
aims to overcome this disadvantage. The FDD technique estimates modes from spectral
density matrices by applying a Singular Value Decomposition. This corresponds to a
single-degree-of-freedom identification of the system for each singular value. The modal
frequencies can then be obtained from the singular values and the singular vectors are
an estimation of the corresponding mode shapes. The Enhanced Frequency Domain
Decomposition (EFDD) is a further development of the FDD. In addition to modal
frequencies and shapes, the EFDD can estimate modal damping. For this, singular value
data is transferred to time-domain by an inverse Fourier transformation. Modal damping
can then be estimated from the free decay (Herlufsen et al., 2005; Zhang et al., 2005).

3.2 System description

The system presented here is designed to autonomously acquire the development of the
modal properties of the system under test. In this, it just delivers data useable for Structural
Health Monitoring (SHM), but it does not autonomously carry out analyses of them. The
system accounts for the requirements mentioned above in the following way: To satisfy
the demand for autonomy and to be able to use ambient instead of artificial excitation, the
measured data is analysed using the algorithms of OMA. To lower the cabling effort, a
network of smart sensors is designed in which the sensor nodes are capable of preprocessing
the data using the RD method. Due to the reduction of the amount of data to be transmitted,
the sensor nodes can be connected in a bus structure with the central processing unit.
The microcontrollers usually applied in (wireless) sensor platforms are typically not capable
of performing extensive computations. For instance, only basic calculations like spectral
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Monitoring and Damage Detection in Structural Parts of Wind Turbines 11

estimation of the acquired data sequences can be implemented (Lynch et al., 2006). In this
paper, the RD method is evaluated with respect to distributed signal processing on sensor
nodes. It is a simple, yet effective method for estimating correlation functions (Brincker et
al., 1991; Cole, 1973), and was originally devised for detecting damage in aerospace structures
subjected to random loading. It can also successfully be applied as a component of a structural
parameter identification, e.g. in OMA (Asmussen, 1998; Rodrigues & Brincker, 2005). Having
estimated averaged correlation functions by means of the smart sensors, these functions
are transferred to a central processing unit. There, the algorithms of Frequency Domain
Decomposition (FDD) are applied to estimate the eigenfrequencies and mode shapes of the
system under test.

3.2.1 Description of the Random Decrement technique

As mentioned above, most of the parts of a wind turbine being of interest to SHM cannot
be artificially excited for structural analyses, because they might be too large (e.g. the whole
tower) or because it is impractical to apply a vibration exciter during its operation. Thus only
the output signals, i.e. the vibrations excited by operational loads can be used in order to
estimate the system’s behavior. Extracting this information can be done using the RD method,
which is a simple technique that averages time data series x(tn) measured on the system under
random input loads when a given trigger condition is fulfilled (see Equation 4 as an example
of a level crossing trigger at trigger level a). The result of this averaging process from n = 1 to
N is called an RD signature DXX(τ).

DXX(τ) =
1

N

N

∑
n=1

x(tn + τ)

∣

∣

∣

∣

∣

x(tn) = a (4)

The method can be explained descriptively in the following way: At each time instant, the
response of the system is composed of three parts: The response to an initial displacement,
the response to an initial velocity and the response to the random input loads during the time
period between the initial state and the time instant of interest (Rodrigues & Brincker, 2005).
By averaging many of those time series, the random part will disappear, while the result can
be interpreted as the system’s response to the inital condition defined by the trigger, thus,
containing information about the system’s behavior. A depictive example can be found in
Friedmann et al. (2010).
Asmussen (1998) proved that a connection between RD signatures DXX and correlation
functions RXX can be established. For a level crossing trigger conditon, the factors used to
derive correlation functions from RD signatures are the trigger level a itself and the variance
σ2

x of the signal triggered (see Equation 5).

RXX(τ) = DXX(τ)
σ2

x

a
(5)

These factors can be derived from the measurements without incurring high computational
or memory costs so that the estimation of correlation functions can be implemented in a
decentralized network of smart sensors.
The concept may be extended from autocorrelation functions as described above to the
estimation of cross-correlation functions between two system outputs. This is simply achieved
by averaging time blocks from one system output (here y) while the averaging process is
triggered by another output (here x). If a simple level crossing trigger is assumed, the
mathematical expression of the RD technique as established by Asmussen (1998) is:
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DYX(τ) =
1

N

N

∑
n=1

y(tn + τ)

∣

∣

∣

∣

∣

x(tn) = a. (6)

The conversion of a cross RD signature to a cross-correlation function is expressed by
Equation 7.

RYX(τ) = DYX(τ)
σ2

x

a
(7)

3.2.2 Description of Operational Modal Analysis based on the Random Decrement method

The idea behind the described data acquisition system is to estimate RD signatures by the
smart sensors and to transfer them to a central unit. On this central unit, the correlation
functions are calculated and the modal analysis is performed. In the application described
here, this central unit is a common desktop computer where the matrices R of the correlation
functions are evaluated by a Matlab routine. Having calculated all correlation functions of
the matrix R, an intermediate step is needed before starting with the modal decomposition.
Because the algorithms of frequency domain based OMA need a matrix G(f) of spectral
densities as an input, a single block Discrete Fourier Transform (DFT) has to be applied to
the correlation functions (McConnell, 1995). It should be mentioned that within this DFT, no
use is made of time windowing. For the subsequent OMA, the FDD algorithm is used. This
algorithm, first described by Brincker et al. (2000), is based on a Singular Value Decomposition
of the matrix G(f). For every frequency f , this process leads to two fully populated matrices
U(f) and a diagonal matrix S(f) holding the spectra of the so-called singular values Sii( f ) in
decreasing order (see Equation 8).

G(f) = U(f)S(f)UH(f) (8)

The peak values of the first singular values are then interpreted as indicators for the systems’
eigenfrequencies. Furthermore, using the FDD algorithm, it is possible to estimate the mode
shapes for the found frequencies. The eigenvectors describing the mode shapes corresponding
to the eigenfrequencies determined by the spectra of the singular values can be found in the
corresponding columns of the matrix U(f).
Performing an OMA in the usual way, picking the peaks from the spectra of the singular
values Sii( f ), requires users’ input. However, because the modal decomposition has to be
automated for the use in SHM, the need for such users’ input must be eliminated. Therefore,
an algorithm is needed that is able to pick the spectral peaks in a similar way to an educated
user. Much work has been done in this area and some solutions are implemented in
commercial software, e.g. by Peeters et al. (2006), Andersen et al. (2007), and Zimmerman
et al. (2008).
In the implementation used here, an algorithm is employed for the peak picking that only
operates using the numerical data of the given spectra. In doing so, the numerical data of
the given spectra is analyzed automatically for potential eigenfrequencies. The procedure
regards three parameters, a lower noise threshold, an upper signal bound and a value for
the sensitivity in the frequency dimension. The sensitivity enables a residual random part of
peaks in the spectra to be eliminated which are due to the finite number of averages used to
calculate the RD signatures RYX(τ).
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3.3 Applications

3.3.1 Model of a wind turbine

To test the performance of the vibration analysis approach in the field, the model of a wind
turbine described in Section 2.3 is used. The cross-section and length of the beam serving
as the tower are appropriately chosen, such that the resonant frequencies of the assembled
system are in a range similar to those of a full scale structure. Since the cross-section of
the beam is rectangular, the bending eigenmodes in the x and y directions should possess
different eigenfrequencies in order to alleviate the structural analysis. For the tests, the beam
is instrumented with two triaxial, laboratory accelerometers with a sensitivity of 0.1 V/g and
a measuring range of ±50 g. One sensor is mounted close to the top of the beam (sensor 1)
and the other mid-way along the length (sensor 2). In this first application, only the x-axis is
used for data acquisition using the network described.
As a reference for the measurements under operating conditions, an EMA and an OMA are
conducted. The results of those analyses (first bending modes around 4.5 Hz, second bending
modes around 30.0 Hz) are listed and compared to other results in Table 1. For the OMA, the
commercial software ARTeMIS has been used. It has to be mentioned that for the first and the
second bending modes the frequency in the x and y directions fit each other even though the
aluminum beam has no quadratic cross-section. This can be explained with the asymmetric
fixture at the lower end of the beam.
Both sensor signals are processed on one hardware platform but by means of a decentralized
implementation. This is considered as a first step for functional prototyping of the algorithms
and the system layout in general. The estimation of the RD signatures follows Equation 4
and Equation 6. The estimation of the signal’s variance σ2

x is done using an autoregressive
power estimator (Kuo & Morgan, 1996). Its implementation requires only one storage bin and
its use is possible due to the fact that signals without zero mean (as is the case with the used
accelerations), the signals’ power or mean square value equals the variance (Bendat & Piersol,
2000). A sampling rate of 200 Hz was chosen, which is high enough to acquire vibrations
related to the first few bending modes. The RD signatures’ length was set to 1000 elements;
the signatures shown are averaged 8192 times.
The estimated RD signatures DYX are shown in Fig. 9. A comparison of the cross-correlation
functions R11 and R22 is shown in Fig. 10 to check that the assumption of reciprocity holds
like it should be for every mechanical system.
The matrix of spectral densities G(f) derived from the correlation functions is shown in Fig. 11
and the peaks selected by the peak picking algorithm are marked by circles in Fig. 12. The
results are the same as an educated user would have guesstimated. Only the peak at 50 Hz
found within the experimental set-up would not have been chosen by a user because it clearly
originates from a power line pickup. The eigenfrequencies found for the experimental set-up
are 4.2 Hz and 33.4 Hz, respectively. Those results deviate max. ± 6% from the frequencies
calculated or measured directly (see Table 1).

mode measured by EMA estimated by FDD in
ARTeMIS

estimated with the
network described here

1. 4.3 Hz / 4.4 Hz 4.2 Hz / 4.4 Hz 4.2 Hz / y not estimated
2. 31.6 Hz / 29.7 Hz 31.5 Hz / 29.0 Hz 33.4 Hz / y not estimated

Table 1. Comparison of eigenfrequencies (x-axis / y-axis) measured for the wind turbine
using different approaches.
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Fig. 9. Matrix D of the RD signatures measured on the model of a wind turbine.
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Fig. 12. Spectra of the first (-) and second
(- -) singular values S 11( f ) and S22( f ) of
the wind turbine.

3.3.2 Pedestrian bridge

As the first real application for the proposed system, the monitoring of a pedestrian bridge is
described. This bridge shown in Fig. 13 connects two buildings and has a length of 20 m.
To gain fundamental insight into the behavior of this bridge, an EMA has been performed.
From this analysis, the main parameters of the monitoring system have been analytically
derived (see Table 2). The steps needed to calculate this parameters are described below.

Fig. 13. North view of the bridge subjected to monitoring.

Parameter Symbol Value

Frequencies of modes of interest [ f1, ..., fHMoI ] [8.1, 9.8, 15.1] Hz
Frequency of highest mode of interest fHMoI 15.1 Hz

Structural damping loss factor of modes of interest [η1, ..., ηHMoI ] [0.63, 0.43, 1.23]%

Desired decay of the sigantures Xend
X 1%

Sampling frequency fs 128 Hz
Block length of RD signatures (in samples) n 2048
Block length of RD signatures (in seconds) T 16 s

Table 2. Setup of the monitoring system derived from the EMA.
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The first step in defining the setup of the monitoring system from the EMA is to select the
range of modes that should be monitored. This selection should be based on the experience
of a monitoring engineer as well as on knowledge about the hot spots of the system being
monitored. These are given by the user or manufacturer. Having chosen the modes of interest,
the sampling frequency and block length can be calculated using the output coming from the
EMA as well as some values defined by the user (see Equations 9 and 10).

fs = [2...8] · fHMoI (9)

T ≥ max

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

ln
(

Xend
X

)

− η f

2
2π f

√

1−
(

η f
2

)2

∣

∣

∣

∣

∣

∣

∣

∣

∣

f ∈ [ f1, ..., fHMoI ]

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

T = a
1

fs

∣

∣

∣

∣

a ∈ 2N (10)

The quality of the determined mode shapes strongly depends on the accuracy of the estimated
phase relationships acquired using the cross RD signatures (see Section 3.2.1). Therefore the
acquired cross RD signatures should include good quality information about all the modes of
interest. This might be archieved by choosing the triggering sensors or reference degrees of
freedom (refDOF), in a way that each mode of interest is excitable at least at one refDOF. A
similar requirement is described by the controllability criterion of a controlled system. Aiming
at optimal controllability, the input matrix of a state-space-model can be used (Lunze, 2010).
The state-space-model can be derived from the EMA of the bridge’s structure (Bartel et al.,
2010; Buff et al., 2010; Herold, 2003).
For monitoring the pedestrian bridge under operating conditions, the signal processing
algorithm presented in section 3.2.1 is implemented on an embedded PC by automatic code
generation from Simulink. Generally, the resources of the used embedded PC are limited.
Based on the PC capacity and the setup parameters, the maximum number of sensors that
can be handled by the hardware can be calculated. To guarantee real-time capability, the
worst-case sensor-task execution time must be less than the sensor signal’s sampling time.
From this it follows that for the bridge application, the hardware can handle a maximum
number of 14 sensors (2 reference and 12 response sensors). In contrast, an EMA is usually
performed with a huge number of DOFs. Hence, out of these EMA candidate sensor positions,
the best possible set of 14 sensor positions has to be chosen. The Effective Independence is a
sensor placement method based on the linear independence of candidate sensor sets. In an
iterative process, a large starting set is reduced to a given number of 14 sensors (Buff et al.,
2010; Kammer, 1991).
The second step includes the initialisation of the operational monitoring system on the
pedestrian bridge. Prior to starting the data acquisition, the system needs information
about the characteristics of the bridge’s natural excitation to determine sensor parameters
like sensitivity, resolution and optimum trigger levels for both reference nodes. Therefore
the acceleration data of the sensors have been recorded and analysed (see Fig. 14). Two
characteristic types of ambient excitations are effective on the bridge: passing pedestrians
and wind excitation.
According to Asmussen (1998), the optimum trigger level is a =

√
2σx, in the case of the level

crossing trigger condition. In the real application it is inappropriate to calculate the standard
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Fig. 14. At the reference nodes there are two characteristic types of natural excitations on the
bridge. (a) pedestrian excitation reference 1; (b) pedestrian excitation reference 2; (c) wind
excitation reference 1; (d) wind excitation reference 2.

deviation σx from the total sensor signal period, because of the poor signal-to-noise ratio
(SNR) due to the measuring hardware over a wide range. For this reason, an experimental
trigger level ae has been calculated from only those sections with a sufficient SNR. For the
bridge application, this will be the case if a pedestrian passes over the bridge (see Fig. 15).
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Fig. 15. If a pedestrian passes over the bridge, the signal-to-noise ratio of the reference sensor
signals is sufficient to calculate the experimental trigger levels. (a) signal sections of reference
1 to calculate ae,1; (b) signal sections of reference 2 to calculate ae,2.

Consequently, the experimental trigger levels can be calculated as follows:

ae,i =

√
2

N

N

∑
k=1

σk (11)

Having finished the preprocessing and setup up of the smart sensor network, the first
measurements were conducted using the 14 DOFs as described. Those measurements yielded
consecutive sets of 28 RD signatures. Using the two trigger levels and the two variances
acquired together with those signatures, consecutive sets of 28 correlation functions have been
calculated and transformed into spectral density matrices. For two correlation functions a
reciprocity check could be made. This yielded a good agreement in amplitude and position
of the zero crossings. Decomposing these matrices into singular value spectra and using the
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peak picking algorithm, the time-dependent development of several eigenfrequencies can be
derived. Furthermore, clear mode shapes could be derived from the measured data. Fig. 16
shows a torsional mode of the bridge’s deck. The mode shape and the frequency showed
excellent agreement to the shapes and frequencies derived from the EMA.

−5 0 5

0

5

10

y [m]

z 
[m

]

51015

0

5

10

x [m]

z 
[m

]

5

10

15
−5 0 5

y [m]

x
 [

m
]

5
10

15

−5
0

5

0

5

10

x [m]y [m]

z 
[m

]

Fig. 16. Mode shape of a torsional mode of the bridge’s deck.

4. Acousto Ultrasonics

4.1 Basic principles

Damage detection methods based on ultrasonics rely on the propagation and reflection of
elastic waves within a material. The purpose is to identify local damage and flaws via wave
field disturbances (Giurgiutiu & Cuc, 2005).
For ultrasound non-destructive evaluation (NDE) a transmitter transfers ultrasound waves
into a material and a receiver picks up the waves when they have passed through the material.
Transmitter and receiver can be combined into a single component (Lading et al., 2002).
Embedding piezoelectric transducers into a structure allows methods for active Structural
Health Monitoring (SHM) to be implemented. Piezoelectric transducers are inexpensive,
lightweight and unobtrusive and, due to these properties, appropriate for embedding into
a structure with minimal weight penalty and at affordable costs. Compared to conventional
NDE ultrasound transducers, active piezoelectric transducers interact with a structure in a
similar way. One piezoelectric transducer can act as both transmitter and receiver of ultrasonic
waves (Giurgiutiu & Cuc, 2005).
Among the different types of elastic waves that can propagate in materials, the class of the
guided waves plays an important role for SHM. The advantage of guided waves is, that they
can travel large distances in structures; even in curved structures, with only little energy
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loss. Guided waves are being used for the detection of cracks, inclusions, and disbondings
in metallic and composite structures. Lamb waves, which are a type of guided wave,
are appropriate for thin plates and shell structures. Due to their variable mode structure,
multi-mode character, sensitivity to different types of flaws, their ability to propagate over
long distances, their capability of following curvatures and accessing concealed components,
the guided Lamb waves offer an improved inspection potential over other ultrasonic methods.
Another type of guided waves are Rayleigh waves, which travel close to the surface with very
little penetration into the depth of a solid, and therefore are more useful for detecting surface
defects (Giurgiutiu, 2008).
Lamb waves are guided by the two parallel free boundary surfaces of a material. They
propagate perpendicularly to the plate thickness. The boundary surfaces only impose low
damping to the Lamb waves, thus they can travel long distances. Lamb waves are interesting
from the monitoring point of view since damage such as boundary, material or geometric
discontinuities which generate wave reflections can be detected (Silva et al., 2010).
The Lamb waves can be classified into symmetrical and anti-symmetrical wave shapes,
Fig. 17, both satisfying the wave equation and boundary conditions for this problem. Each
wave shape can propagate independently of the other (Kessler et al., 2002).
Piezoelectric transducers interact with a structure in a similar way to that of conventional
ultrasonic transducers. Hence, methods used in traditional ultrasonic monitoring, like
pitch-catch or pulse-echo, can be adopted to the application of piezoelectric transducers. The
pitch-catch method can be used to detect damage which is located between a transmitter and
a receiver transducer. Lamb waves travelling through the damaged region undergo changes
in amplitude, phase, dispersion or time of transit. The changes can be identified by comparing
with a ’pristine’ situation. The pulse-echo method is based on a single transducer attached to a
structure. The transducer functions as both transmitter and receiver of waves. The transducer
sends out a Lamb wave which is reflected by a crack. The reflected wave (the echo) is then
captured by the same transducer. In contrast to conventional pulse-echo testing where testing
is traditionally applied across-the-thickness, the guided wave pulse-echo is more appropriate
to cover a wide sensing area. Further ultrasonic approaches for damage detection, which are
not detailed, are time reversal methods or migration techniques (Giurgiutiu, 2008).
Another technique for acousto-ultrasonic testing is referred to as electro-mechanical
impedance method (EMI). Pioneering work on the use of EMI has been carried out by Liang
et al. (1994). Only a single piezo transducer is required for its implementation. The technique
is based on the direct relation between the electrical impedance (or admittance), which can be
measured at the piezo transducers by commercially available impedance analysers, and the

Fig. 17. Graphical representation of anti-symmetrical and symmetrical wave shapes (Kessler
et al., 2002).
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mechanical impedance of the host structure. The real part of the complex electrical admittance
plotted over a sufficiently high frequency range, typically of the order of kHz, is called the
’signature’ of the structure (Ballah & Soh, 2003).
Since the imaginary part is more sensitive to temperature variations than the real part, the
real part is mainly being used for monitoring applications. In order to achieve high sensitivity
to minor changes in the structural integrity the electrical impedance is measured at high
frequency ranges of 30-400 kHz. For the choice of the frequency range for a given structure,
which is commonly determined by trial-and-error, it must be taken into account that at high
frequencies, the sensing area is limited adjacent to the piezoeletric transducer. Estimates of
the sensing areas of single PZTs vary anywhere from 0.4 m for composite structures to 2 m for
simple metal beams (Park et al., 2003). Furthermore, the modification of a signature increases
as the distance between the sensor and the crack decreases (Zagrai & Giurgiutiu, 2002). A
comprehensive overview of the topic of SHM with piezoelectric wafer active sensors is given
in Giurgiutiu (2008).
A method for (passive) SHM, which can be implemented with similar piezoelectric transducer
arrangements, is the acoustic emission (AE) method. Sources of acoustic emission within a
structure can be cracking, deformation, debonding, delamination, impacts and others. Stress
waves of broad spectral content are produced by localized transient changes in stored elastic
energy (Ciang et al., 2008). Piezoelectric tranducers can then be used to convert the resulting
accelerations into an electric signal. The AE technique allows the growth of damage to be
sensed since stress waves are emitted by growing cracks or, in the case of laminates, fibre
rupture. Thus the AE technique stands in contrast to many other NDE techniques which
generally detect the presence, not the growth of defects. The sensing region of a piezoelectric
sensor depends on its particular resonant frequency. For applications to laminates, a common
sensor resonant frequency of 150 Hz is a good compromise between noise rejection and the
area a sensor monitors (Lading et al., 2002).

4.2 System description and application to carbon fibre reinforced plastic coupons

The method of damage detection with ultrasonic waves should be illustrated by an
experimental implementation on a CFRP (carbon fibre reinforced plastic) coupon (Lilov et
al., 2010). The aim of the study is to monitor the delamination due to impact damage by
acousto-ultrasonic inspection. To this end the coupon is instrumented with two piezo-ceramic
transducers (PI 876-SP1). One of them is used as actuator and the other as a sensor (Fig. 18).
The test set up (Fig. 19) also includes a dynamic signal analyser, which drives the actuator
with a broad band swept sine signal (0..100 kHz), acquires the sensor data and calculates
the structural Frequency Response Function (FRF) between actuator and sensor. A PC is
connected to the analyser to control the measurements, collect the data and store them for
further analysis.
To investigate the possibility of determining the severity of the impact event from the
measured data, several identical coupons are instrumented and each damaged with a defined
impact energy.
When directly comparing the measured FRFs from different impact tests, deviations from the
original state can be observed (Fig. 20). In order to quantify these effects, a signature based
analysis is applied to the FRF. To this end, FRF data Hinit from a reference measurement, i.e.
before the damage is induced, is compared to data acquired after the impact event (Hdam)
by calculating statistical measures as damage indices. In many cases, the calculation of the
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correlation coefficient leads to good results:

Cor(Hinit, Hdam) =
Cov(Hinit, Hdam)

√

Var(Hinit)
√

Var(Hdam)
(12)

If both measurements lead to identical results, the correlation coefficient value will remain
at unity. However, in lower frequency regions, noise from external sources deteriorates the
FRF measurements and leads to a low coherence. At very high frequencies, the propagation
of ultrasonic waves is damped due to the material properties of the CFRP coupon, this also
leads to poor FRF measurements. Thus, it is advisable to choose an expedient frequency
band for signature analyses. As shown in Fig. 21, regarding higher impact energies above
15 J, the correlation coefficient decreases with increasing impact energy when analysing the
third-octave band around 35.6 kHz. However, for lower impact energies, a deviation of
the correlation coefficient from the reference can also be observed. As stated above, this
interrelation cannot be observed at a lower frequency band (e.g. 2.8 kHz). Since a broad band
excitation is used, and the signals are simply analysed in the frequency domain, a localisation
e.g. by time-of-flight analysis is not possible. Thus, this method is more suitable for the
straightforward implementation of a damage detection system.
Certainly, to transfer this SHM method from the coupon level to an application, some
challenges have to be taken up: The system has to be scaled for the application to larger
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Fig. 21. Correlation coefficient for different impacts and frequency bands.

components, i.e. several actuator-sensor pairs distributed on the surface. The signal
processing should be implemented on a network of smart embedded platforms instead
of bulky laboratory equipment. Furthermore, a damage detection algorithm has to be
implemented in order to work autonomously. This also includes differentiating between false
alarms, e.g. a decrease in correlation due to temperature changes and that from actual impact
damage.

5. Conclusions

This paper has given an account of the useability of different monitoring methods in wind
turbines. The methods described, all serve to supervise of the integrity of structural parts.
Different projects have been undertaken at Fraunhofer LBF to develop and evaluate such
methods for Structural Health Monitoring, not only in the field of wind energy. This
contribution summarizes those developments, starting from the current state of the scientific
and technical knowledge and demonstrates their utility for wind turbines with the help of
realizations and studies of application of such systems. Three methods have been presented:
Load Monitoring, vibration analysis and Acousto Ultrasonics.
Concerning Load Monitoring, the development of classical methods for assessing residual
life-times and their transfer to smart sensor nodes is presented. As application example, a
simple model of a wind turbine is used.
The section dealing with vibrational analysis includes a literature review of methods used for
extracting health parameters from modal properties as well as the topic Operational Modal
Analysis (OMA). The measurement system developed at Fraunhofer LBF makes use of one of
those OMA methods and combines it with the Random Decrement method to design a data
acquisition system that can be implemented on a smart sensor network. As examples, the
application of this system to the model of a wind turbine as well as to a full scale pedestrian
bridge is described.
As a third method, Acousto Ultrasonics is described as a method which is capable of detecting
small scale damages. As an example, its application to coupons of fibre reinforced plastic is
described.
Although the methods described here are not far enhanced beyond the state of the art
documented in literature, their transfer to a network of sensor nodes and especially their
capability of being automated is a new and invaluable development deserving discussion. It
was demonstrated that, due to their relative small computational effort, all methods possess
the potential to be implemented at nodes of smart sensor networks. Their most important
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limitation lies in the fact that future research will be strongly connected to full scale tests and
that such tests cannot be carried out by research organisations alone.
Considered as a whole, these results suggest that there are monitoring methods that can
be applied to wind turbines and thereby contribute to making the process of harvesting
renewable energy more reliable.
This research will serve as a base for future studies on the topic of combining the different
classes of methods to develop a monitoring system that is able to predict the residual life-time
of structures. Such systems are of great use for off-shore wind turbines, because they are the
basis of a maintenance on demand.
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