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1. Introduction 

So-called macroscopic quantum effects(MQE) refer to a quantum phenomenon that occurs 

on a macroscopic scale. Such effects are obviously different from the microscopic quantum 

effects at the microscopic scale as described by quantum mechanics. It has been 

experimentally demonstrated [1-17] that macroscopic quantum effects are the phenomena 

that have occurred in superconductors. Superconductivity is a physical phenomenon in 

which the resistance of a material suddenly vanishes when its temperature is lower than a 

certain value, Tc, which is referred to as the critical temperature of superconducting 

materials. Modern theories [18-21] tell us that superconductivity arises from the irresistible 

motion of superconductive electrons. In such a case we want to know “How the 

macroscopic quantum effect is formed? What are its essences? What are the properties and 

rules of motion of superconductive electrons in superconductor?” and, as well, the answers 

to other key questions. Up to now these problems have not been studied systematically. We 

will study these problems in this chapter.  

2. Experimental observation of property of macroscopic quantum effects in 
superconductor 

(1) Superconductivity of material. As is known, superconductors can be pure elements, 

compounds or alloys. To date, more than 30 single elements, and up to a hundred alloys and 

compounds, have been found to possess the characteristics [1-17] of superconductors. 

When cT T , any electric current in a superconductor will flow forever without being 

damped. Such a phenomenon is referred to as perfect conductivity. Moreover, it was 

observed through experiments that, when a material is in the superconducting state, any 

magnetic flux in the material would be completely repelled resulting in zero magnetic fields 

inside the superconducting material, and similarly, a magnetic flux applied by an external 

magnetic field can also not penetrate into superconducting materials. Such a phenomenon is 
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called the perfect anti-magnetism or Maissner effect. Meanwhile, there are also other 

features associated with superconductivity, which are not present here  
How can this phenomenon be explained? After more than 40 years’ effort, Bardeen, Cooper 
and Schreiffier proposed the new idea of Cooper pairs of electrons and established the 
microscopic theory of superconductivity at low temperatures, the BCS theory [18-21],in 
1957, on the basis of the mechanism of the electron-phonon interaction proposed by Frohlich 
[22-23]. According to this theory, electrons with opposite momenta and antiparallel spins 
form pairs when their attraction, due to the electron and phonon interaction in these 
materials, overcomes the Coulomb repulsion between them. The so-called Cooper pairs are 
condensed to a minimum energy state, resulting in quantum states, which are highly 
ordered and coherent over the long range, and in which there is essentially no energy 
exchange between the electron pairs and lattice. Thus, the electron pairs are no longer 
scattered by the lattice but flow freely resulting in superconductivity. The electron pairs in a 
superconductive state are somewhat similar to a diatomic molecule but are not as tightly 
bound as a molecule. The size of an electron pair, which gives the coherent length, is 
approximately 10−4 cm. A simple calculation shows that there can be up to 106 electron pairs 
in a sphere of 10−4 cm in diameter. There must be mutual overlap and correlation when so 
many electron pairs are brought together. Therefore, perturbation to any of the electron 
pairs would certainly affect all others. Thus, various macroscopic quantum effects can be 
expected in a material with such coherent and long range ordered states. Magnetic flux 
quantization, vortex structure in the type-II superconductors, and Josephson effect [24-26] in 
superconductive junctions are only some examples of the phenomena of macroscopic 
quantum mechanics. 

(2) The magnetic flux structures in superconductor. Consider a superconductive ring. 

Assume that a magnetic field is applied at T >Tc, then the magnetic flux lines 0  produced 

by the external field pass through and penetrate into the body of the ring. We now lower the 

temperature to a value below Tc, and then remove the external magnetic field. The magnetic 

induction inside the body of circular ring equals zero ( B


= 0) because the ring is in the 

superconductive state and the magnetic field produced by the superconductive current 

cancels the magnetic field, which was within the ring. However, part of the magnetic fluxes 

in the hole of the ring remain because the induced current is in the ring vanishes. This 

residual magnetic flux is referred to as “the frozen magnetic flux”. It has been observed 

experimentally, that the frozen magnetic flux is discrete, or quantized. Using the 

macroscopic quantum wave function in the theory of superconductivity, it can be shown 

that the magnetic flux is established by 0' n    (n=0,1,2,…), where 0 =hc/2e=2.07×10-15 

Wb is the flux quantum, representing the flux of one magnetic flux line. This means that the 

magnetic fluxes passing through the hole of the ring can only be multiples of 0 [1-12]. In 

other words, the magnetic field lines are discrete. We ask, “What does this imply?” If the 

magnetic flux of the applied magnetic field is exactly n, then the magnetic flux through the 

hole is n 0 , which is not difficult to understand. However, what is the magnetic flux 

through the hole if the applied magnetic field is (n+1/4) 0 ? According to the above, the 

magnetic flux cannot be (n+1/4) 0 . In fact, it should be n 0 . Similarly, if the applied 

magnetic field is (n+3/4) 0  and the magnetic flux passing through the hole is not 

(n+3/4) 0 , but rather (n+1) 0 , therefore the magnetic fluxes passing through the hole of 

the circular ring are always quantized.  
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An experiment conducted in 1961 surely proves this to be so, indicating that the 

magnetic flux does exhibit discrete or quantized characteristics on a macroscopic scale. 

The above experiment was the first demonstration of the macroscopic quantum effect. 

Based on quantization of the magnetic flux, we can build a “quantum magnetometer” 

which can be used to measure weak magnetic fields with a sensitivity of 3×10-7 Oersted. 

A slight modification of this device would allow us to measure electric current as low as 

2.5×10-9 A.  

(3) Quantization of magnetic-flux lines in type-II superconductors. The superconductors 

discussed above are referred to as type-I superconductors. This type of superconductor 

exhibits a perfect Maissner effect when the external applied field is higher than a critical 

magnetic value cH


. There exists other types of materials such as the NbTi alloy and Nb3Sn 

compounds in which the magnetic field partially penetrates inside the material when the 

external field H


 is greater than the lower critical magnetic field 1cH


, but less than the 

upper critical field 2cH


[1-7]. This kind of superconductor is classified as type-II 

superconductors and is characterized by a Ginzburg-Landau parameter greater than 1/2. 

Studies using the Bitter method showed that the penetration of a magnetic field results in 

some small regions changing from superconductive to normal state. These small regions in 

normal state are of cylindrical shape and regularly arranged in the superconductor, as 

shown in Fig.1. Each cylindrical region is called a vortex (or magnetic field line)[1-12]. The 

vortex lines are similar to the vortex structure formed in a turbulent flow of fluid. Both 

theoretical analysis and experimental measurements have shown that the magnetic flux 

associated with one vortex is exactly equal to one magnetic flux quantum 0 , when the 

applied field 1cH H
 

, the magnetic field penetrates into the superconductor in the form of 

vortex lines, increased one by one. For an ideal type-II superconductor, stable vortices are 

distributed in triagonal pattern, and the superconducting current and magnetic field 

distributions are also shown in Fig. 1. For other, non-ideal type-II superconductors, the 

triagonal pattern of distribution can be also observed in small local regions, even though its 

overall distribution is disordered. It is evident that the vortex-line structure is quantized and 

this has been verified by many experiments and can be considered a result of the 

quantization of magnetic flux. Furthermore, it is possible to determine the energy of each 

vortex line and the interaction energy between the vortex lines. Parallel magnetic field lines 

are found to repel each other while anti-parallel magnetic lines attract each other. 
(4) The Josephson phenomena in superconductivity junctions [24-26]. As it is known in 
quantum mechanics, microscopic particles, such as electrons, have a wave property and that 
can penetrate through a potential barrier. For example, if two pieces of metal are separated 
by an insulator of width of tens of angstroms, an electron can tunnel through the insulator 
and travel from one metal to the other. If voltage is applied across the insulator, a tunnel 
current can be produced. This phenomenon is referred to as a tunneling effect. If two 
superconductors replace the two pieces of metal in the above experiment, a tunneling 

current can also occur when the thickness of the dielectric is reduced to about 30
0

A . 
However, this effect is fundamentally different from the tunneling effect discussed above in 
quantum mechanics and is referred to as the Josephson effect.   
Evidently, this is due to the long-range coherent effect of the superconductive electron pairs. 
Experimentally, it was demonstrated that such an effect could be produced via many types 
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of junctions involving a superconductor, such as superconductor-metal-superconductor 
junctions, superconductor-insulator- superconductor junctions, and superconductor bridges. 
These junctions can be considered as superconductors with a weak link. On the one hand, 
they have properties of bulk superconductors, for example, they are capable of carrying 
certain superconducting currents. On the other hand, these junctions possess unique 
properties, which a bulk superconductor does not. Some of these properties are summarized 
in the following. 
(A) When a direct current (dc) passing through a superconductive junction is smaller than a 
critical value Ic, the voltage across the junction does not change with the current. The critical 
current Ic can range from a few tens of μA to a few tens of mA.  
(B) If a constant voltage is applied across the junction and the current passing through the 
junction is greater than Ic, a high frequency sinusoidal superconducting current occurs in 
the junction. The frequency is given by υ=2eV/h, in the microwave and far-infrared regions 
of (5-1000)×109Hz. The junction radiates a coherent electromagnetic wave with the same 
frequency. This phenomenon can be explained as follows: The constant voltage applied 
across the junction produces an alternating Josephson current that, in turn, generates an 
electromagnetic wave of frequency, υ. The wave propagates along the planes of the junction. 
When the wave reaches the surface of the junction (the interface between the junction and its 
surrounding), part of the electromagnetic wave is reflected from the interface and the rest is 
radiated, resulting in the radiation of the coherent electromagnetic wave. The power of 
radiation depends on the compatibility between the junction and its surrounding. 

(C) When an external magnetic field is applied over the junction, the maximum dc current, 

Ice , is reduced due to the effect of the magnetic field. Furthermore, Ic changes periodically 

as the magnetic field increases. The cI H  curve resembles the distribution of light intensity 

in the Fraunhofer diffraction experiment , and the latter is shown in Fig. 2. This 

phenomenon is called quantum diffraction of the superconductivity junction. 
 

 

Fig. 1. Current and magnetic field distributionseffect in in a type-II superconductor. 
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Fig. 2. Quantum diffractionsuperconductor junction 

(D) When a junction is exposed to a microwave of frequency, υ, and if the voltage applied 

across the junction is varied, it can be seen that the dc current passing through the junction 

increases suddenly at certain discrete values of electric potential. Thus, a series of steps 

appear on the dc I − V curve, and the voltage at a given step is related to the frequency of 

the microwave radiation by nυ=2eVn/h(n=0,1,2,3…). More than 500 steps have been 

observed in experiments. 

Josephson first derived these phenomena theoretically and each was experimentally verified 

subsequently. All these phenomena are, therefore, called Josephson effects [24-26]. In 

particular, (1) and (3) are referred to as dc Josephson effects while (2) and (4) are referred to 

as ac Josephson effects. Evidently, Josephson effects are macroscopic quantum effects, which  

can be explained well by the macroscopic quantum wave function. If we consider a 

superconducting junction as a weakly linked superconductor, the wave functions of the 

superconducting electron pairs in the superconductors on both sides of the junction are 

correlated due to a definite difference in their phase angles. This results in a preferred 

direction for the drifting of the superconducting electron pairs, and a dc Josephson current 

is developed in this direction. If a magnetic field is applied in the plane of the junction, the 

magnetic field produces a gradient of phase difference, which makes the maximum current 

oscillate along with the magnetic field, and the radiation of the electromagnetic wave occur. 

If a voltage is applied across the junction, the phase difference will vary with time and 

results in the Josephson effect. In view of this, the change in the  phase difference of the 

wave functions of superconducting electrons plays an important role in Josephson effect, 

which will be discussed in more detail in the next section.   

The discovery of the Josephson effect opened the door for a wide range of applications of 

superconductor theory. Properties of superconductors have been explored to produce 

superconducting quantum interferometer–magnetometer, sensitive ammeter, voltmeter, 

electromagnetic wave generator, detector, frequency-mixer, and so on. 
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3. The properties of boson condensation and spontaneous coherence of 
macroscopic quantum effects 

3.1 A nonlinear theoretical model of theoretical description of macroscopic quantum 
effects 

From the above studies we know that the macroscopic quantum effect is obviously different 

from the microscopic quantum effect, the former having been observed for physical 

quantities, such as, resistance, magnetic flux, vortex line, and voltage, etc.  

 In the latter, the physical quantities, depicting microscopic particles, such as energy, 

momentum, and angular momentum, are quantized. Thus it is reasonable to believe that the 

fundamental nature and the rules governing these effects are different.  

We know that the microscopic quantum effect is described by quantum mechanics. 

However, the question remains relative to the definition of what are the mechanisms of 

macroscopic quantum effects? How can these effects be properly described?  

What are the states of microscopic particles in the systems occurring related to macroscopic 

quantum effects? In other words, what are the earth essences and the nature of macroscopic 

quantum states? These questions apparently need to be addressed.  

We know that materials are composed of a great number of microscopic particles, such as 
atoms, electrons, nuclei, and so on, which exhibit quantum features. We can then infer, or 
assume, that the macroscopic quantum effect results from the collective motion and 
excitation of these particles under certain conditions such as, extremely low temperatures, 
high pressure or high density among others. Under such conditions, a huge number of 
microscopic particles pair with each other condense in low-energy state, resulting in a 
highly ordered and long-range coherent. In such a highly ordered state, the collective 
motion of a large number of particles is the same as the motion of “single particles”, and 
since the latter is quantized, the collective motion of the many particle system gives rise to a 
macroscopic quantum effect. Thus, the condensation of the particles and their coherent state 
play an essential role in the macroscopic quantum effect.  

What is the concept of condensation? On a macroscopic scale, the process of transforming 
gas into liquid, as well as that of changing vapor into water, is called condensation. This, 
however, represents a change in the state of molecular positions, and is referred to as a 
condensation of positions. The phase transition from a gaseous state to a liquid state is a first 
order transition in which the volume of the system changes and the latent heat is produced, 
but the thermodynamic quantities of the systems are continuous and have no singularities. 
The word condensation, in the context of macroscopic quantum effects has its’ special 
meaning. The condensation concept being discussed here is similar to the phase transition 
from gas to liquid, in the sense that the pressure depends only on temperature, but not on 
the volume noted during the process, thus, it is essentially different from the above, first-
order phase transition. Therefore, it is fundamentally different from the first-order phase 
transition such as that from vapor to water. It is not the condensation of particles into a 
high-density material in normal space. On the contrary, it is the condensation of particles to 
a single energy state or to a low energy state with a constant or zero momentum. It is thus 
also called a condensation of momentum. This differs from a first-order phase transition and 
theoretically it should be classified as a third order phase transition, even though it is really 
a second order phase transition, because it is related to the discontinuity of the third 
derivative of a thermodynamic function. Discontinuities can be clearly observed in 
measured specific heat, magnetic susceptibility of certain systems when condensation 
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occurs. The phenomenon results from a spontaneous breaking of symmetries of the system 
due to nonlinear interaction within the system under some special conditions such as, 
extremely low temperatures and high pressures. Different systems have different critical 
temperatures of condensation. For example, the condensation temperature of a 
superconductor is its critical temperature cT , and from previous discussions[27-32]. 
From the above discussions on the properties of superconductors, and others we know that, 

even though the microscopic particles involved can be either Bosons or Fermions, those 

being actually condensed, are either Bosons or quasi-Bosons, since Fermions are bound as 

pairs. For this reason, the condensation is referred to as Bose-Einstein condensation[33-36] 

since Bosons obey the Bose-Einstein statistics. Properties of Bosons are different from those 

of Fermions as they do not follow the Pauli exclusion principle, and there is no limit to the 

number of particles occupying the same energy levels. At finite temperatures, Bosons can 

distribute in many energy states and each state can be occupied by one or more particles, 

and some states may not be occupied at all. Due to the statistical attractions between Bosons 

in the phase space (consisting of generalized coordinates and momentum), groups of Bosons 

tend to occupy one quantum energy state under certain conditions. Then when the 

temperature of the system falls below a critical value, the majority or all Bosons condense to 

the same energy level (e.g. the ground state), resulting in a Bose condensation and a series of 

interesting macroscopic quantum effects. Different macroscopic quantum phenomena are 

observed because of differences in the fundamental properties of the constituting particles 

and their interactions in different systems.  

In the highly ordered state of the phenomena, the behavior of each condensed particle is 

closely related to the properties of the systems. In this case, the wave function ief   or 
ie     of the macroscopic state[33-35], is also the wave function of an individual 

condensed particle. The macroscopic wave function is also called the order parameter of the 

condensed state. This term was used to describe the superconductive states in the study of 

these macroscopic quantum effects. The essential features and fundamental properties of 

macroscopic quantum effect are given by the macroscopic wave function   and it can be 

further shown that the macroscopic quantum states, such as the superconductive states are 

coherent and are Bose condensed states formed through second-order phase transitions after 

the symmetry of the system is broken due to nonlinear interaction in the system. 

In the absence of any externally applied field, the Hamiltonian of a given macroscopic 

quantum system can be represented by the macroscopic wave function   and written as 

 
2 2 41

H' [ ]
2

H dx dx            (1) 

Here H’=H  presents the Hamiltonian density function of the system, the unit system in 

which m=h=c=1 is used here for convenience. If an externally applied electromagnetic field 

does exist, the Hamiltonian given above should be replaced by  

 
22 2 4*1 H

H H' ie A
2 8

dx dx
 
             

  
 




 (2) 

or, equivalently 
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ji
2 2 4*

j j ji

1 1
H H' ( ie A ) F .F

2 4
dx dx

                  

where ji j i tF A A j    is the covariant field intensity, H= A
   is the magnetic field 

intensity, e is the charge of an electron, and e*=2e,  A


is the vector potential of the 

electromagnetic field,   and   can be said to be some of the interaction constants. The 

above Hamiltonians in Eqs.(1) and (2) have been used in studying superconductivity by 

many scientists, including Jacobs de Gennes [37], Saint-Jams [38], Kivshar [39-40], Bullough 

[41-42], Huepe [43], Sonin [44], Davydov [45], et al., and they can be also derived from the 

free energy expression of a superconductive system given by Landau et al [46-47]. As a 

matter of fact, the Lagrangian function of a superconducting system can be obtained from 

the well-known Ginzberg-Landau (GL) equation [47-54] using the Lagrangian method, and 

the Hamiltonian function of a system can then be derived using the Lagrangian approach. 

The results, of course, are the same as Eqs. (1) and (2). Evidently, the Hamiltonian operator 

corresponding to Eqs. (1) and (2) represents a nonlinear function of the wave function of a 

particle, and the nonlinear interaction is caused by the electron-phonon interaction and due 

to the vibration of the lattice in BCS theory in the superconductors. Therefore, it truly exists. 

Evidently, the Hamiltonians of the systems are exactly different from those in  quantum 

mechanics, and a nonlinear interaction related to the state of the particles is involved in Eqs. 

(1) –(2). Hence, we can expect that the states of particles depicted by the Hamiltonian also 

differ from those in quantum mechanics, and the Hamiltonian can describe the features of 

macroscopic quantum states including superconducting states. These problems are to be 

treated in the following pages. Evidently, the Hamiltonians in Eqs. (1) and (2) possess the U 

(1) symmetry. That is, they remain unchanged while undergoing the following 

transformation: 

( , ) ( , ) ( , )jiQ
r t r t e r t

     
  

 

where jQ  is the charge of the particle，θ is a phase and, in the case of one dimension, each 

term in the Hamiltonian in Eq. (1) or Eq. (2) contains the product of the ( , )j x t s , then we 

can obtain: 

1 2( )' ' '
1 2 1 2( , ) ( , ).... ( , ) ( , ) ( , ).... ( , )ni Q Q Q

n nx t x t x t e x t x t x t           

Since charge is invariant under the transformation and neutrality is required for the 

Hamiltonian, there must be (Q1 + Q2 + · · · + Qn) = 0 in such a case. Furthermore, since   is 

independent of x, it is necessary that ji Q
j je

    . Thus each term in the Hamiltonian in 

Eqs. (1) is invariant under the above transformation, or it possesses the U(1) symmetry[16-17]. 
If we rewrite Eq. (1) as the following   

 2 2 4
eff eff

1
H' =- ( ) U ( ),U ( )

2
         (3) 

We can see that the effective potential energy, ( )effU  , in Eq. (3) has two sets of extrema, 

0 / 2      and 0 =0, but the minimum is located at  

 0 / 2 0 0 ,        (4) 
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rather than at 0 =0 . This means that the energy at 0 / 2      is lower than that at 0 =0. 

Therefore, 0 =0 corresponds to the normal ground state, while 0 / 2      is the ground 

state of the macroscopic quantum systems .  

In this case the macroscopic quantum state is the stable state of the system. This shows that 

the Hamiltonian of a normal state differs from that of the macroscopic quantum state, in 

which the two ground states satisfy 0 0 0 0     under the transformation,   . 

That is, they no longer have the U(1) symmetry. In other words，the symmetry of the 

ground states has been destroyed. The reason for this is evidently due to the nonlinear term 
4  in the Hamiltonian of the system. Therefore, this phenomenon is referred to as a 

spontaneous breakdown of symmetry. According to Landau’s theory of phase transition, 

the system undergoes a second-order phase transition in such a case, and the normal ground 

state 0 ==0 is changed to the macroscopic quantum ground state 0 / 2     . Proof will 

be presented in the following example .  
In order to make the expectation value in a new ground state zero in the macroscopic 
quantum state, the following transformation [16-17] is done:  

 '
0      (5) 

so that 

 0 ' 0 =0 (6) 

After this transformation, the Hamiltonian density of the system becomes 

 
2 2 2 3 3 4 2 4

0 0 0 0 0 0

1
H'( + ) (6 ) 4 (4 2 )

2
                        (7)  

Inserting Eq. (4) into Eq. (7), we have 2
0 0 04 2 0       . 

Consider now the expectation value of the variation H'/   in the ground state, i.e. 

'
0 0 0

H



, then from Eq. (1), we get  

 2 3'
0 0 0 - 2 4 0 0

H
       


 (8) 

After the transformation Eq. (6), it becomes  

 2 2 2 3 2
0 0 0 0 0(4 2 ) 12 0 0 4 0 0 (2 12 ) 0 0 0                    (9) 

where the terms 30 0  and 0 0  are both zero, but the fluctuation 2
012 0 0   of the 

ground state is not zero. However, for a homogeneous system, at T=0K, the term 20 0  is 

very small and can be neglected.  
Then Eq. (9) can be written as  

 2 2
0 0 0- (4 2 ) 0         (10) 
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Obviously, two sets of solutions, 0 0   , and 0 / 2     , can be obtained from the 

above equation, but we can demonstrate that the former is unstable, and that the latter is 

stable. 

If the displacement is very small, i.e. '
0 0 0 0       , then the equation satisfied by the 

fluctuation 0  is relative to the normal ground state 0 0   and is 

 2
0 02 0      (11) 

Its’ solution attenuates exponentially indicating that the ground state, 0 0   is unstable. 

On the other hand, the equation satisfied by the fluctuation 0  , relative to the ground 

state 0 / 2      is  2
0 02 0     . Its’ solution, 0 , is an oscillatory function and 

thus the macroscopic quantum state ground state 0 / 2      is stable. Further 

calculations show that the energy of the macroscopic quantum state ground state is lower 

than that of the normal state by 2
0 / 4 0     .Therefore, the ground state of the 

normal phase and that of the macroscopic quantum phase are separated by an energy gap 

of 2 /(4 )  so then, at T=0K, all particles can condense to the ground state of the 

macroscopic quantum phase rather than filling the ground state of the normal phase. 
Based on this energy gap, we can conclude that the specific heat of the macroscopic 
quantum systems has an exponential dependence on the temperature, and the critical 

temperature is given by: c pT =1.14 exp[ 1 /(3 / )N(0)]    [16-17]. This is a feature of the 

second-order phase transition. The results are in agreement with those of the BCS theory 
of superconductivity.  

Therefore, the transition from the state 0 0  to the state 0 / 2      and the 

corresponding condensation of particles are second-order phase transitions. This is 

obviously the results of a spontaneous breakdown of symmetry due to the nonlinear 

interaction, 4 . 

In the presence of an electromagnetic field with a vector potential A


, the Hamiltonian of the 

systems is given by Eq. (2). It still possesses the U (1) symmetry.Since the existence of the 

nonlinear terms in Eq. (2) has been demonstrated, a spontaneous breakdown of symmetry 

can be expected. Now consider the following transformation: 

 1 2 1 0 2

1 1
(x) [ (x) i (x)] [ (x) +i (x)]

2 2
           (12) 

Since i0 0 0  under this transformation,  then the equation (2) becomes  

2
2 2 2 2 2 2

i j j i 2 1 1 0 2 i 0 i 2

2 2 2 2 2 2
2 1 1 2 i 0 1 0 2 0 1 1 2

2 2 2 2 2 2
1 2 0 0 1 0 0

1 1 1 (e*)
H' ( A A ) ( ) ( ) [( ) ]A e * A

4 2 2 2
1 1

e * ( )A ( 12 2 ) (12 2 ) 4 ( )
2 2

4 ( ) (4 2 )

                 

                      

             

  (13) 

We can see that the effective interaction energy of 0  is still given by:  
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 2 4
eff 0 0 0U ( )      (14)  

and is in agreement with that given in Eq. (4). Therefore, using the same argument, we can 

conclude that the spontaneous symmetry breakdown and the second-order phase transition 

also occur in the system. The system is changed from the ground state of the normal 

phase, 0 0   to the ground state 0 / 2      of the  condensed phase in such a case. The 

above result can also be used to explain the Meissner effect and to determine its critical 

temperature in the superconductor. Thus, we can conclude that, regardless of the existence 

of any external field macroscopic quantum states, such as the superconducting state, are 

formed through a second-order phase transition following a spontaneous symmetry 

breakdown due to nonlinear interaction in the systems.  

3.2 The features of the coherent state of macroscopic quantum effects 

Proof that the macroscopic quantum state described by Eqs. (1) - (2) is a coherent state, using 

either the second quantization theory or the solid state quantum field theory is presented in 

the following paragraphs and pages.  

As discussed above, when '/H  =0 from Eq. (1), we have 

 
22 2 4 0          (15)  

It is a time-independent nonlinear Schrödinger equation (NLSE), which is similar to the GL 

equation. Expanding   in terms of the creation and annihilation operators, +bp and bp 

 .ip xip +
p p

p p

1 1
(b e b e )

2V

x  


  (16) 

where V  is the volume of the system. After a spontaneous breakdown of symmetry, 0 , the 

ground-state of  , for the system is no longer zero, but 0 / 2     . The operation of the 

annihilation operator on 0  no longer gives zero, i.e. 

 p 0b 0   (17) 

A new field '  can then be defined according to the transformation Eq. (5), where 0  is 

a scalar field and satisfies Eq. (10) in such a case. Evidently, 0 can also be expanded 

into 

 .x .ip ip x+
0 p p

p p

1 1
( e e )

2V

     


  (18) 

The transformation between the fields   and '  is obviously a unitary transformation, that 

is 

 
' 1 s s

0U U e e           (19) 

where  
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 ' ' ' ' ' '
0 0S i [ (x , t) (x , t) (x , t) (x , t)]dx       (20) 

  and '   satisfy the following commutation relation 

 ' ' '[ (x , t), (x, t)] i (x )x      (21) 

From Eq. (6) we now have  '
00 ' 0 0    . The ground state '

0  of the field ' thus 

satisfies  

 '
p 0b 0   (22) 

From Eq. (6), we can obtain the following relationship between the annihilation operator ap 

of the new field '  and the annihilation operator bp of the   field 

 S S
p p p pa e b e =b    (23) 

where 

 . .ip x -ip x*
p 0 03/2

p

1
[ (x, t)e i (x, t)e ]

(2 )

dx
    

   (24) 

Therefore, the new ground state '
0   and the old ground state 0  are related through 

' S
0 0e   .  

Thus we have  

 ' ' '
p 0 p p 0 p 0a (b )         (25) 

According to the definition of the coherent state, equation (25) we see that the new ground 

state '
0  is a coherent state. Because such a coherent state is formed after the spontaneous 

breakdown of symmetry of the systems, thus, it is referred to as a spontaneous coherent 

state. But when 0 0  , the new ground state is the same as the old state, which is not a 

coherent state.The same conclusion can be directly derived from the BCS theory [18-21]. In 

the BCS theory, the wave function of the ground state of a superconductor is written as  

 ' + + + +k
0 k k k -k 0 k k k-k 0 k-k 0

kkk k

ˆ ˆˆ( a a ) ( b ) ~ 'exp( b )


            
   (26) 

where + + +
k-k k -k

ˆ ˆ ˆb a a . This equation shows that the superconducting ground state is a 

coherent state. Hence, we can conclude that the spontaneous coherent state in 

superconductors is formed after the spontaneous breakdown of symmetry. 
By reconstructing a quasiparticle-operator-free new formulation of the Bogoliubov-Valatin 

transformation parameter dependence [55], W. S. Lin et al [56] demonstrated that the BCS 

state is not only a coherent state of single-Cooper-pairs, but also the squeezed state of the 

double-Cooper- pairs, and reconfirmed thus the coherent feature of BCS superconductive 

state. 
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3.3 The Boson condensed features of macroscopic quantum effects 
We will now employ the method used by Bogoliubov in the study of superfluid liquid 
helium 4He to prove that the above state is indeed a Bose condensed state. To do that, we 
rewrite Eq. (16) in the following form [12-17] 

  ipx
p p p - p

p p

1 1
( ) ,

2
x q e q b b

V

   


  (27) 

Since the field   describes a Boson, such as the Cooper electron pair in a superconductor 

and the Bose condensation can occur in the system, we will apply the following traditional 

method in quantum field theory, and consider the following transformation:   

 p 0 p p 0 p( ) , ( )b N p b N p         (28) 

where 0N is the number of Bosons in the system and   
0 ,if p 0

( )
1 , if p=0

p


  


  .  Substituting Eqs. 

(27) and (28) into Eq. (1), we can arrive at the Hamiltonian operator of the system as follows 

    

 

0 0

0 0

2 2
+ +0

0 0 0 p p - p p - p2 2
0 0 PP0 0

+ + + +
p - p p - p p - p0 0

+ + +
0 0 pp p - p p p p p

0 0
p p p p p

0 0 0 Pp

4 44

2 1

2 2

4 4

2 p

N NN
H N

VV V

N N

V

N N

V V

 

 

                              
             
            

  
         
      





 0 0
2

P

N N
O O

V V

           


 (29) 

Because the condensed density 0N V must be finite, it is possible that the higher order 

terms  00 N V and  2
00 N V may be neglected. Next we perform the following 

canonical transformation  

 * *
p p p p - p p p p p - p,.u c c u d d          (30) 

where pv and pu are real and satisfy  2 2
p p 1u    . This introduces another transformation 

  p p p p -p p p p - p

1

2
u u            ,  p p p p - p p p p - p

1

2
u u              (31) 

the following relations can be obtained  

 p p p p -p, ,H g M                p p p p -p,H g M           (32) 

where 

 
   
   

2 2 2 2
p p p p p p p p p p p p p p;

2 2 2 2
p p p p p p p p p p p p p

2 ,  M 2   

2 ,  M 2  p

g G u F u F u G u

g G u F u F u G u

          


              

 (33) 
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while  

 
p p p p p

p p

6 ,  F 6
2 2

G
          
 

,  '
p p p p

p p

2 ,  F 2
2 2

pG
          
 

 (34) 

where  ' 0

0 p

N
=

V
p




 
.  

We will now study two cases to illustrate the concepts. 

(A) Let p 0M  , then it can be seen from Eq. (32) that +
p is the creation operator of 

elementary excitation and its energy is given by  

 2
p p p p4 2g         (35) 

Using this concept, we can obtain the following form from Eqs. (32) and (34)  

  2 p
p

p

1
1

2

G
u

g

 
   

  
   and     2 p

p
p

1
1

2

G

g

 
     

  
 (36) 

From Eq. (32), we know that +
p is not a creation operator of the elementary excitation. Thus, 

another transformation must be made  

 
2 2

p p p p p p p, 1B             (37)   

We can then prove that 

 [ , ]pB H p pE B  (38) 

where    2
p p pE 12 2p      

.
 

Now, inserting Eqs. (30), (37)-(38) and pM 0   into Eq. (29), and after some reorganization, 

we have 

     0 p p p - p - p p p p - p - p
p>0

H U E E B B B B g                (39) 

where 

2
20 0

p p p p p2
0 pp p p>00

2
4 4 4 4 2

2

N N
U u

V

                        
     

  2

0 p p p p
p>0 p>0

2E E g E             (40) 

Both U and 0E are now independent of the creation and annihilation operators of the 

Bosons. 0U E gives the energy of the ground state. 0N can be determined from the 

condition, 
 0

0

0
U E

N

 



, which gives  
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 20 0
0 0

1

4 2

N

V


   


 (41) 

This is the condensed density of the ground state 0 .  From Eqs. (36), (37) and (40), thus we 
can arrive at:   

 2 2
p p p p,   Eg          (42) 

These correspond to the energy spectra of p
 and pB ,respectively, and they are similar to 

the energy spectra of the Cooper pair and phonon in the BCS theory. Substituting Eq. (42) 
into Eq. (36), thus we now have:   

 

2 2
p p2 2

p p
2 2
p p p p

2 - 21 1
u 1+ ,     -1+

2 22 - e 2

                          

 (43) 

(B) In the case of Mp=0, a similar approach can be used to arrive at the energy spectrum 
corresponding to +

p as 2
p pE     , while that corresponding to +

p p p p -pA        is 
2

p pg     ,   where     

 

2 2
p p2 2

p p
2 2

p p p p

2 21 1
u 1+ ,     -1+

2 22 2

                             

                        (44) 

Based on experiments in quantum statistical physics, we know that the occupation number 
of the level with an energy of p , for a system in thermal equilibrium at temperature 
T( 0) is shown as:   

 
p B

p p p K T

1
N b b

e 1


 


 (45) 

where   denotes Gibbs average, defined as 
B

B

K T

K T

SP e

SP e





 
 
 
 


 , here SP denotes the 

trace in a Gibbs statistical description. At low temperatures, or T 0 K , the majority of the 

Bosons or Cooper pairs in a superconductor condense to the ground state with p 0 . 

Therefore 0 0 0b b N  , where 0N is the total number of Bosons or Cooper pairs in the 

system and 0N 1 , i.e. 0 0b b 1 b b   . 

As can be seen from Eqs. (27) and (28), the number of particles is extremely large when they 
lie in condensed state, that is to say:  

  0 p=0 0 0

0

1
b b

2 V

    


 (46) 

Because 0 0 0   and 0 0 0   , 0b and 0b can be taken to be 0N . The average value of 
  in the ground state then becomes  
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 0
0 0 0

0
0 0

21
4

2

N
N

V V
          

 
 (47) 

Substituting Eq. (41) into Eq. (47), we can see that:   

0 2
 
  


     or       

0 2
 
  


  

which is the ground state of the condensed phase, or the superconducting phase, that we 

have known. Thus, the density of states, 0N V , of the condensed phase or the 

superconducting phase formed after the Bose condensation coincides with the average value 

of the Boson’s (or Copper pair’s) field in the ground state. We can then conclude from the 

above investigation shown in Eqs. (1) - (2) that the macroscopic quantum state or the 

superconducting ground state formed after the spontaneous symmetry breakdown is indeed 

a Bose-Einstein condensed state. This clearly shows the essences of the nonlinear properties 

of the result of macroscopic quantum effects. 
In the last few decades, the Bose-Einstein condensation has been observed in a series of 

remarkable experiments using weakly interacting atomic gases, such as vapors of rubidium, 

sodium lithium, or hydrogen. Its’ formation and properties have been extensively studied. 

These studies show that the Bose-Einstein condensation is a nonlinear phenomenon, 

analogous to nonlinear optics, and that the state is coherent, and can be described by the 

following NLSE or the Gross-Pitaerskii equation [57-59]:  

  
2

3

2
i V x

t' x'

  
      

 
 (48)       

where t =t ,   x =x 2m   . This equation was used to discuss the realization of the Bose-

Einstein condensation in the d 1 dimensions (d 1,2,3) by H. K. Bullough et.al [41-42]. 

Too, Elyutin et al [60-61]. gave the corresponding Hamiltonian density of a condensate 

system as follows:  

 
2

2 41
' ( ')

' 2
H V x

x


     


 (49) 

where H’=H, the nonlinear parameters of   are defined as 2
1 02 /Naa a   , with N being 

the number of particles trapped in the condensed state, a is the ground state scattering 

length, a0 and a1 are the transverse (y, z) and the longitudinal (x) condensate sizes (without 

self-interaction) respectively, (Integrations over y and z have been carried out in obtaining 

the above equation).   is positive for condensation with self-attraction (negative scattering 

length).The coherent regime was observed in Bose-Einstein condensation in lithium. The 

specific form of the trapping potential V (x’) depends on the details of the experimental 

setup. Work on Bose-Einstein condensation based on the above model Hamiltonian were 

carried out and are reported by C. F. Barenghi et al [31]. 
It is not surprising to see that Eq. (48) is exactly the same as Eq. (15), corresponding to the 
Hamiltonian density in Eq. (49) and, where used in this study is naturally the same as Eq. 
(1). This prediction confirms the correctness of the above theory for Bose-Einstein 
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condensation. As a matter of fact, immediately after the first experimental observation of 
this condensation phenomenon, it was realized that the coherent dynamics of the condensed 
macroscopic wave function could lead to the formation of nonlinear solitary waves. For 
example, self-localized bright, dark and vortex solitons, formed by increased (bright) or 
decreased (dark or vortex) probability density respectively, were experimentally observed, 
particularly for the vortex solution which has the same form as the vortex lines found in 
type II-superconductors and superfluids. These experimental results were in concordance 
with the results of the above theory. In the following sections of this text we will study the 
soliton motions of quasiparticles in macroscopic quantum systems, superconductors. We 
will see that the dynamic equations in macroscopic quantum systems do have such soliton 
solutions.   

3.4 Differences of macroscopic quantum effects from the microscopic quantum 
effects 

From the above discussion we may clearly understand the nature and characteristics of 
macroscopic quantum systems. It would be interesting to compare the macroscopic 
quantum effects and microscopic quantum effects. Here we give a summary of the main 
differences between them. 
1. Concerning the origins of these quantum effects; the microscopic quantum effect is 

produced when microscopic particles, which have only a wave feature are confined in a 
finite space, or are constituted as matter, while the macroscopic quantum effect is due 
to the collective motion of the microscopic particles in systems with nonlinear 
interaction. It occurs through second-order phase transition following the spontaneous 
breakdown of symmetry of the systems. 

2. From the point-of-view of their characteristics, the microscopic quantum effect is 
characterized by quantization of physical quantities, such as energy, momentum, 
angular momentum, etc. wherein the microscopic particles remain constant. On the 
other hand, the macroscopic quantum effect is represented by discontinuities in 
macroscopic quantities, such as, the resistance, magnetic flux, vortex lines, voltage, etc. 
The macroscopic quantum effects can be directly observed in experiments on the 
macroscopic scale, while the microscopic quantum effects can only be inferred from 
other effects related to them. 

3. The macroscopic quantum state is a condensed and coherent state, but the microscopic 
quantum effect occurs in determinant quantization conditions, which are different for 
the Bosons and Fermions. But, so far, only the Bosons or combinations of Fermions are 
found in macroscopic quantum effects. 

4. The microscopic quantum effect is a linear effect, in which the microscopic particles 
and are in an expanded state, their motions being described by linear differential 
equations such as the Schrödinger equation, the Dirac equation, and the Klein- 
Gordon equations.  

On the other hand, the macroscopic quantum effect is caused by the nonlinear interactions, 
and the motions of the particles are described by nonlinear partial differential equations 
such as the nonlinear Schrödinger equation (17). 
Thus, we can conclude that the macroscopic quantum effects are, in essence, a nonlinear 

quantum phenomenon. Because its’ fundamental nature and characteristics are different 

from those of the microscopic quantum effects, it may be said that the effects should be 

depicted by a new nonlinear quantum theory, instead of quantum mechanics.  
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4. The nonlinear dynamic natures of electrons in superconductors 

4.1 The dynamic equations of electrons in superconductors 

It is quite clear from the above section that the superconductivity of material is a kind of 

nonlinear quantum effect formed after the breakdown of the symmetry of the system due to 

the electron-phonon interaction, which is a nonlinear interaction.  

In this section we discuss the properties of motion of superconductive electrons in 
superconductors and the relation of the solutions of dynamic equations in relation to the 
above macroscopic quantum effects on it. The study presented shows that the 
superconductive electrons move in the form of a soliton, which can result in a series of 
macroscopic quantum effects in the superconductors. Therefore, the properties and motions 
of the quasiparticles are important for understanding the essences and rule of 
superconductivity and macroscopic quantum effects. 
As it is known, in the superconductor the states of the electrons are often represented by a 

macroscopic wave function,  

( , )
0( , ) ( , ) i r tr t f r t e   

 
,   or   ie    , 

as mentioned above, where 2
0 / 2    . Landau et al [45,46] used the wave function to give 

the free energy density function, f, of a superconducting system, which is represented by  

 
2

2 2 4

2
s nf f

m
        


 (50) 

in the absence of any external field. If the system is subjected to an electromagnetic field 

specified by a vector potential A


, the free energy density of the system is of the form:  

 
22

2 4 2* 1
( ) H

2 8
s n

ie
f f A

m c
           



 


 (51) 

where e*=2e , H= A
  ,  and   are some interactional constants related to the features of 

superconductor, m is the mass of electron, e* is the charge of superconductive electron, c is 

the velocity of light, h is Planck constant, / 2h  , fn is the free energy of normal state. 

The free energy of the system is 3
s sF f d x  . In terms of the conventional 

field, j
jl j l lF A A    , (j, l=1, 2, 3), the term 2H /8


  can be written as / 4jl

jlF F . Equations 

(50) - (51) show the nonlinear features of the free energy of the systems because it is the 

nonlinear function of the wave function of the particles, ( , )r t


. Thus we can predict that the 

superconductive electrons have many new properties relative to the normal electrons. From 

/ 0sF    we get 

 
2

2 32 0
2m

      


 (52) 

and 

 
2

2 3*
( ) 2 0

2

ie
A

m c
       




 (53)  
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in the absence and presence of an external fields respectively, and 

 
2* *

( * *)
2

e e
J A

mi mc
       

 
 (54) 

Equations (52) - (54) are just well-known the Ginzburg-Landau (GL) equation [48-54] in a 
steady state, and only a time-independent Schrödinger equation. Here, Eq. (52) is the GL 
equation in the absence of external fields. It is the same as Eq. (15), which was obtained from 
Eq. (1). Equation (54) can also be obtained from Eq. (2). Therefore, Eqs. (1)-(2) are the 
Hamiltonians corresponding to the free energy in Eqs. (50)- (51). 

From equations (52) - (53) we clearly see that superconductors are nonlinear systems. 

Ginzburg-Landau equations are the fundamental equations of the superconductors 

describing the motion of the superconductive electrons, in which there is the nonlinear term 

of 32 . However, the equations contain two unknown functions   and A


which make 

them extremely difficult to resolve.  

4.2 The dynamic properties of electrons in steady superconductors 

We first study the properties of motion of superconductive electrons in the case of no 
external field. Then, we consider only a one-dimensional pure superconductor [62-63], 
where 

 
2 2

0 ( , ), ' ( ) / 2 , / '( )x t T m x x T        
 

                            (55) 

 

and where '( )T  is the coherent length of the superconductor, which depends on 

temperature. For a uniform superconductor, 2
0'( ) 0.94 [ /( )]c cT T T T    , where cT  is the 

critical temperature and 0  is the coherent length of superconductive electrons at T=0. In 

boundary conditions of  (x=0)=1 , and  (x ) =0, from Eqs. (52) and (54) we find 

easily its solution as: 

02 sec
'( )

x x
h

T

 
       

or  

 0
0

2
sec [ ] sec [ ( )]

'( )

x x m
h h x x

T

  
     

   
  (56) 

 

This is a well-known wave packet-type soliton solution. It can be used to represent the 

bright soliton occurred in the Bose-Einstein condensate found by Perez-Garcia et. al. [64]. If 

the signs of   and   in Eq. (52) are reversed, we then get a kink-soliton solution under the 

boundary conditions of  (x=0)=0,  (x )=  1, 

 1/2 2 1/2
0( / 2 ) tanh{[ ( / ] }m x x         (57) 

 

The energy of the soliton, (56), is given by 
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2 3/2

2 2 4
1

4
( )

2 3 2
so

d
E dx

m dx m





  
      

  


 
  (58) 

We assume here that the lattice constant, r0=1. The above soliton energy can be compared 

with the ground state energy of the superconducting state, Eground= 2 /4  . Their 

difference is 3/2
1 ground

16
/ 2 0

3 2
soE E

m

        
 


. This indicates clearly that the soliton 

is not in the ground state, but in an excited state of the system, therefore, the soliton is a 

quasiparticle. 

From the above discussion, we can see that, in the absence of external fields, the 

superconductive electrons move in the form of solitons in a uniform system. These solitons 

are formed by a nonlinear interaction among the superconductive electrons which 

suppresses the dispersive behavior of electrons. A soliton can carry a certain amount of 

energy while moving in superconductors. It can be demonstrated that these soliton states 

are very stable. 

4.3 The features of motion of superconductive electrons in an electromagnetic field 
and its relation to macroscopic quantum effects 

We now consider the motion of superconductive electrons in the presence of an 

electromagnetic field A


; its equation of motion is denoted by Eqs. (53)-(54)．Assuming now 

that the field A


 satisfies the London gauge 0A  


[65], and that the substitution of 
( )

0( , ) ( , ) i rr t r t e    
 

 into Eqs. (53) and (54) yields [66-67]: 

 
2

20* *
= ( )

e e
J A

m c


  


  (59) 

and 

 2 2 2 2
02

* 2
[( ) ] ( 2 ) 0

e m

c
            A



 
 (60) 

For bulk superconductors, J is a constant (permanent current) for a certain value of A


 , and 

it thus can be taken as a parameter. Let  2 2 2 2 2 4
0/ ( *)B m J e  , 2 22 / 'b m     , from Eqs. 

(59) and (60), we can obtain [66-67]: 

 
2 2
0

*
( )

*

e Jm

c e
  

 
A


  (61) 

 
2 2

2 4
eff eff2 2

1 1
 ( ), ( )

2 42

d d B
U U b b

ddx


        

 
 (62) 

where Ueff  is the effective potential of the superconductive electron in this case and it is 
schematically shown in Fig. 2. Comparing this case with that in the absence of external 
fields, we found that the equations have the same form and the electromagnetic field 
changes only the effective potential of the superconductive electron. When  0A 


, the 
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effective potential well is characterized by double wells. In the presence of an 
electromagnetic field, there are still two minima in the effective potential, corresponding to 
the two ground states of the superconductor in this condition. This shows that the 
spontaneous breakdown of symmetry still occurs in the superconductor, thus the 
superconductive electrons also move in the form of solitons. To obtain the soliton solution, 
we integrate Eq. (62) and can get: 

 
1

eff2[ ( )

d
x

E U








   (63) 

Where E is a constant of integration which is equivalent to the energy, the lower limit of the 
integral, 1 , is determined by the value of   at x=0, i.e. eff 0 eff 1( ) ( )E U U    . Introduce 

the following dimensionless quantities 2 ,u   
2

2 2

4
, 2

2 ( *)

b J m
E d

e


  


 , and equation (63) can 

be written as the following upon performing the transformation u→u, 

 
1 3 2 2

2
2 3 2

u

u

du
bx

u u u d
 

   
 

 (64)  

It can be seen from Fig. 3 that the denominator in the integrand in Eq. (64) approaches zero 

linearly when u=u1=
2
1 , but approaches zero gradually when u=u2=

2
0 . Thus we give [66-67]  

 2 2 2
0 1

1 1
( ) ( ) sec tan

2 2
u x x u g h gbx u g h gbx

   
           

   
 (65) 

where g= u0u1 and satisfies 

 
2 2(2 ) (1 ) 27g g d    , 0 12 =2u u , 2

0 0 12 2u u u    , 2 2
1 0 =2u u d  (66) 

It can be seen from Eq. (65) that for a large part of sample, u1 is very small and may be 
neglected; the solution u is very close to u0. We then get from Eq. (65) that 

 0

1
( ) tan

2
x h gbx

 
     

 
 (67) 

Substituting the above into Eq. (61), the electromagnetic field A


 in the superconductors can 

be obtained 

2 2 2 2 2 2
0 0 0

1 1
  cot

* 2 *(e*) ( *)

Jmc c Jmc c
A h gbx

e ee

 
             

   
 

For a large portion of the superconductor, the phase change is very small. Using H A 
 

 

the magnetic field can be determined and is given by [66-67] 

 3
2 2 2

0 0

2 1 1
[cot cot ]

2 2( *)

Jmc gb
H h gbx h gbx

e

   
            




 (68) 
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Equations (67) and (68) are analytical solutions of the GL equation.(63) and (64) in the one-
dimensional case, which are shown in Fig. 3. Equation (67) or (65) shows that the 
superconductive electron in the presence of an electromagnetic field is still a soliton. 
However, its amplitude, phase and shape are changed, when compared with those in a 
uniform superconductor and in the absence of external fields, Eq. (66). The soliton here is 
obviously influenced by the electromagnetic field, as reflected by the change in the form of 
solitary wave. This is why a permanent superconducting current can be established by the 
motion of superconductive electrons along certain direction in such a superconductor, 
because solitons have the ability to maintain their shape and velocity while in motion. 

It is clear from Fig.4 that (x)H  is larger where (x)  is small, and vice versa. When 0x  , 

( )H x reaches a maximum, while   approaches to zero. On the other hand, when x  ,   

becomes very large, while ( )H x  approaches to zero. This shows that the system is still in 

superconductive state.These are exactly the well-known behaviors of vortex lines-magnetic 

flux lines in type-II superconductors [66-67]. Thus we explained clearly the macroscopic 

quantum effect in type-II superconductors using GL equation of motion of superconductive 

electron under action of an electromagnetic-field. 
 

  

Fig. 3. The effective potential energy in Eq. (67). 

 

 

Fig. 4. Changes of (x) and (x)H with x in Eqs. (67)-(68) 
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Recently, Garadoc-Daries et al. [68], Matthews et al. [69] and Madison et al.[70] observed 

vertex solitons in the Boson-Einstein condensates. Tonomure [71] observed experimentally 

magnetic vortexes in superconductors. These vortex lines in the type-II-superconductors are 

quantized. The macroscopic quantum effects are well described by the nonlinear theory 

discussed above, demonstrating the correctness of the theory. 

We now proceed to determine the energy of the soliton given by (67). From the earlier 

discussion, the energy of the soliton is given by: 

2 22 2
+ 2 2 4 2 0 0

02 2
0

21 b
= ( ) 1 (1 )

2 2 4 3 2 22 2

bd b B b B
E dx

dx





    
           

       
  

which depends on the  interaction between superconductive electrons and electromagnetic 

field. 

From the above discussion, we understand that for a bulk superconductor, the 

superconductive electrons behave as solitons, regardless of the presence of external fields. 

Thus, the superconductive electrons are a special type of soliton. Obviously, the solitons are 

formed due to the fact that the nonlinear interaction
2    suppresses the dispersive effect 

of the kinetic energy in Eqs. (52) and (53). They move in the form of solitary wave in the 

superconducting state. In the presence of external electromagnetic fields, we demonstrate 

theoretically that a permanent superconductive current is established and that the vortex 

lines or magnetic flux lines also occur in type-II superconductors. 

5. The dynamic properties of electrons in superconductive junctions and its 
relation to macroscopic quantum effects  

5.1 The features of motion of electron in S-N junction and proximity effect 

The superconductive junction consists of a superconductor (S) which contacts with a normal 

conductor (N), in which the latter can be superconductive. This phenomenon refers to a 

proximity effect. This is obviously the result of long- range coherent property of 

superconductive electrons. It can be regarded as the penetration of electron pairs from the 

superconductor into the normal conductor or a result of diffraction and transmission of 

superconductive electron wave. In this phenomenon superconductive electrons can occur in 

the normal conductor, but their amplitudes are much small compare to that in the 

superconductive region, thus the nonlinear term 
2   in GL equations (53)-(54) can be 

neglected. Because of these, GL equations in the normal and superconductive regions have 

different forms. On the S side of the S-N junction, the GL equation is [72]  

 
2 *

3ie
( A) 2 0

2m ch
      


 (69) 

while that on the N side of the junction is  

 
2 *ie

( A) ' 0
2m ch

     


 (70) 

Thus, the expression for J


 remains the same on both sides. 
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* 2

2* *e (e*)
J ( ) A

2mi mc
      

 
 (71) 

In the S region, we have obtained solution of (69) in the previous section, and it is given by 
(65) or (67) and (68). In the N region,  from Eqs. (70)- (71) we can easily obtain  

 

'
2 ' 2 2 '

'
2 2 2 2i ' 2 2 ' i2 2 i2
N 0 0

1
( ) 4d sin(2 b x)

2 2

1
e ( ) 4d sin(2 b x)e e

2 2
     

 
    


        




 (72)  

where 
'

'
2 '2

2m 1
b ,


 


  

2

2
2 2

4J m
2d ,

(e*) '







   

'
' 'b

E .
2

    . 

here '  is an integral constant. A graph of   vs. x in both the S and the N regions, as shown 
in Fig.5, coincides with that obtained by Blackbunu [73]. The solution given in Eq. (72) is the 
analytical solution in this case. On the other hand, Blackbunu’s result was obtained by 
expressing the solution in terms of elliptic integrals and then integrating numerically. From 
this, we see that the proximity effect is caused by diffraction or transmission of the 
superconductive electrons 

5.2 The Josephson effect in S-I-S and S-N-S as well as S-I-N-S junctions 

A superconductor-normal conductor -superconductor junction (S-N-S) or a superconductor-
insulator-superconductor junction (S-I-S) consists of a normal conductor or an insulator 
sandwiched between two superconductors as is schematically shown in Fig.6a．The 
thickness of the normal conductor or the insulator layer is assumed to be L and we choose 
the z coordinate such that the normal conductor or the insulator layer is located 
at L / 2 x L / 2   . The features of S-I-S junctions were studied by Jacobson et al.[74]. We 
will treat this problem using the above idea and method [75-76].  

The electrons in the superconducting regions ( x L / 2 ) are depicted by GL equation (69). 

Its’ solution was given earlier in Eq.(67). After eliminating u1 from Eq.(66), we have [73-74] 

0 0

1
J= e * u (1 )u

2 m


 


. 

 

 

Fig. 5. Proximity effect in S-N junction  
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Fig. 6. Superconductive junction of S-N(I)-S and S-N-I-S 

The electrons in the superconducting regions ( x L / 2 ) are depicted by GL equation (69). Its’ 

solution was given earlier. Setting 0J/ u 0d d  , we get the maximum current c

e *
J

3 3m

 



. 

This is the critical current of a perfect superconductor, corresponding to the three-fold 

degenerate solution of Eq.(66), i.e.,u1=u0.  

From Eq.(71), we have    
2 2 2

0

mJc hc
A

e *(e*)
   

 


.  Using the London gauge, .A 0 


, we can 

get[75-76]   
2

2 2 2
0

mJ 1
( )

e *

d d

dxdx




 
.  Integrating the above equation twice , we get the change 

of the phase to be 

 
2 2 2
0

mJ 1 1
( )

e *
dx



  
  

 (73) 

where  2 u  , and 2
0u  . Here we have used the following de Gennes boundary 

conditions in obtaining Eq. (73) 

 
x x

0, 0,  ( x )
d d

dx dx


 

 
         (74) 

If we substitute Eqs.(64) - (67) into Eq.(73), the phase shift of wave function from an 

arbitrary point x to infinite can be obtained directly from the above integral, and takes the 

form of: 

 1 11 1
L

0 1 1

u u
(x ) tan tan

u u u u
     

 
 (75)    

For the S-N-S or S-I-S junction, the superconducting regions are located at x L / 2  and the 

phase shift in the S region is thus 
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 1 1
s L

s 1

L u
=2 ( ) 2 tan

2 u u
   


 (76) 

According to the results in (70) - (71) and the above similar method, the change of the phase 
in the I or N region of the S-N-S or S-I-S junction may be expressed as [75-76]  

 
' 2 '

1
N '

0

2e * h b L mJL
2 tan [ tan( )]

J 8m 2 2e*h

 
   

 


  (77) 

where ' N
2 '

tan( / 2)8m J
h

2e * tan( b L / 2)







, 

'
0

mJL

2e*h


 is an additional term to satisfy the boundary 

conditions (74),and may be neglected in the case being studied. 

Near the critical temperature (T<Tc), the current passing through a weakly linked 

superconductive junction is very small ( J 1 ), we then have  
2

2'
1 2 2

4J m
2A ,

(e*)


  




  and 

g’=1. Since 2  and 2 /d dx  are continuous at the boundary x=L/2, we have  

s N
x L/2 x L/2

d d

dx dx
 

 
 ,  s s x L/2 N N x L/2      ,  

where s and N  are the constants related to features of superconductive and normal 

phases in the junction, respectively. These give [75-76]  

' '
N 1 s2 b Asin(2 ) [1 cos(2 )]sin( b L)     , 

'
s N s Ncos( b L)sin(2 ) sin(2 ) sin(2 )         

where 1 N S/    .  From the two equations, we can get 

' '
s N

2 2m J
sin( ) b sin( b L)

e*


   




. 

Thus   

 max s N maxJ=J sin( ) J sin( )        (78) 

where  

 s
max s N

' '

e * 1
J . ,

2 2m b sin( b L)


     


  (79) 

Equation (78) is the well-known example of the Josephson current. From Section I we know 

that the Josephson effect is a macroscopic quantum effect. We have seen now that this effect 

can be explained based on the nonlinear quantum theory. This again shows that the 

macroscopic quantum effect is just a nonlinear quantum phenomenon.  

From Eq. (79) we can see that the Josephson critical current is inversely proportional to sin 

( 'b L ), which means that the current increases suddenly whenever 'b L approaches to n , 
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suggesting some resonant phenomena occurs in the system． This has not been observed 

before.  Moreover maxJ is proportional  to '
se * / 2 2m b    S N(e* /4m )  , which is 

related to (T-Tc)2． 

Finally, it is worthwhile to mention that no explicit assumption was made in the above on 

whether the junction is a potential well ( <0) or a potential barrier (  >0). The results are 

thus valid and the Josephson effect in Eq. (2.78), occurs for both potential wells and for 

potential barriers. 
We now study Josephson effect in the superconductor -normal conductor-insulator-
superconductor junction (SNIS) is shown schematically in Fig. 6b. It can be regarded as a 
multilayer junction consists of the S-N-S and S-I-S junctions. If appropriate thicknesses for 
the N and I layers are used (approximately 20 °A– 30 °A), the Josephson effect similar to that 
discussed above can occur in the SNIS junction. Since the derivations are similar to that in 
the previous sections, we will skip much of the details and give the results in the following. 
The Josephson current in the SNIS junction is still given by  

maxJ=J sin( )   

but, where   s1 N s2I          and 

'
1

max
' '

2 '
1

' ' 2 2

sinh( b L)1
J { }

b 2[cosh( b L) cos(2 )]

1

[1 cos(2 )][1 cos(2 )] [1 cos(2 )][1 cos(2 )]

[1 cos (2 )]sinh( b L)1
{ }

b 2[cosh( b L) cos(2 )] 1 cos (2 )

1

[1 cos(2 )][1 cos(2 )]

N

N N N

N I N I

N N

N N N N

N I


 

 


        

  


    

   



[1 cos(2 )][1 cos(2 )]N I    

, 

It can be shown that the temperature dependence of maxJ is 2
max 0( )cJ T T  ,which is quite 

similar to the results obtained by Blackburm et al[73] for the SNIS junction and those by 

Romagnan et al[7] using the Pb-PbO-Sn-Pb junction. Here, we obtained the same results 

using a complete different approach. This indicates again that we can obtain some results, 

which agree with the experimental data. 

6. The nonlinear dynamic-features of time- dependence of electrons in 
superconductor 

6.1 The soliton solution of motion of the superconductive electron 

We studied only the properties of motion of superconductive electrons in steady states in 

superconductors in section 2.3.2, and which are described by the time-independent GL 

equation. In such a case, the superconductive electrons move as solitons. We ask, “What are 

the features of a time-dependent motion in non-equilibrium states of a superconductor?” 

Naturally, this motion should be described by the time-dependent Ginzburg-Landau 

(TDGL) equation [48-54,77] in this case. Unfortunately, there are many different forms of the 
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TDGL equation under different conditions. The one given in the following is commonly 

used when an electromagnetic field A


 is involved 

 
2

21 2
2 ( )

2

ie
ie r A

t m c

                    


   (80) 

and 

 
2

21 4
( ) ( * *)

A ie e
J r A

c t m mc

 
           

 

 
 (81) 

here 1i   ,
1 1 4A J

A
c t c t c

   
        

 
 and   is the conductivity in the normal 

state,   is an arbitrary constant, and   is the chemical potential of the system. In practice, 

Eq. (80) is simply a time-dependent Schrödinger equation with a damping effect.  
In certain situations, the following forms of the TDGL equation are also used. 

 
22

22

2

ie
i A

t m c

               




 (82) 

or 

 
22

21 ' 2
2 ( )

ie
i i e A

t c

                      




 
 (83) 

here ' / 2m   , and equation (82) is a nonlinear Schrödinger equation under an 

electromagnetic field having soliton solutions. However, these solutions are very difficult to 

find, and no analytic solutions have been obtained. An approximate solution was obtained 

by Kusayanage et al [78] by neglecting the 3  term in Eq. (80) or Eq. (82), in the case of 

(0, ,0),A Hx
   , =(0, 0, ) KEx H H  

   and =( ,0,0)E E
  , where H


 is the magnetic field, while 

E


 is the electric field .We will solve the TDGL equation in the case of weak fields in the 

following. 

TDGL equation (83) can be written in the following form when A


 is very small[80-81] 

 
2

22 -2
2

i e
t m

              


  

 (84) 

Where   and   are material dependent parameters,  is the nonlinear coefficient, m is the 

mass of the superconductive electron. Equation (84) is actually a nonlinear Schrödinger 

equation in a potential field / 2e   . Cai, Bhattacharjee et al [79], and Davydov [45] 

used it in their studies of superconductivity. However, this equation is also difficult to 

solve．In the following, Pang solves the equation only in the one-dimensional case. 

For convenience, let /t t   , 2 /x x m   , then Eq. (84) becomes 

 
2

2

2
-2 ( )i e x

t x

                
 (85) 
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If we let 2 0e

  


, then Eq. (85) is the usual nonlinear Schrödinger equation whose 

solution is of the form [80-81] 

 0 ( , )0
0( , ) ,i x t

s x t e
      (86) 

 
2 2

0

( 2 ) ( 2 )
( , ) sec ( )

2 4
e c e e c e

ex t h x t
                 

   


 (87) 

here  0

1
( , ) ( )

2
e cx t x t        . In the case of -2 0e


 


, let KEx    , where K is a constant, 

and assume that the solution is of the form [80-81] 

 ( , )'( , ) i x tx t e       (88) 

Substituting Eq. (88) into Eq. (86), we get: 

 
2 2

3
2

'
' ' ( ') 2 ' 

( )
KeEx

t t x

                         


 
 (89) 

 

2

2

' '
2 ' 0

( )t x x x

    
   

     
 (90) 

Now let '( , ) ( ),x t      ( ),x u t     ( )u t  22 ( )EKe t t d     , where ( ')u t describes the 

accelerated motion of '( , )x t  . The boundary condition at    requires ( )   to approach 

zero rapidly. When 2 0u    , equation (90) can be written as: 2 ( )

( / 2)

g t

u


 

   
, or  

 
2

( )

2

g t u

x


 
 


 (91) 

where / 'u du dt . Integration of (91) yields: 

 
20

''
( , ) ( ) ( )

2

x dx u
x t g t x h t


       




 (92) 

and where ( ')h t  is an undetermined constant of integration. From Eq. (92) we can get: 

 02 2 20

''
( ) ( )

2

x

x

gu gudx u
g t x h t

t




       
   

     (93) 

Substituting  Eqs. (92) and (93) into Eq. (89), we have: 

 
22 2

3
02 2 2 30

''
2 ( )   

2 4( )

x

x

gu gu u dx
KEex x h t g

x




                       


  
 

 (94)  
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Since
2

2( )x

 


=
2

2

d

d




, which is a function of   only, the right-hand side of Eq. (94) is also a 

function of   only, so it is necessary that 0( ) constantg t g   , and  

'

2
' ' '

2 x 0

guu u
(2KEex + )+ x h(t )+ ( )

2 4 f
V


   


  . Next, we assume that 0( ) ( )V V    , where 

  is real and arbitrary, then 

 
2

0 02
2 ( )  ( )   

2 4
x

guu u
KEex V x h t

            
   

                            (95) 

Clearly in the case discussed, 0( )V   0, and the function in the brackets in Eq. (95) is a 

function of t. Substituting Eq. (95) into Eq. (94), we can get [80-81]: 

 
   

2
3 32

02
/g

  
     

 
 (96) 

This shows that   is the solution of Eq. (96) when   and g are constant. For large  , we 

may assume that  1
/

    , when   is a small constant. To ensure that   and 2 2d d   

approach zero when  → , only the solution corresponding to g0=0 in Eq. (96) is kept, and 

it can be shown that this soliton solution is stable in such a case. Therefore, we choose g0=0 

and obtain the following from Eq. (91): 

 / /2x u     (97) 

Thus, we obtain from Eq. (95) that 

2
' ' 'u u

2KEex + x h(t )-
2 4


   


  ,    

2 2 3 21 4
( ) ( ) ( ) ( )  

4 3

                 

h t t KEe t e KE t
            

 
 

  (98) 

Substituting Eq. (98) into Eqs. (92) - (93), we obtain: 

 2 2 3 21 1 4
2 ( ) ( ) ( )  

2 4 3
KEet x t KEe t e KE t

                      
   

  


 (99)  

Finally, substituting the Eq. (99) into Eq. (96), we can get 

 
  

2
3

2
0

  
   

 
 (100) 

When 0  , the solution of. Eq. (100) is of the form 

   2
sech


  




 (101) 

Thus [80-81] 
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2

2

2 3 2
2

2 3

2 2 2
sec

2 2 1 4( )
exp

2 4 3

  

m eKEt t d
h x

eKEt m t eKE t KeEt
i x

     
           

                     
       



 

   

 




 (102)  

This is also a soliton solution, but its shape，amplitude and velocity have been changed 
relatively as compared to that of Eq. (87). It can be shown that Eq. (102) does indeed satisfy 
Eq. (85). Thus, equation (85) has a soliton solution. It can also be shown that this solition 
solution is stable. 

6.2 The properties of soliton motion of the superconductive electrons 
For the solution of Eq. (102), we may define a generalized time-dependent wave number, 

2
2

k KEet
x

    


  and a frequency 

 

2 2 2

2

1
2 ( ) ( )

4

2 2

KEex e KEe t
t

KEe t KEex k

                
     

 

 





 (103) 

The usual Hamilton equations for the superconductive electron (soliton) in the macroscopic 

quantum systems are still valid here and can be written as [80-81] 2k

dk
KEe

dt x


   
 

 , 

then the group velocity of the superconductive electron is 

 2 2 4
2

g x

dx
KEet KEet

dt k


               
   (104) 

This means that the frequency ω still represents the meaning of Hamiltonian in the case of 

nonlinear quantum systems. Hence, 0x k

d d dk dx

dt dk dt x dt


  
  

   
, as seen in the usual 

stationary linear medium.  

These relations in Eqs. (103)-(104) show that the superconductive electrons move as if they 

were classical particles moving with a constant acceleration in the invariant electric-field, 

and that the acceleration is given by 4KEe  . If  >0, the soliton initially travels toward the 

overdense region, it then suffers a deceleration and its velocity changes sign. The soliton is 

then reflected and accelerated toward the underdense region.The penetration distance into 

the overdense region depends on the initial velocity  .  
From the above studies we see that the time-dependent motion of superconductive electrons 
still behaves like a soliton in non-equilibrium state of superconductor. Therefore, we can 
conclude that the electrons in the superconductors are essentially a soliton in both time-
independent steady state and time-dependent dynamic state systems. This means that the 
soliton motion of the superconductive electrons causes the superconductivity of material. 
Then the superconductors have a complete conductivity and nonresistance property 
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because the solitons can move over a macroscopic distances retaining its amplitude, 
velocity, energy and other quasi- particle features.  In such a case the motions of the 
electrons in the superconductors are described by a nonlinear Schrödinger equations (52), 
or (53) or (80) or (82) or (84). According to the soliton theory, the electrons in the 
superconductors are localized and have a wave-corpuscle duality due to the nonlinear 
interaction, which is completely different from those in the quantum mechanics. 
Therefore, the electrons in superconductors should be described in nonlinear quantum 
mechanics[16-17].  

7. The transmission features of magnetic-flux lines in the Josephson 
junctions 

7.1 The transmission equation of magnetic-flux lines 

We have learned that in a homogeneous bulk superconductor, the phase ( , )r t


of the 

electron wave function      ,
, ,

i r t
r t f r t e

 
 

is constant, independent of position and time. 

However, in an inhomogeneous superconductor such as a superconductive junction 

discussed above,   becomes dependent of r


 and t. In the previous section, we discussed 

the Josephson effects in the S-N-S or S-I-S, and SNIS junctions starting from the 

Hamiltonican and the Ginzburg-Landau equations satisfied by  ,r t 
, and showed that the 

Josephson current, whether dc or ac, is a function of the phase change, 1 2       . The 

dependence of the Josephson current on   is clearly seen in Eq. (78) . This clearly indicates 

that the Josephson current is caused by the phase change of the superconductive electrons. 

Josephson himself derived the equations satisfied by the phase difference  , known as the 

Josephson relations, through his studies on both the dc and ac Josephson effects. The 

Josephson relations for the Josephson effects in superconductor junctions can be 

summarized as the following, 

 sin ,s mJ J     2eV
t





 , 2 ' /yed H c

x





  ,  2 ' /xed H c

y





  (105) 

where d’ is the thickness of the junction. Because the voltage V and magnetic field H


 are 

not determined, equation (105) is not a set of complete equations. Generally, these equations 

are solved simultaneously with the Maxwell equation (4 / )H c J  
 

. Assuming that the 

magnetic field is applied in the xy plane, i.e. ( , ,0)x yH H H


, the above Maxwell equation 

becomes 

 
4

( , , ) ( , , ) ( , , )y xH x y t H x y t J x y t
x y c

  
 

 
 (106)  

In this case, the total current in the junction is given by 0( , , ) ( , , ) ( , , )s n dJ J x y t J x y t J x y t J     

In the above equation, ( , , )sJ x y t is the superconductive current density, ( , , )nJ x y t is the 

normal current density in the junction (Jn =V/R(V ) if the resistance in the junction is R(V ) 

and a voltage V is applied at two ends of the junction), ( , , )dJ x y t  is called a displacement 

current and it is given by ( ) /dJ CdV t dt , where C is the capacity of the junction, and 0J is a 

constant current density. Solving the equations in Eqs,(102) and (106) simultaneously, we 

can get 
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2

2
2

0 02 2
0

1 1
( ) sin

J

I
tv t

  
       

 
 (107) 

where 2
0 0/ 4 ', 1 / ,v c Cd RC    2 2

0 0/ 4 ' * , 4 * / , * 2J c d e I e J c e e       . 
Equation (107) is the equation satisfied by the phase difference. It is a Sine-Gordon equation 

(SGE) with a dissipative term. From Eq.(105), we see that the phase difference   depends on 

the external magnetic field H


, thus the magnetic flux in the junction  

'
*

c
Hds A dl dl

c
      

    can be specified in terms of  , where A


 is vector potential of 

electromagnetic field, dl


is line element of vortex lines. Equation (107) represents 

transmission of superconductive vortex lines. It is a nonlinear equation. Therefore, we know 

clearly that the Josephson effect and the related transmission of the vortex line, or magnetic 

flux, along the junctions are also nonlinear problems. The Sine-Gordon equation given 

above has been extensively studied by many scientists including Kivshar and Malomed[39-

40]. We will solve it here using different approaches. 

7.2 The transmission features of magnetic-flux lines 

Assuming that the resistance R in the junction is very high, so that 0nJ  , or equivivalently  

0 0  , setting also I0 = 0, equation (107) reduces to 

 
2

2
2

2 2
0

1 1
sin

Jv t

 
    


 (108) 

Define  0/ , /J JX x T v t     , then in one-dimension, the above equation becomes   

2 2

2 2

sin
X T

   
  

 
 

which is the 1D Sine-Gordon equation. If we further assume that ( , ) ( ')X T       with 

'
0 0 0' ' ', ' / / 2 , ' / 2 /X X vT X X hc LI e T T I e hc       

it becomes 2 2
'(1 ) ( ') 2( ' cos )v A      ,where A’ is a constant of integration. Thus 

0

( ') 1/2[( ' cos )] 2 'A d
  


        

where 21 / 1 , 1v      . Choosing A’=1, we have 

1/2( ')
[sin( / 2)] 2 'd

 


          

A kink soliton solution can be obtained as follows ' ln[tan( / 2)],   'or 
1( ') 4 tan [exp( ')]    . Thus yields 

 1 '
0( ', ') 4 tan {exp[ ( ' ')]}X T X X vT      (109) 
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From the Josephson relations, the electric potential difference across the junction can be 

written as 

'0 0
02

2
2 sec [ ( ' ')]

2 ' 2 ' 2
oI ed d

V v h X X vT
e dT c dT cc

  
       

 



 

where 7 2
0 2 10 /c Gauss cm      'is a quantum fluxon, c is the speed of light. A similar 

expression can be derived for the magnetic field 

'0 0
02

2
2 sec [ ( ' ')]

2 ' 2 ' 2
o

z
I ed d

H h X X vT
e dX c dX cc

  
       

 



 

We can then determine the magnetic flux through a junction with a length of L and a cross 

section of 1 cm2. The result is 

'
0 0' ( , ) ( ', ') 'x xH x t dx B H X T dX

 

 
       

Therefore, the kink ( 1   ) carries a single quantum of magnetic flux in the extended 

Josephson junction. Such an excitation is often called a fluxon, and the Sine-Gordon 

equation or Eq.(107) is often referred to as transmission equation of quantum flux or fluxon. 

The excitation corresponding to   = −1 is called an antifluxon. Fluxon is an extremely stable 

formation. However, it can be easily controlled with the help of external effects. It may be 

used as a basic unit of information. 

This result shows clearly that magnetic flux in superconductors is quantized and this is a 

macroscopic quantum effect as mentioned in Section 1. The transmission of the quantum 

magnetic flux through the superconductive junctions is described by the above nonlinear 

dynamic equation (107) or (108).The energy of the soliton can be determined and it is given by 
28 / ,E m   where 2 2/ 1 / Jm    . 

However, the boundary conditions must be considered for real superconductors. Various 

boundary conditions have been considered and studied. For example, we can assume the 

following boundary conditions for a 1D superconductor, (0, ) ( , ) 0x xt L t    . Lamb[47] 

obtained the following soliton solution for the SG equation (108) 

 
1( , ) 4 tan [ ( ) ( )]x t h x g t 

 (110)  

where h and g are the general Jacobian elliptical functions and satisfy the following 

equations 

2 4 2[ ( )] ' (1 ') ',h x a h b h c        2 4 2[ ( )] ' ' 'g x c h b h a    

with a’, b’, and c’ being arbitrary constants. Coustabile et al. also gave the plasma oscillation, 

breathing oscillation and vortex line oscillation solutions for the SG equation under certain 

boundary conditions. All of these can be regarded as the soliton solution under the given 

conditions. 

Solutions of Eq.(108) in two and three-dimensional cases can also be found[80-81]. In two- 

dimensional case, the solution is given by 
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 1 ( , , )
( , , ) 4 tan [ ]

( , , )

g X Y T
X Y T

f X Y T
   (111) 

where 0/ , / , /J J JX x Y y T v t      , 1 2 2 3 1 31 (1,2) (2,3) (3,1)y y y y y yf a e a e a e        , 

1 2 1 2 3(1,2) (2,3) (3,1)y y y y yg e e a a a e      

and  

0 2 2 2
1 , 1,( 1,2,3)i i i i i i iy p X q Y y p q i          

2 2 2

2 2 2

( ) ( ) ( )
( , ) ,(1 3)

( ) ( ) ( )

i j i j i j

i j i j i j

p p q q
a i j i j

p p q q

     
   

     
 

In addition, Pi, qi and i  satisfy   
1 1 1

2 2 2

3 3

det 0

3

p q

p q

p q


 


. In the three-dimensional case, the 

solution is given by 

 1 ( , , , )
( , , , ) 4 tan [ ],

( , , , )

g X Y Z T
X Y Z T

f X Y Z T
  ,  (112) 

where X, Y , and T are similarly defined as in the 2D case given above, and / JZ z   . The 

functions f and g are defined as 

1 2 2 3 1 3
2 3 3 1y y y y y yf dX e dY e dZ e      ,   1 2 3 1 2 3

2 3 3
y y y y y yg e e e dX dY dZ e      , 

2 2 2 2
1 2 3 1 2 3, 1,( , , )i i i i i i i i i iy a X a Y a b T C a a a b i X Y Z           

with 

3 2 2

1
3 2 2

[( ) ( ) ]
( , ) ,(1 3),

[( ) ( ) ]

ik jk i jk

ik jk i jk

a a b b
d i j j

a a b b


  

  
  




      

here 3y  is a linear combination of 1y   and 2y  ,  i.e., 3 1 2y y y    . 

We now discuss the SG equation with a dissipative term 0 / t   . First we make the 

following substitutions to simplify the equation 

2 2
0 0 0 0/ , / / , / , ' .J J J J JX x T v t t a v B I            

In terms of these new parameters, the 1D SG equation (107) can be rewritten as 

 
2

2 2

2
sin 'a B

TX T

    
    

 
   (113) 

The analytical solution of Eq.(113) is not easily found. Now let 
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2
0 0 0

2 2 2
00 0

1 1
, , ' , '

1

v X v T av
q

ava v v

 
         

 
 (114) 

Equation (113) then becomes 

 
2

2
' sin ' 0q B

  
    


   (115) 

This equation is the same as that of a pendulum being driven by a constant external moment 

and a frictional force which is proportional to the angular displacement. The solution of the 

latter is well known, generally there exists an stable soliton solution[80-81]. Let '/Y d d   , 

equation (115) can be written as 

 ' sin ' ' 0
Y

q Y B


    


 (116) 

For 0 ' 1B  , we can let 0 0' sin (0 / 2)B        and 0 1'       , then, equation (116) 

becomes 

 0 1 0' sin sin( )
Y

Y q Y


       


 (117) 

Expand Y as a power series of 1 , i.e., 1 ,n
nn

Y c  and inserting it into Eq.(117), and 

comparing coefficients of terms of the same power of 1 on both sides, we get 

    
2

0
1 0 2

1

' ' sin1
cos ,

2 4 ' 3 2

q q
c c

q c


      


, 2 0 0

3 2 4 2 3
1 1

cos sin1 1
( 2 ), ( 5 )

' 4 6 ' 5 24
c c c c c

q c q c

 
     

 
 (118) 

and so on. Substituting these 'nc s  into 2
1'/ ,nn

Y d d c      the solution of 1 may be 

found by integrating 2
1 1/ nn

d c    . In general, this equation has soliton solution or 

elliptical wave solution. For example, when 2 3
1 1 2 1 3 1'/d d c c c         it can be found that 

1 12
( ,sin ( ))

A B A
F

A C A BA C

  
 

 
 

where 1( , )F k   is the first Legendre elliptical integral, and A, B and C are constants. The 

inverse function 1  of 1( , )F k   is the Jacobian amplitude ' 1 amF  . Thus, 

1 1sin ( )
A A C

am
A B A B

   
 

 
   or  1 ) ( )

A A C
sn

A B A B

  
 

 
 

where snF is the Jacobian sine function. Introducing the symbol cscF = 1/snF, the solution 
can be written as 

 2
1 ( )[csc( )]

A C
A A B

A B


    


 (119) 
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This is a elliptic function. It can be shown that the corresponding solution at    is a 

solitary wave. 

It can be seen from the above discussion that the quantum magnetic flux lines (vortex lines) 

move along a superconductive junction in the form of solitons. The transmission velocity 0v  

can be obtained from 2
0 01h v v   and nc  in Eq. (118) and it is given by 

2
0 01 / 1 [ / ( )]v h    . 

That is, the transmission velocity of the vortex lines depends on the current 0I injected and 

the characteristic decaying constant   of the Josephson junction. When   is finite, the 

greater the injection current I0 is, the faster the transmission velocity will be; and when I0 is 

finite, the greater the   is, the smaller the 0v  will be, which are realistic. 

8. Conclusions 

We here first reviewed the properties of superconductivity and macroscopic quantum 
effects, which are different from the microscopic quantum effects, obtained from some 
experiments. The macroscopic quantum effects occurred on the macroscopic scale are 
caused by the collective motions of microscopic particles , such as electrons in 
superconductors, after the symmetry of the system is broken due to nonlinear interactions. 
Such interactions result in Bose condensation and self-coherence of particles in these 
systems. Meanwhile, we also studied the properties of motion of superconductive electrons, 
and arrived at the soliton solutions of time-independent and time-dependent Ginzburg-
Landau equation in superconductor, which are, in essence, a kind of nonlinear Schrödinger 
equation. These solitons, with wave-corpuscle duality, are due to the nonlinear interactions 
arising from the electron-phonon interaction in superconductors, in which the nonlinear 
interaction suppresses the dispersive effect of the kinetic energy in these dynamic equations, 
thus a soliton states of the superconductive electrons, which can move over a macroscopic 
distances retaining the energy, momuntum and other quasiparticle properties in the 
systems, are formed. Meanwhile, we used these dynamic equations and their soliton 
solutions to obtain, and explain, these macroscopic quantum effects and superconductivity 
of the systems. Effects such as quantization of magnetic flux in superconductors and the 
Josephson effect of superconductivity junctions,thus we concluded that the 
superconductivity and macroscopic quantum effects are a kind of nonlinear quantum effects 
and arise from the soliton motions of superconductive electrons. This shows clearly that 
studying the essences of macroscopic quantum effects and properties of motion of 
microscopic particles in the superconductors has important significance of physics. 
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