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1. Introduction 

Aerosols have become an area of intensive study both for the complex climate forcing 

questions that arise due to direct aerosol and indirect (aerosol–cloud) mechanisms and for 

air quality concerns that have arisen due to exposure to fine particulate matter. While the 

climate questions regarding aerosols are certainly of great importance, our focus in this  

chapter is to explore using remote sensing techniques the unique concerns of aerosol 

dynamics in an urban environment and how such understanding can ultimately be used to 

improve air quality modelling and forecast.    

The difficulties of urban air quality forecast modelling can be grouped into two major 

factors. First, urban areas have extremely variable multiple pollutant emission sources and 

inventories of these emissions are difficult to be quantified in a common way without 

limitations and uncertainties (Koji & Lovei, 2001; Zhao & Frey, 2004). Second, 

meteorological and radiation processes which drive the aerosol generation and transport are 

significantly affected by complexities in the urban atmosphere coupling. In particular, urban 

structures can significantly affect diurnal heating processes through surface roughness 

mechanisms which modify wind and turbulent mechanisms as well as radiation trapping 

due to surfaces which absorb radiation (e.g. asphalt) and are a root cause of Urban Heat 

Island (UHI) mechanisms (Liu et al., 2006; Taha, 1999; Atkinson, 2003; Piringer et al., 2007; 

Mestayer et al. 2005). These mechanisms have a direct effect on the mixing layer which is the 

region that is directly affected by processes or events that occur at the earth’s surface (e.g. 

heat transfer and turbulence). Most important for air quality applications, the planetary 

boundary layer (PBL) height effectively defines a total available volume for pollutant 

transport and dispersion (Stull, 1988) and errors in prediction of PBL dynamics will affect 

how the pollution forecasts are distributed. Therefore, methods that can directly explore 

PBL height dynamics should provide some insights into underlying difficulties observed in 

current air quality models are needed.    

The most direct and attractive approach is so called active remote sensing techniques which 

can be used to range different components of the atmosphere. Once these atmospheric 

parameters are profiled, further analysis can then be used to estimate the PBL height. For 

instance, sodar and radar wind profilers monitor wind speed and by looking at statistical 
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fluctuations of wind speed, we can estimate the turbulent structure of the atmosphere. Since 

the PBL is a region where turbulent behavior dominates over the shear dynamics seen in the 

upper atmosphere, enhanced fluctuations in wind speed are a good indicator of PBL height. 

On the other hand, direct observations of the aerosol pollutants themselves are particularly 

valuable both as a means to monitor PBL heights and as a means of tracking the vertical 

structure of the aerosols directly (Kovalev & Eichinger, 2004). Ceilometers have the 

advantage of being eye safe and can run continuously (e.g. 24 hours / 7 days) and 

unattended but the signal to noise ratio (SNR) is low and vertical range is limited even if 

extensive temporal and spatial averaging is used. Therefore, for high mixing layers such as 

those in summer where convective heating causes the layer to grow, ceilometers are not 

suitable. In this case, the elastic lidar system (Nd:YAG laser) which has much better SNR are 

the only realistic choice. Unfortunately, this system is not eye safe and therefore cannot run 

without external observers. This makes continuous operation impractical. In addition, due 

to the limitations of large telescope optics, lidar signals cannot see near to surface and 

transmitter/receiver overlap occurs only sufficiently far from the ground (> 500 meters). 

This makes certain applications such as tracking surface pollutants inaccessible although 

merging ceilometer and lidar together may address this overlap issue. However, despite 

these difficulties, the optical techniques which track the aerosols directly in general 

outperform the turbulence based approaches as well as allow us to explore other processes 

so that the major focus of this chapter will be on lidar and ceilometer based techniques and 

their potential to address air quality questions and assess current and future air quality 

models.  

To assess the potential of lidar based methods, we rely heavily on data and instrumentation 

directly available in research conducted in New York City (NYC) which is an excellent 

representative of the complexities of the urban environment. In particular, long term ground 

based multi-wavelength lidar observations have been performed at City College of New 

York (CCNY). A noise sensitive wavelet transform method together with additional 

constraints has been developed to better determine the convective boundary layer from 

lidar measurements (Emeis et al., 2008; Davis et al., 2000). This method is then applied over 

multiyear observations to assess the Weather Research and Forecast (WRF) Model (Flagg & 

Taylor, 2008; Gan et al., 2011). In doing these comparisons, seasonal performance issues are 

a particular focus (Zhang et al., 2009).  

The above discussion focused on local emission and dynamics and therefore long range 

transport events are not considered. However, one of the strongest benefits for lidar is the 

direct observation of aloft layers which can affect local pollutants as well as making it 

difficult for satellite observations.  Because of the increased extend of urban mixing layers 

in general; it is possible for aloft layers to mix with local emission layers. Therefore we 

also add a section to illustrate how this mechanism can affect PBL pollution by a case 

study of Aug 2007 Idaho and Montana Fires. We evaluate this smoke plume transport 

event using in-situ and satellite measurements combined with back-trajectory analysis 

(Gan et al., 2008). This section clearly illustrate why vertical information is critical in 

monitoring air quality and how large-scale plume transportation effect surface pollution 

level. 

The structure of this chapter is as follows. In section 2, a brief introduction of meteorology 
of the PBL and the urban heat island (UHI) is given. A brief survey of current methods in 
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measuring air quality is discussed in section 3. Next, we give an introduction to air 
quality models with particular attention to those used within Weather Research and 
Forecast (WRF) model coupled with the Community Multiscale Air Quality (CMAQ) 
model environment in section 4. In section 5, descriptions of the vertical remote sensing 
instruments are given along with PBL height retrieval method and their 
advantages/disadvantages are enumerated. In section 6, discussion of the performance of 
air quality models in urban areas is given with special focus on the high pollution 
summer events. The comparisons between measurements and WRF model are presented 
and anomalies which may explain difficulties with CMAQ model forecasts are given. We 
explore the potential of remote sensing instruments to identify and quantify smoke events 
and their effect on local surface pollution in section 7. A summary of the chapter and 
overall conclusions are given in section 8.  

2. Meteorology 

The planetary boundary layer (PBL), also known as the mixing layer, is defined as the 

lowest layer of the troposphere (ranging from 100 to 3000 meters) which is directly modified 

by the transport processes and responds to surface forcing. Detail descriptions of PBL 

structure such as residual, stable and entrainment layer can be found in Stull, 1988. The 

diurnal variation of temperature near the earth surface is the most important driver of the 

PBL diurnal variability. The layer above the PBL is called the free atmosphere which shows 

little diurnal variation in temperature. Solar radiation and the heat capacity of the relevant 

surfaces provide a strong atmosphere land coupling dynamics which must be modeled 

properly for accurate PBL dynamics.  

While modeling the PBL height dynamics is important for climate and meteorology, the 

important issue for air quality is that the PBL thickness also defines the total volume 

available for the pollutants to inhabit and be transported. For example, a high emission of 

local pollutants with low PBL height will result a high level pollution near the surface. This 

is critical since many studies have linked high surface pollution of particulate matter 

(PM2.5) to both respiratory and pulmonary health problems (Dockery et al., 1989; Girardot, 

2006). For this reason, EPA has enforced strict pollution standards as shown in Fig. 1 and the 

Clean Air Act (CAA). 

In addition to the modifying of the temperature and wind distribution, the urban surface 

also affects the PBL dynamics by the heat storage of urban materials. This is commonly 

called the urban heat island (UHI) which describes the lack of radiative cooling of both the 

atmosphere and surfaces in urban areas compared to their non-urbanized surrounding 

during nighttime. With increasing urban development, UHI may increase in frequency and 

magnitude especially in summer. (Voogt, 2004; Arrau & Peňa 2010)  

Based on comprehensive multi-national (European) analysis (Piringer et al., 2007), the need 

to parameterize the affects of the UHI is crucial. For example, Mestayer et al. (2005) presents 

extensive measurements within city centers show that turbulent sensible heat flux is the 

dominant mode of heat transfer during the middle of the day but before sunrise, the largest 

heat transfer is limited by storage of energy within urban materials. In fact, unlike natural 

vegetation surfaces, the convective sensible heat flux remains positive over the diurnal cycle 

through release of heat stored the urban canopy. This mechanism is particularly important 

for air quality predictions since collapse of the urban boundary layer (UBL) due to 
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underestimates in the turbulent flux can result in dramatic increases in surface pollution 

forecasts (Doraiswamy et al., 2010). For these reasons, direct evaluation of the UBL height is 

important in diagnosing the performance of operational air quality models driven by high 

resolution meteorological forecasts.   

 
 

 

Fig. 1. EPA has assigned a specific color to each AQI category to make it easier for people 
to understand quickly whether air pollution is reaching unhealthy levels in their 
communities.  

3. Current air quality monitoring efforts  

3.1 AIRNow network 
Current efforts to monitor fine particulate mass are based on the deployment of surface 

sensors which filters the particulates and can access the mass concentration directly. For 

example, AIRNow is an online network which is developed by EPA, NOAA, NPS and local 

agencies to provide real-time national air quality information daily for the public over 300 

cities across the US. The air quality information is presented in a color map associated with 

the Air Quality Index (AQI) as shown in Fig. 1 and can be used to generate spatial maps and  

forecasts which are collected using either federal reference or equivalent monitoring 

techniques or techniques approved by the state or local agencies.  The data are displayed on 

the website (http://airnow.gov) after the end of each hour so that it can be “real-time”. 

Therefore the data as such are not fully verified and validated through the quality assurance 

procedures monitoring organizations use to be officially submit and certify data on the EPA 

AQS (Air Quality System) even though some preliminary data quality assessments are 

performed. Thus, these data are not used to formulate or support regulation, guidance or 
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any other Agency decisions or positions as it is for the purpose of reporting the AQI. The 

AQI represents how clean or unhealthy of the air and what associated health effects might 

result.  

3.2 Satellite efforts 

Fire hotspots and smoke plume signatures are readily seen in satellite imagery, and many 

satellite sensors like GOES, MODIS (Kaufman, 1993) and TOMS (Torres et al., 2002 and 

Herman et al., 1997) are widely used to map the geographical distribution and aerosol 

transport on large scales. MODIS and TOMS (sun synchronous polar orbiting satellites) 

provide global coverage approximately once a day and can only provide snap-shots of 

large-scale aerosol spatial distribution during the time of satellite overpass, which is not 

very suitable for tracking and monitoring large scale aerosol events. On the other hand, 

although GOES (Geostationary satellite) has a single channel, unlike MODIS and TOMS, it 

provides coverage of the entire globe at 30 minutes intervals providing a summary of the 

extent of aerosol coverage, which gives a strong indication of the aerosol intensity. This 

gives GOES the advantage of being useful in tracking the time-history and spatial 

distribution of aerosol transport. Important features may sometimes go unnoticed by sun 

synchronous satellites, making it challenging and sometimes difficult to complete a picture. 

GOES can then further be used to validate features common to MODIS and OMI imagery. 

The goal here is to use the GOES AOD (aerosol optical depth) product to identify transport 

by utilizing its multi-time passes in a single day to verify features which are common in 

geographical area to MODIS and OMI.  

While satellite measurements are critical for understanding transport and air quality 

prediction schemes, the lack of any vertical information of the aerosol column limits the use 

of these satellite measurements for air quality applications. In particular, due to the presence 

of possible aerosol plumes as well as poorly mixed aerosols in the PBL, connecting satellite 

derived AOD to surface level air quality measurements such as PM2.5 or PM10 is very 

difficult. Efforts such as the IDEA product, attempt to connect satellite AOD measurements 

directly to PM2.5 using a static relationship between AOD and surface PM2.5 

measurements.  

 2.5 60PM τ=   (1) 

The coefficient in Equation 1 is statistically determined from coincident measurements from 
a sky radiometer and surface sampler measurements (Zhang et al., 2009). However, the 
cloud clearing of the sky radiometer insures that plumes are unlikely to be accounted for 

and all viable sky radiometer measurements occur when the PBL is the only aerosol source. 
Therefore, the presence of plumes will bias the surface PM2.5 measurements to higher 
values and any assessments of plume interaction with the PBL must first isolate the AOD 

contributions. 
In particular, as we will explore fully in section 6, we unambiguously show that long term 

advected smoke plumes can either be transported aloft without any interaction with the 

PBL, or can mix with the PBL and change the air quality parameters at the surface. In both 

cases, lidar measurements are critical to properly apportion the PBL AOD contributions 

from the total column and to connect it to surface particulate matter. In particularly, we 

show that a combination of passive and active ground instruments and satellite 
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measurements respectively, can provide a unique and clear picture on how PBL air quality 

can be affected by plumes mixing down into the PBL.  

4. Air quality models and data analysis 

4.1 Model description (WRF-CMAQ) 
In performing comparisons to assess model performance, it is important to distinguish two 
different methods in running the WRF-CMAQ model. One approach is the use of 
retrospective analysis to better diagnose (Otte, 2008a, 2008b) the potential underlying 
physical parameterizations of a given model or comparisons between different models. 
These schemes in fact benefit from auxiliary near surface measurements which can be used 
to “nudge” the model during the processing. This form of data assimilation is useful as a 
means of identifying limitations in the model directly. This is in contrast to the natural 
forecast mode where the meteorological models do not benefit from additional surface data.  
This nudging mechanism had been applied to the MM5 model environment and had not 
been available within the WRF environment. However, recent implementations within WRF 
ARW 3.1-1 (Skamarock et al., 2008) have incorporated these observational assimilation 
capabilities. In particular, the nudging process ingested 3 hours surface observed data and 
every 6 hours upper data to adjust the annual model results. 
Furthermore, it is possible to use WRF model for better observations of the differences in the 
PBL scheme itself since the modular structure of WRF allows different PBL 
parameterizations to use the same underlying surface layer schemes which in our case are 
the Pleim-Xiu (PX) Surface Layer Scheme (Pleim & Gilliam, 2009). In particular, two hind 
cast runs which are compared to our lidar and ceilometer measurements are considered 
whose detailed characteristics are given in Table 1. In particular, we note that our main 
focus is on the comparison of the Modified Blackadar (BLK) and the Asymmetric 
Convective Model - version 2 (ACM2) schemes are among the schemes most accurately 
modeling the PBL height in comparison to radiosonde and wind profiler measurements 
(Baker et al., 2009; Hong et al., 2006). This is also consistent with comprehensive tests made 
by the Environmental Protection Agency (EPA) where it was shown that the nonlocal 
schemes, BLK and ACM2 (PX) were better in general compared to the local schemes YSU 
and the Mellor-Yamada-Janjic (MYJ) PBL scheme. 
On the other hand, while the nudging may improve the model error for surface 
temperature, humidity, and wind (although this is not an independent comparison), it may 
not help estimate vertical features since the upper air observation network very sparse. In 
addition, it must be emphasized that comparison studies in urban centers have not been 
made and is therefore, a major focus. During these retrospective analyses, when using the 
PX Land Surface Model, the pixel nearest the urban CCNY validation site is classified as 
88% "Urban and Build-Up land" as defined by the USGS 24 land use category (Anderson et 
al., 1976). Finally, we also want to restate that our study is limited to summer where the 
biggest air quality issues regarding particulates in an urban environment occur and the most 
severe difficulties in the diurnal structure of the CMAQ air quality forecasts seem to occur 
(Doraiswamy et al., 2010). While summer 2007 measurements used retrospective analysis, 
summer 2010 forecast data were made using the MYJ PBL scheme which uses the 1.5-order 
(level 2.5) turbulence closure model of Mellor and Yamada (1982) to represent turbulence 
above the surface layer (Janjic 1990, 1994, 2001) and has become a popular model for PBL 
representation. (see Table 1) 
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Schemes 2007 WRF  Run 1 2007 WRF  Run 2 2010 WRF Run 

PBL Modified Blackadar ACM2 MYJ 2.5 

Surface Layer Pleim-Xiu Pleim-Xiu 
NOAH Unified 5-layer 

Land-surface 

Microphysics WSM6 Morrison II Ferrier Gridscale 

Cumulus Kain-Fritsch Kain-Fritsch Cumulus-Betts-Miller-Janjic 

Shortwave Radiation Dudhia Dudhia Lacis-Hansen 

Longwave Radiation RRTM RRTM G Fels-Schwartzkopf 

Table 1. WRF-CMAQ Model Parametric Schemes 

4.2 Data analysis for PBL heights 
The first point to be made is for operational mesoscale air quality applications, the New 
York State Department of Environmental Conservation (NYSDEC) WRF-CMAQ runs 
provided to us were a final spatial resolution of 12- by 12-km grid and temporal resolution 
of hourly dataset. Therefore, we can expect that connecting point measurements with our 
lidar and ceilometers sensors may result in extensive variability. However, we note that 
since the PBL measurements from WRF are per hour, we are able to reduce much of the 
variability in our point measurements by similar one hour averaging of the lidar PBL 
retrievals. Due to natural wind flow, the one hour averages should be reasonably 
representative of the 12 km spatial footprint. To improve the data matchup quality, we also 
introduce the following filters into the lidar matchups. 
Filter 1: Only cloud free cases are considered. This is in fact a limitation of the lidar 
measurements since operation under cloudy conditions can result in strong backscatter 
signals that would often saturate the detector. Since we are ultimately concerned with cases 
where pollution exceedence is of major concern and to avoid local coastal contamination 
issues, we remove from our comparisons all sea-breeze cases identified through wind data 
from Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) Model. 
Filter 2: We restrict comparisons to cases where at least five PBL measurements are made 
within the hour and the standard deviation is less than 20% of the mean. This limits 
comparisons to cases where temporal homogeneity is reasonably met.  

4.3 Data analysis for PM2.5 
While our first concern is the PBL heights, we also look to assess the performance of the 
WRF driven CMAQ forecast predictions. As mentioned earlier, the CMAQ model 
performance for summer conditions in urban conditions results in strong overestimating 
pollution spikes which are not in agreement with the AIRNow TEOM measurements.   
Particulate size distributions in CMAQ are represented as the superposition of three 
lognormal subdistributions, called modes, including the aitken mode (i-mode), 
accumulation mode (j-mode), and coarse mode (c-mode). In general, a large number of 
species with different optical and density properties are represented but all particles are 
assumed to share the same size distribution. In this study, we estimate the PM2.5 from the 
CMAQ output by simply summing the aitken and accumulation mode or (i+j) method (EPA, 
1999a, 1999b; Jiang et al., 2006). In comparing with the TEOM measurements, we use three 
sites within the 12km area (see Table 2) and filter the cases to those in which the standard 
deviation of the three sites is < 20 % of the mean.  
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Site Name Latitude Longitude 

CCNY 40.81976 N -73.94825 W 

Manhattanville PO 40.81133 N -73.95321 W 

IS 52 40.81618 N -73.90200 W 

Table 2. TEOM Stations Locations 

5. Instrumentations and methodology 

5.1 Lidar 
An elastic lidar with three wavelengths (355 nm, 532 nm and 1064 nm) is operated year 
round in CCNY (40.8N, 73.9W). Measurement at wavelength 1064nm is mainly used in this 
study as this channel has minimum contribution from molecular scattering and is better for 
aerosol observation by increasing the backscatter contrast between the PBL and free 
troposphere layers. More details about lidar specifications and system configuration can be 
found in Wu et al., 2009. 
The lidar return signal is based on the scattering of the laser transmitted energy by 
atmospheric particles including aerosol, dust and molecules. The instantaneous magnitude 
of the return signal provides information on the backscatter properties of the atmosphere at 
a certain height determined by the time delay of the pulse echo. While processing the raw 
lidar data, we must include the fact that the atmosphere attenuates the signal both before 
and after hitting the backscattering target. To account for this, the instantaneous return 
signal strength is given by the basic LIDAR equation: 

 

2

1

2 ( ') '

2
( ) . . . ( ).

2

z

z

z dz

r o

c t A
P z E z e

z

σ

β
− ∆

=   (2) 

where Pr(z) is the instantaneous power received from distance z  [Watt], Eo is the effective 
pulse energy (include all optics attenuation) [Joule=Watt-second], c is the speed of light 
[meter per second], Δt is the laser pulse width [second], A is the receiver aperture area 
[meter2], z is the distance between system and target [meter], β(z) is the volume backscatter 

coefficient at distance z [per meter-steradian] and the exponential term is the two-way 
atmospheric transmittance, which accounts for the attenuation of transmitted and 
backscattered power by extinction at various distances (z’) between the transceiver and 

target. 
The PBL contains greater aerosol concentration because the aerosols are trapped in the PBL 
by a potential temperature inversion. Therefore, the backscatter signal strength is 
dramatically reduced when it transits from the PBL into the free troposphere. This sharp 

change of signal is used to estimate the PBL height. These changes in backscatter signal 
caused by varying aerosol concentration provide a very powerful tool for remotely 
observing the two-dimensional structure of the PBL. In general, the PBL is characterizes by 

intense mixing in a statically unstable situation where thermals of warm are rise from the 
ground. The PBL reaches its maximum depth in late afternoon. It grows by entraining, or 
mixing down into it, the less turbulent air from above. The resulting turbulence tends to mix 
heat, moisture, pollutants and momentum uniformly in the vertical.  (Stull, 1988; Kovalev & 

Eichinger, 2004; Brooks, 2003; Davis et al., 2000) 
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5.2 Ceilometer 
Another remote sensing instrument that is used in this study is a ceilometer (model CL31) 
which is manufactured by Vaisala. This instrument is a device that is originally designed to 
determine the height of a cloud base. Due to the higher backscatter signal of a cloud, the 
pulse powers are dramatically less and therefore can be made eye-safe but works on the 
same principle as lidar system. Furthermore, unlike the lidar transmitter which is not eye-
safe, the ceilometer utilizes a single NIR (Near Infra Red) channel at 910 nm. While designed 
for cloud detection, ceilometers can also be used to measure the aerosol concentration 
within the atmosphere (Eresmaa et al., 2006; Haji et al., 2009). However, it is also clear that 
the low signal pulse power will result in higher noise and significant temporal and spatial 
averaging would need to be applied to bring the noise contamination down to acceptable 
levels. Besides, the limitation of this instrument is unable to observe PBL height that is 
higher than 1.2 km where the noise is dominant.  

5.3 Wavelet covariance transform method 
From extended studies of the performance of the available lidar methods applied to a 
large set of lidar observations, the wavelet covariance transform (WCT) method has been 
shown to be the most robust technique for an automated PBL height detection (Davis et 
al, 2000; Brooks, 2003; Baar et al. 2008). This method is intuitive and is based on scanning 
the backscatter profile with a localized impulse function and maximizing the covariance 
between the backscatter profile and the impulse function. While many possible wavelet 
shapes are possible, we find that a step function Haar wavelet defined as below can be 
used. 
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where z is the profile height and a and b describe the width and translation of the 

function, respectively. The covariance (Gamage & Hagelberg, 1993) is simply the 
convolution or localized transform, Wf(a,b), of the Haar function with the lidar 
backscatter profile. 
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where zb and zt are the bottom and top altitudes in the lidar backscatter profile, and B(z) is 
the lidar backscatter as a function of altitude, z. The locations of these maxima and minima, 

bimax and bimin , and the associated values of the covariance transform, Wf(amax, bimax) and 
Wf(amax, bimin), are the locations and relative strength of step like boundaries in the lidar 
backscatter profile, B(z). The index i refers to the case of multiple local minima or maxima. 
For clear  conditions,  Wf(a,b) takes a clear local maximum at the PBL height because of the 

high backscatter values in the mixing layer and significantly lower backscatter values in the 
free atmosphere (Fig. 2).  
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Fig. 2. (a) Single Lidar signal (log scale) profile (b) Resulting wavelet convariance transform. 

However, when strong residual or plume layers occur, Wf(a,b) will have multiple local 

minima and maxima as shown in Fig. 3 (a). These multiples maxima confuse the algorithm 
making it difficult to extract a unique PBL height. For example, Fig. 3 (b) illustrates 4 hours 
lidar measurements where an aloft plume occurs in the morning. The backscatter from the 
plume is higher than the backscatter from the PBL which gives the wrong estimation of PBL 

height. This renders the selection of the correct PBL height ambiguous and it is this 
ambiguity that needs to be addressed for better model validation.  
 

 

Fig. 3. (a) Single lidar WCT profile (b) Lidar measurements on Jul 10, 2010. 

To account for the different structures expected in the PBL height, we separate the lidar 
profiles into classes. The “transition” class occurs between 8:00-12:00 EST and 18:00-22:00 
EST when the PBL is growing / collapsing and residual layers are present growing, while 
the mature PBL class extends from 12:00-18:00 EST. In order to decrease the noise level and 
smooth the atmosphere transition, a sliding spatial and temporal averaging is applied to the 
lidar backscatter dataset. In this study, the averaging temporal interval ∆t is 20 minutes with 
a sliding window of 10 minutes while the averaging spatial interval ∆z is 80 meters with a 
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sliding window of 40 meters. The temporal resolution is 10 minutes and spatial resolution is 
40 meters. Since the PBL height predicted by the WRF model is hourly, 10 minutes temporal 
resolution is sufficient for comparison. When making final comparisons however with the 
WRF outputs, the 10 minutes retrievals are further averaged to 1 hour. To better separate the 
convective layer from the residual or plume layer, we apply a few modifications that will be 
briefly discussed below. 
Our first modification is applying cloud screening to the dataset before WCT. Clouds are 
characterized by a steep increase of the range-corrected lidar signal at the cloud base 
followed by a strong decrease of the signal with increasing cloud penetration depth. From 
these properties, the use of the WCT and together with a minimum backscatter threshold is 
sufficient to easily identify cloud pixels in the lidar profile. For such marked cases, no PBL 
height is provided.  
Furthermore, the selection of an appropriate spatial resolution a is the main challenge for a 

successful retrieval of the PBL height. For rather small values of a, signal noise dominates 
the vertical profile of Wf masking the maxima that defines the PBL top.  On the other hand, 
large value of a may fail to resolve the PBL height when further aerosol layers are present in 

the lower free troposphere. In general, we found that a smaller a (0.5 km) is needed during 
the transition regime whiles a larger a (0.7 km) is optimum for the afternoon time dataset. 
The larger value allows us to balance the effects of lower SNR due to the higher altitude 
where the signal strength is degraded with the reduction of vertical structure of the PBL due 

to turbulent mixing during this period 
In addition, to isolate the convective growth layer from the residual layer, we make use of 
general trends (e.g. climatology) in the PBL searching range to limit the PBL height retrieval. 
For example, we restrict the PBL searching range to 1 km in the morning and night period 
while a range from 1 to 3.5 km is used for the afternoon period. The restriction in morning is 
necessary since the residual layer is often very deep from the previous day.  
Finally, the PBL height determined by the algorithm is checked for continuity. On a running 
scale, a given interior point is compared to its adjacent points and if it is outside a range (e.g. 
± 250 meters with spatial resolution of 40 meters and temporal resolution of 10 minutes) on 
both sides, it is discarded. If only one side is outside the range, a mean value of both points 
will be calculated. This scheme is iterated until no further changes occur. This reduces the 
number of false hits caused by noise or other layers such as residual layer, plume layer and 
internal turbulence.  

6. Discussions 

6.1 PBL statistic variations in NYC 
In order to have a general idea of the PBL temporal dynamics in an urban area such as NYC, 
we overlay the PBL trend grouped by seasons. Due to the weather and human factors, the 
lidar observations are normally limited from 10:00 to 18:00. Therefore, the results as shown 
in Fig. 4 (a-b) only illustrate the daytime trend. Table 3 summarizes the number of 
observation days and averaged maximum PBL height that occur during daytime for each 
month. The most important observations is the high PBL height (2-2.5 km in summer) as 
compared to winter seasonal trends (1-1.5 km in winter) (e.g. January, Febraury and 
December). In addition to the general increase of the maximum PBL height, the diurnal 
increase from morning through late afternoon is much more dramatic and indicative of the 
surface heating process in general during the summer and spring. 
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Fig. 4. Monthly PBL trend average over 4 years (2007-2010). 

 

Month 1 2 3 4 5 6 7 8 9 10 11 12 

No. Days 12 16 29 28 30 16 32 24 26 25 22 11 

Max Height 
(km) 

0.99 1.30 1.88 1.78 1.80 2.05 2.23 2.02 2.21 1.11 1.18 1.48 

Table 3. Summary of number of observation days and maximum PBL height.    

6.2 Assessment of model PBL height retrieval 
The main results when comparing both the BLK and ACM2 data are given in Fig. 5 (a-b). 

First, we note the BLK has somewhat slightly better correlation (R=0.87) than the ACM2 

scheme (R=0.84) although both schemes seem to result in statistically significant 
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overestimations of the PBL height. However, as seen in the histogram analysis of Fig. 6, the 

bias of the BLK scheme is somewhat smaller than that observed in the ACM2 scheme with a 

mean bias of m=180 meters for BLK and m=340 meters for the ACM2 scheme On the other 

hand, the fluctuation of the deviation is quite high with the std for the BLK scheme about 

σBLK=300 meters while the ACM2 schemes standard deviation is σACM2=280 meters.  

Keeping in mind that the lidar based methods matched against meteorologically based 

methods such as the parcel method show no appreciable bias and average deviations 

between on the order ±200 meter (Hennemuth & Lammert, 2006), we believe the model 

biases are significant and there is room for more model development. Still, the results 

illustrate that at least for ACM2, the over bias is significant and all things considered, the 

BLK scheme performs best under the study period. 
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Fig. 5. WRF versus Lidar PBL heights in unit km (a) Blackadar (b) ACM2. 
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Fig. 6. Statistics of PBL height model versus measurement errors (WRF PBL – Lidar PBL in 
unit km) summer 2007 (a) Blackadar  (b) ACM2. 
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Fig. 7. (a) Linear regression of WRF PBL height with lidar derived PBL height for selected 14 

days on June, July and August, 2010 (b) Statistics of PBL height model versus measurement 

errors (WRF PBL – Lidar PBL in unit km) summer 2010. 

The results for the 2010 PBL height comparisons using the MYJ scheme in forecast mode are 
given in Fig. 7 (a). We note however that even though the correlation is comparably high 

(R~0.86) to the 2007 hind cast data, the fluctuations for the 2010 forecast data is much larger 
as seen in the histogram data as shown in Fig. 7 (b) with a standard deviation σMYJ~550 
meters in comparison to σBLK~320 meters and σACM2~280 meters. This is consistent with the 

fact that forecast uncertainties are expected to significantly increase the fluctuations of all 
dynamical parameters.  

6.3 Assessment of CMAQ PM2.5 
In looking at the performance of CMAQ as illustrated in Fig. 8, a strong diurnal spike 
behavior is observed in the CMAQ surface layer PM2.5 which is not seen in the TEOM 

measurements. The direct source of this over bias is not clear with possible contributing 
factors being unrealistic gradients in the PM2.5 vertical profiles or overestimation in the 
primary emission associated with urban rush hour traffic (Doraiswamy et al., 2010). 
However, the use of ceilometer backscatter profile data can be used to explore how 

realistically, the primary emissions are distributed vertically. Before doing this, it is useful to 
illustrate indirectly that vertical distribution of PM2.5 is at least partially a factor that must 
be taken into account seriously. In Fig. 9, we plot for the summer 2007 case, the linear 

correlation coefficient binned by hour between the TEOM PM2.5 measurements and the 
path averaged PM2.5 mass from the CMAQ model for different vertical height levels. Most 
dramatic is the enhancement of the correlation for the pre-sunrise particulate matter 
emission case when the altitude is large. This illustrates that to some extent, the primary 

emission is not the dominant problem and that these emissions are in practice being more 
evenly distributed in the UBL. On the other hand, we see a complete change once sufficient 
heating has taken place during the day. In this case, the particulate matter mass in the 
CMAQ model is better mixed in agreement to observations and the best correlation should 

occur when the CMAQ particulates is closest to the surface.  
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Fig. 8. Summer averaged PM2.5 mass concentration (µg/m3) diurnal cycle comparison of 
CMAQ and TEOM. (a)  Summer 2007, (b) Summer 2010. 

 

 

Fig. 9. Linear correlation coefficient binned by hour between the TEOM PM2.5 Summer 2007 

measurements and the path averaged PM2.5 mass from the CMAQ model for different 

vertical height levels. (R: correlation coefficient; 250 meters:  path average from the surface 

to 250 meters altitude) 

For a more direct comparison, we plot in Fig. 10 path averaged CMAQ PM2.5 and the 
ceilometer backscatter over the diurnal cycle for different altitude ranges. In panel (a), the 
results reemphasize how the CMAQ PM2.5 distribution is compressed near the surface 
during the morning spike anomaly. In fact, as the altitude increases, the PM2.5 diurnal 
distribution becomes peaked during mid-day and evidence of the spike behavior is 
removed. On the other hand, the ceilometers path averaged backscatter in panel (b) does 
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not observe these pollutant spikes even at the lowest vertical bins. While a small increase 
is seen in the ceilometer backscatter relative to mid day, the contrast between morning 
and mid-day is much smaller with a contrast coefficient C(X)=Xmax–Xmin)/(Xmax+Xmin) of 
approximately 12% compared to ~50% for the CMAQ near surface measurements. In 
addition, the ceilometer contrast is clearly much more in line with the TEOM 
measurements. It is also interesting to see that as the height of the ceilometer path 
increases, we recover the general diurnal trend seen in the CMAQ data retrievals.  
 

 
                                             (a)                                                                        (b) 

Fig. 10.  Cumulative path averaged parameters for different altitude ranges over the diurnal 

cycle (a) CMAQ PM2.5 (µg/m3) (b) Un-calibrated ceilometer backscatter (10-9 m-1 sr-1). 

Further evidence that boundary layer mechanisms giving rise to problems with the near 
surface PM2.5 estimates can be seen by inter-comparing the summer 2007 and 2010 CMAQ 
predictions. In Fig. 11, the 3-dimensional structure of the CMAQ PM2.5 outputs are 
compared. For convenience, the different PBL height retrievals are superimposed. The most 
important observation is that the summer 2010 mixing layer heights are significantly larger 
on average for summer 2010 during the sunrise/sunset periods. For the 2007 data, the 
extremely compressed PBL clearly tends on average to trap the primary emissions not 
letting them vent upwards. Since the emission inventories are not expected to be 
significantly different when averaged over seasonal scales, the different PBL height behavior 
is clearly the dominant mechanism. The difference in PBL height is directly observed in Fig. 
12 where the different PBL height retrievals are plotted. Besides the significant growth of the 
nocturnal PBL, we note a significant increase in the magnitude and persistence of the PBL 
profile.  
Finally, it is important to remember that when we compared the vertical structure of the 
CMAQ against the ceilometers in Fig. 9-10, we found that the strong surface emission 

behavior in the diurnal pattern predicted by CMAQ within the first 500 meters of the 
surface are not seen in the ceilometer data. However, it may be argued that since we are 
matching PM2.5 to optical backscatter, there may be significant problems in the comparison. 

Although we argued that this should not be a significant issue since the TEOM-Ceilometer 
regression has high correlations in the first 500 meters, it is useful to consider a more direct 
matchup where we use the CMAQ extinction variable based on semi-empirical 
parameterization connecting the CMAQ component masses to optical extinction (Malm et 
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al., 1994). In Fig. 13 (a), the averaged optical extinction data is displayed and in Fig. 13 (b), 
the accompanying seasonally averaged relative humidity (RH). The first point is that the 
CMAQ extinction parameter has the same near surface behavior with the PM2.5 mass so 

that it is not unreasonable to diagnose the CMAQ PM2.5 with the lidar and ceilometer 
backscatter. In this direction, it is clear that CMAQ primary emissions are not properly 
being distributed vertically. On the other hand, enhanced extinction is seen in the CMAQ 
retrievals in the upper atmosphere but when compared to the WRF RH profile is a direct 

consequence of the enhanced scattering due to hygroscopic humidification. This enhanced 
backscatter does in fact exist in our lidar images where increased humidity at the top of the 
PBL is often accompanied by enhanced RH due to temperature inversion and an increase of 
hazy layers capping the PBL in the afternoon but occurs too high to be of interest in our 

ceilometer retrievals.  
 

 

Fig. 11. The 3-Dimensional structure of the CMAQ predicted PM2.5 mass concentration 
(µg/m3) (a) Summer 2007 (b) Summer 2010. 
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Fig. 12. Dirnal Average of PBL height retrievals for different schemes. 
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                                              (a)                                                                        (b) 

Fig. 13. (a) Optical extinction (km-1) at wavelength 550 nm based on the MALM 
paramterization within the CMAQ product (b) Simultaneous WRF RH (percent) retrievals.  

7. Case study – august 2007 Idaho and Montana fires 

In section 3, we briefly mentioned satellite based approaches to measure pollutants focusing 
on MODIS AOD as a proxy for PM2.5. However, this approach does not work if aloft 
plumes are present since they modify the column AOD. These plumes not only affect the 
PM2.5 retrieval but also can physically interact with the PBL and change the surface PM2.5 
concentrations. 

7.1 Plume identification using polar satellites  
To determine the nature of the aerosol plumes, a number of more advanced multi-spectral 
satellites including OMI, POLDER, and MODIS to name a few have the added capability of 
limited aerosol classification. In order to illustrate the phenomenon, we choose the mid 
August (Aug) 2007 fires, which were continuously burning across Idaho and Montana with 
columns of thick smoke transported eastwards across North America, affecting much of the 
United States. Although it was assumed that this event significantly affected air quality in 
the north east, observations from satellites are not conclusive and in fact during the plume 
transport, surface samplers often showed low pollutant levels. The advanced warning 
provided by the satellites was crucial to ensuring that this transport event was captured by 
the CCNY lidar as well as other lidars from the Micro-pulse Lidar Network (MPLNET).  
However, the column AOD does not directly determine the surface pollution when plumes 
are present since the aloft plumes cannot be differentiated from the satellite measurements. 
Therefore, lidar (ground based or space based) must be employed to quantify the AOD in 
the plume and thereby correct for the plume contribution to the satellite AOD.  
As an example of how we could do this, we look at a special case of heavy smoke plumes from 
Idaho-Montana. The plumes were initially transported as high altitude lofted layers which was 
observed by the CCNY lidar system (40.8N, 73.9W) over two days and was subsequently 
observed to mix with the late afternoon PBL. The source of the plume is shown in Fig. 14 (a) as 
fire hot spots and smoke signatures captured by MODIS onboard the Aqua satellite on Aug 13. 
By Aug 14 and 15, the smoke plumes began to canvas the North Eastern United States as seen 
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in Fig. 14 (b) and were visually identifiable from the quick view imagery, as well as through 
the large AOD measurements seen from the GOES and MODIS satellites.  
 

 

Fig. 14. (a) Images showing smoke and fires area (Montana and Idaho) captures by MODIS 
aboard Aqua satellite on Aug 13, 2007. This image of the area was captured by MODIS on 
NASA's Aqua satellite at 2:00 p.m. local time (U.S. Mountain Daylight Time). Locations 
where that sensor detected active fires are highlighted in red. (b) MODIS Terra close-up 
view of the smoke and haze over the Great Lakes and the northeastern United States on Aug 
15, 2007 at 1625 UTC. 

 

 

Fig. 15. HYSPLIT 5-day backward trajectory analysis ending at (a) 22:00 UTC on Aug 14 at 
three altitudes between 3 and 8 km and (b) 18:00 UTC on Aug 15, 2007 between 4 and 5 km. 

Modeled backward trajectories from HYSPLIT (DeMott et al., 2003; Jorba et al., 2004; Hondula 
et al., 2009) provide a means to identification of the source region and the transport patterns of 
the air parcels at varying altitudes as specified by lidar observations. In Fig. 15, we show the 
back-trajectory of the air parcels over 120 hours from CCNY for Aug 14 and 15, illustrating the 
horizontal and vertical motion of the air mass. The trajectory results clearly show the air mass 
interacting with the aloft layers from the Idaho and Montana forest fire regions. This backward 
mode then allowed us to run HYSPLIT in prediction mode, which can then be compared to 
observations. Running the smoke forecast tool produced by NOAA Air Resource Laboratory 
(ARL) using the HYSPLIT dispersion model with the MODIS aerosol loadings shows how well 
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the model performs. In particular, MODIS aerosol retrieval continuously shows high aerosol 
optical depth over the source region over all three days in Fig. 16 (b, d, f).  However, we can 
see that on Aug 13 as shown in Fig. 16 (b), very low aerosol loadings over the NYC region 
occur, implying that the smoke plumes had not made its way to this area as yet, as predicted  
 

 

Fig. 16. MODIS Terra AOD at 550 nm on (b) Aug 13, (d) Aug 14, and (f) Aug 15, 2007. 
NOAA ARL smoke forecast for (a) Aug 13, (c) Aug 14, and (e) Aug 15, 2007. The smoke 
forecasts are 1-hour average output maps of primary PM2.5 air concentrations between the 
ground and 3 km. Smoke Forecast Model courtesy of NOAA’s Air Resource Laboratory 
using the HYSPLIT Dispersion Model. 
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by the model.  On the other hand, we can see much higher aerosol loading on Aug 14 and 15  
as shown in Fig. 16 (d and f), which is consistent with the CCNY lidar observations and model 
predictions. The quality of the predictions is also seen in the timing of the plume front. A more 
careful examination of the observations and model predictions show that by 1600 UTC, the 
plumes were first making their way into central New York and did not make it into the NYC 
Area. This is consistent with the timing of the plumes observed from the CCNY lidar system 
where the first plumes were seen at 2000 UTC.    
To further identify the nature of the plume coefficient as well as the underlying aerosol 
environment, we plot in Fig. 17 the angstrom coefficient derived from MODIS AOD. The 

Angstrom exponent α quantifies the slope of the wavelength dependence of the optical 
depth and is an indicator of the size of the atmospheric particles. In particular, when the 
Angstrom exponent is larger than one, fine mode aerosols dominate the column, while for 
Angstrom exponents less than one; coarse mode aerosols dominate the column [Kaufman, 
1993]. In particular, we note that the plume as well as the background aerosol angstrom 
coefficient is quite high, which is indicative of highly concentrated fine mode aerosols. 
However, to identify the aerosols as biomass burning, we need to obtain information on the 
absorbing nature of the aerosols, which is beyond the capabilities of MODIS. Therefore, we 
utilize the UV (ultraviolet) aerosol measurements from AURA’s OMI sensor, which allows 
for the determination of the absorbing index (AI) parameter known for its strong indications 
of biomass burning. These results are reported in the next section.   
 

 

Fig. 17. Mosaic of Angstrom Exponents over North America derived from MODIS on Aug 
14, 2007. 

The Aura OMI instrument can differentiate UV-absorbing aerosols such as dust and 
biomass burning from the weakly absorbing aerosols and clouds (Braak et al. 2007) 
Absorbing and non-absorbing aerosols are separated based on the UV aerosol index, which 
is positive for absorbing (e.g. dust) and negative for non-absorbing aerosols (Torres et al. 
2002). Since we have already eliminated dust due to the MODIS observed high angstrom 
coefficient, a high AI coefficient is a good indicator of biomass burning. In Fig. 18 (a), we see 
the strong biomass signature of the fire source. By Aug 14, the biomass plume had been 
transported to the northeast US. Although the AI is slightly smaller, the biomass signature is 
still quite clear. By Aug 15, the plumes are observed to be heading out to sea and mixing 
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Fig. 18. TOMS OMI UV Aerosol Index for (a) Aug 13, 2007, (b) Aug 14, 2007, (c) Aug 15, 2007 
at 354nm. 
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strongly with native maritime type aerosols, reducing the overall absorbing index. The 
smoke areas in the OMI imagery of UVAI, was found to coincide well with areas where 
MODIS (Fig. 17) reported increased aerosol loading compared to its surrounding 
background. We observe UV Absorbing Index as high as 4, which is indicative of highly 
absorbing aerosols.   
We have also examined the biomass nature of the plume directly using the MOPITT Carbon 
Monoxide (CO) product, which is a good indicator of biomass aerosols and smoke. The 
results in Fig. 19 show the CO concentrations over the NYC area for the plume event as a 
function of pressure level. Clear increases in biomass burning are seen on Aug 14 and 15, 
marked by the increase in CO concentrations. Note however, that little difference in CO 
concentration is seen between the 14th and 15th due to the inability of the satellite sensor to 
see to the PBL layer.  
 

 

Fig. 19. MOPITT column profile of carbon monoxide concentration of Aug 13-15, 2007 at six 
pressure levels: 850, 700,500, 350, 250, and 150 hpa. 

7.2 Plume transport using seostationary satellites 
In all the previous observations, the satellites were polar orbiting so very few observations 
can be made daily. However, geostationary observations can be used to explore transport of 
pollution with high temporal resolution. In fact, the GOES Aerosol and Smoke product 
(GASP) provides aerosol optical depth retrievals over the United States at 4 km spatial 
resolution and 30 minutes intervals (Prados et al., 2007; Knapp et al., 2002a, 2002b, 2005). 
Retrievals are performed over land and ocean providing a full view of the earth daily. The 
GOES AOD retrieval method uses the visible channel of the GOES-12 Imager data to 
retrieve aerosol information. The GOES retrieval method is a three-step process. First, a 
background image composite is created of the visible imagery for each satellite observation 
time, using the visible image from the past 28 days including the current image. The second 
minimum reflectance (second darkest pixel) is selected and used in the background 
composite. Secondly, an atmospheric correction is applied and the Radiative Transfer (RT) 
model, which assumes a continental aerosol model from the Look Up Table (LUT) generated 
with the 6S RT model, is used to connect the top of the atmosphere (TOA) reflectance to a 
surface reflectance. In the final step, the calculated surface reflectance, the LUT, and the 
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GOES visible image are used to retrieve the aerosol optical depth at 550 nm (Prados et al., 
2007; Knapp et al., 2002a, 2002b, 2005). Since the GASP product must assume an aerosol type 
(background continental), it may be thought that the AOD might be quite inaccurate when 
applied to smoke. However, the GOES visible channel is fairly insensitive to absorbing 
effects and since the particle size distributions are quite compatible, we might expect fairly 
good quantitative measures of AOD.   
 

 

Fig. 20. Comparison of the AERONET sun-photometer (Cimel) derived AOD and GASP 
AOD products at CCNY on Aug 13-15, 2007 

In Fig. 20 we show a comparison of the AERONET sun-photometer derived AOD and GASP 

AOD products at CCNY for Aug 13-15, 2007. The GASP pixel was centered over CCNY and 
the AOD was averaged over a 0.1o x 0.1o grid for every 30 minutes of data. Although the 
GASP product uses a single channel, we still see excellent temporal agreement between the 
GASP AOD and the sun-photometer AOD product when both data sets exist.  However, the 

GASP measurements are often given when the sky radiometer measurements are not 
available. These gaps in the sun-photometer data exist due to the presence of clouds in the 
instruments field of view, where an automated cloud-screening algorithm has been applied. 

In the original formulation, the GASP AOD has not been properly cloud screened, and 
therefore, a high optical depth value due to broken clouds is observed, as indicated by the 
circled regions in Fig. 20. However, when applying a more conservative cloud screening 
technique to the GOES data (courtesy of NOAA/STAR team), most of the cloud pixels were 

removed while still leaving the plume AOD measurements unaffected. 

7.3 Evaluation of the plume vertical structure using active lidar and passive 
radiometry 
The CCNY lidar co-located with a CIMEL sun-photometer is available for extensive ground 

measurements. Lidar measurements of the smoke event from Aug 13 to 15 are illustrated in 
Fig. 21. (a) shows that on Aug 13, we observe prior to the smoke plume arrival over NYC, a 
clear atmosphere above CCNY with no visible evidence of plumes aloft. On Aug 14, the 
vertical profile retrieved by the lidar shows a distinct aerosol layer, identified by its strong 

aerosol backscatter in the late afternoon at about 7 km altitude in Fig. 21 (b). However, by 
the following day (Aug 15), as the boundary layer developed and the smoke plumes 
continued to pollute the free troposphere over CCNY, the most noticeable impact of the 

smoke was its downward advection and mixing with the boundary layer by 14:00 EST.  
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In examining the spatial extent of the vertical plume structure, we also looked at the NASA 
Micro-Pulse Lidar NETwork (MPLNET) for simultaneous measurement with the CCNY 
lidar. The MPLNET operates a lidar at GSFC (39o N, 76o W), downwind from the CCNY 

lidar, which also has a collocated sun-photometer instrument. Fig. 22 displays the 
MPLNET/NASA Goddard Space Flight Center Micro Pulse Lidar normalized relative 
backscatter ratios measured on 14-15 August, the same days as CCNY lidar observations.  In 
Fig. 22, we can see smoke plumes between 3 and 10 km on Aug 14 and between 2 and 6km 

on Aug 15, similar to that observed over the CCNY site, with the exception that the Aug 14 
plumes over GSFC had already began descent, although no boundary layer mixing was 
evident. Backward trajectories ending at GSFC also showed similar air parcel patterns from 
the source as that ending at CCNY. It is also important to highlight the fact that the 

boundary layer mixing on Aug 15 occurred about the same time (14:00 EST) at both 
locations, which is consistent with the HYSPLIT trajectory analysis. 
 

 

Fig. 21. CCNY range corrected lidar returns at 1064nm showing high altitude plume 

formation from Idaho, Montana, and Wyoming fires. a) Aug 13: before evidence of smoke 

plume arrival to NYC b) Aug 14: onset of plumes with lofted layer and no evidence of PBL 

interactions c) Aug 15: plumes advect downwards interacting with PBL. 

 

 

Fig. 22. MPLNET/NASA Goddard Space Flight Center Micro Pulse Lidar normalized 

relative backscatter ratios measured on (a) Aug 13 before the onset of the smoke plumes, (b) 

Aug 14, the onset of the smoke plumes descending towards the boundary layer but no 

visible mixing, and (c) Aug 15, plume advected downwards and mixed with the surface air. 
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7.4 Plume properties and identification 
Unlike the MPLNET, the CCNY lidar has multi-wavelength capabilities allowing us to look 
for spectral characteristics of the aerosol useful for identification. For example, the plume 
angstrom coefficient derived from the lidar backscatter measurements as a function of 
altitude, which we define as: 

 1 2( , )
1 2( , )aer C α λ λβ λ λ λ −=  (5) 

where C is an arbitrary constant, β is the aerosol backscatter coefficient, and α is the 
angstrom exponent can help distinguish between small smoke particles and large dust 
particles in an aloft plume. In doing this calculation, care must be made that channels are 
calibrated. The 532 nm channel is calibrated based on clear molecular reference signals 
but the 1064 nm channel requires more care since the molecular reference at 1064 nm 
channel is too weak. To do this, we employed (Gan et al., 2008; Wu et al., 2010) a cloud 
base calibration method which results in accuracies ~15%. In Fig. 24 (c) we note that the 
plume has a large (~2) and stable angstrom exponent as a function of altitude, which is a  
 

 

Fig. 23. Column integrated angstrom coefficient derived from sun photometer AOD 
measurements using 440 – 870 nm channels. 

 

 

Fig. 24. (a) Lidar range corrected power at 1064 nm, (b) Extinction coefficient obtained from 
lidar at 17:51 EST, (c) Angstrom coefficient (unitless) using two wavelengths obtained using 
Equation 5. 
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clear indication of small particles. These results are reinforced when the sky radiometer 
angstrom coefficient is calculated, as illustrated in Fig. 23. In particular, we note changes 
in the angstrom signature (increasing from 1.4 to 1.8 by late afternoon on Aug 14) 
indicating an increase of fine mode particulates entering the air column.  Furthermore, the 
angstrom coefficients remained fairly constant and stable over the entire 2-days episode, 
indicating that we are dealing with the same type of particulates, not necessarily coming 
from a single source. These results are also in good quantitative agreement with the 
CCNY lidar derived angstrom coefficients.  

7.5 Smoke influence on local air quality  
We have already noted the advection of the plume into the PBL, so it is natural to explore 
any ground signatures that indicates an increase in air pollution in the PBL. Fig. 25 shows 
the near surface particulate loadings on August 13-14 obtained from the NYSDEC. On Aug 
14, as expected, the PM2.5 loadings were low. These observations showed no evidence of 
boundary layer interaction with upper troposphere plumes, and at the surface scattering 
coefficients and particulate loadings remained low, which is a characteristic of clear and 
relatively unpolluted air within the boundary layer.  On the other hand, by the afternoon of 
Aug 15, there was a large-scale descent of smoke plumes, resulting in a significant increase 
in the surface PM2.5 loadings, compared to the state prior to plume interaction. What is 
interesting is that the semi-empirical relation between PM2.5 and column AOD assuming a 
well mixed PBL layer (Zhang et al., 2009) Equation 1 would lead to dramatically large 
overestimates of the surface pollution. However, by using the lidar extinction, we can 
quantify the AOD of the plume and subtract that contribution from the GOES satellite. The 
resulting matchup is much improved (Fig. 25) even when the plume interacts with the PBL 
resulting in tangible increases in the PM2.5 concentration.  
 

 

Fig. 25. Ground level PM2.5 and PM10 surface loadings for NYC on Aug 13-15, 2007. 

8. Summary 

To summarize, the use of vertical profiling sensors has found multiple applications in 
improving our understanding of pollution and transport processes. In this chapter, we show 
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not only the importance of remote sensing instruments in monitoring the vertical 
distribution of air quality but also demonstrate how they can unravel difficulties in air 
quality retrieval from satellite techniques. 
We first illustrate that current meteorological forecast models can reliably determine the 
PBL height even in urban environments in cases where convective heating is the dominant 
mechanism. We find in such cases correlations (R > 0.85) occur although some over biases 
are observed in the non-local (BLK and ACM2) schemes. In making these comparisons, the 
use of the Wavelet Covariance Transform (WCT) method to analyze the lidar profiles 
together with additional constraints was important in isolating the convective layer from 
residual and plume layers. In addition, eyesafe 24 hour / 7 days ceilometer measurements 
were used to understand the most critical anomalies in the CMAQ PM2.5 forecasts. Using 
the vertical information, the over biases are shown to be most attributable to CMAQ forcing 
the pollution too near the surface and less to errors in the emission inventories. 
Finally, satellite and active sensors were used to demonstrate how long distance plume 
transport events can affect local pollution including clear observation of how plumes can 
advert into the PBL and enhance local PM2.5 surface concentrations. Although forest fires 
are basically local phenomena, they can also contribute to changes of the atmosphere on a 
regional or even global scale by generating large amounts of aerosol particles, which can be 
transported over large distances. Therefore, our analysis of the transport of the Idaho and 
Montana forest fire plumes over the eastern United States during Aug 2007, demonstrates 
the importance of pollution monitoring and prediction. In particular, we find direct 
evidence that even long term transport of lofted plume layers can mix with PBL modifying 
the surface level air-quality 
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