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Spatial Variation, Sources and Emission  
Rates of Volatile Organic Compounds  

Over the Northeastern U.S. 

1Rachel S. Russo et al.,* 
Climate Change Research Center, Institute for the Study of Earth, 

 Oceans, and Space University of New Hampshire, 
 Durham, NH 03824  

United States 

1. Introduction  

New England is an ideal region for studying air quality because of its unique geographic 
location, diverse landscapes and ecosystems, and varying climatic conditions. New England 
is often referred to as the “tailpipe” of the United States because it is directly downwind of 
major urban and industrial pollution sources located throughout the Midwest, Ohio Valley, 
and Washington D.C.-New York City metropolitan corridor (Fig. 1a). Sources in these urban 
areas emit pollutants into air masses which are then transported to the northeastern U.S. by 
the prevailing circulation patterns over the U.S. (i.e., the jet stream). Consequently, the air 
quality of New England reflects a combination of local, regional, and distant anthropogenic 
and natural trace gas and aerosol sources.  
In order to study the chemical and physical mechanisms influencing the atmospheric 

composition over New England, the University of New Hampshire’s (UNH) AIRMAP 

program has been conducting continuous measurements of important trace gas (e.g., ozone 

(O3), carbon monoxide (CO), nitric oxide (NO), total reactive nitrogen (NOy), sulfur dioxide 

(SO2), carbon dioxide (CO2), mercury) and meteorological parameters throughout the region 

for the past decade. Continuous measurements of volatile organic compounds (VOCs) have 

also been made at the UNH Atmospheric Observing Station at Thompson Farm (TF) (43.11 

°N, 70.95 °W, elevation 24 m) in Durham, New Hampshire (NH) since 2002 (Fig. 1b). VOCs 

are ubiquitous components of the atmosphere, and this broad category consists of 

nonmethane hydrocarbons (NMHCs), halocarbons, oxygenated VOCs (OVOCs), organic 

nitrates, and reduced sulfur compounds. VOCs enter the atmosphere from numerous 

primary anthropogenic (i.e., vehicles, natural gas, industrial solvents, fossil fuel combustion) 

and natural (i.e., vegetation, ocean) sources, and may also serve as precursors to secondary 

pollutant (i.e., O3, OVOCs, secondary organic aerosol (SOA)) production (e.g., Fehsenfeld et 

al., 1992; Singh and Zimmerman, 1992). The oxidation of NMHCs (RH) in the presence of 

                                                 
*1Marguerite L. White, Yong Zhou, Karl B. Haase, Jesse L. Ambrose, Leanna Conway, Elizabeth Mentis, 
Robert Talbot, and Barkley C. Sive 
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sufficient levels of nitrogen oxides (NOx = NO + NO2; NO2 = nitrogen dioxide) is the major 

production mechanism for O3 in the lower troposphere (Equations 1-5) (e.g., Carter, 1994). 

Ozone and particulate matter are the major components of photochemical smog and thus 

impact visibility, potentially damage vegetation and crops, and serve as respiratory lung 

irritants (U.S. EPA, 2010). A minor branch in the NMHC-NOx-O3 reaction mechanism 

produces alkyl nitrates (RONO2) (Equations 1-6) (e.g., Roberts, 1990; Flocke et al., 1998).  

 RH + OH → R + H2O (1) 

 R + O2 → RO2 (2) 

 RO2 + NO → RO + NO2 (3) 

 NO2 + h → NO + O (4) 

 O + O2 + M → O3 + M (5) 

 RO2 + NO → RONO2 (6) 

In addition, VOCs have a wide range of atmospheric lifetimes (seconds to years), and are 
removed from the atmosphere by oxidation (OH, O3, nitrate, halogens), photolysis, and/or 
deposition. Furthermore, several NMHCs (i.e., benzene, toluene, C8 aromatics), OVOCs (i.e., 
formaldehyde, acetaldehyde), and halocarbons (i.e., tetrachloroethene) are classified as 
hazardous air pollutants by the U.S. Environmental Protection Agency because they are 
potential carcinogens and/or harmful to human health (U.S. EPA, 1998, 2008, 2010). 
Therefore, a complete, accurate, and quantitative description of the atmospheric VOC 
distribution is necessary for characterizing the air quality in a particular region, studying the 
oxidation capacity of the atmosphere, and evaluating air quality and climate change models. 
Prior research conducted at TF has found that the air quality of this semi-rural area of New 

England is influenced by a complex mixture of anthropogenic VOCs from local, regional 

and more distant source regions, as well as from substantial biogenic sources (forests, 

coastal seaweed/algae) (e.g., Russo et al., 2010a, 2010b; Sive et al., 2007; Talbot et al., 2005; 

White et al., 2008, 2009; Zhou et al., 2005, 2008). Unique spatial and diurnal VOC trends are 

exemplified by a study conducted at six different locations throughout the New Hampshire 

seacoast region in August 2003. During this one day study, several anthropogenic NMHCs 

exhibited large nighttime mixing ratio enhancements (White et al., 2008), the marine derived 

halocarbons exhibited a distinct spatial gradient from coastal to inland sites (Zhou et al., 

2005), and the alkyl nitrates were uniformly distributed throughout the study area (Russo et 

al., 2010a). The distinct VOC trends observed in the continuous measurements at TF and 

from the August 2003 study led to a concerted effort to determine the sources and processes 

contributing to the VOC distribution over New England. We are aware of only one other 

detailed regional VOC measurement campaign conducted in the southwestern U. S. focused 

on examining the spatial variation of VOC mixing ratios and sources (Katzenstein et al., 

2003). Similar types of studies are clearly needed. The objectives of this chapter are to 

discuss the sources and spatial and temporal trends of VOCs during four spatial surveys 

conducted throughout New England during 2006 and 2007 and to put the results in context 

with the overall atmospheric distribution of VOCs observed at the Thompson Farm field site 

in Durham, NH. 

www.intechopen.com



Spatial Variation, Sources and Emission Rates of Volatile 
Organic Compounds Over the Northeastern U.S.   

 

235 

2. Methods 

Spatial surveys were conducted on June 21, 2006, September 21-22, 2006, January 10-11, 
2007, and May 22-23, 2007. Ambient air samples were collected in 2 liter canisters along four 
~250-300 mile (~400-480 km) loops radiating out from UNH in Durham, NH and included 
portions of western Maine (ME), eastern Vermont (VT), northern and eastern Massachusetts 
(MA), extreme northeastern Connecticut (CT), and northern Rhode Island (RI) (Fig. 1b). 
During each survey, four pairs of researchers collected samples every 10-15 miles (16-24 km) 
for a total of 24 samples on each route. The time of sample collection and the geospatial 
coordinates were recorded at each sampling location using a global positioning sensor 
(GPS). The sampling sites were generally open areas (i.e., fields, public parks) upwind of 
major sources and were chosen during the first sampling trip (June 21, 2006) which was 
conducted during the daytime (~09:00-19:00 EDT). The three subsequent surveys were 
conducted at night (~19:00-05:00 EDT) when winds were predicted to be low (<5 m s-1) to 
minimize the influence of photochemistry and to capture local nighttime emissions. The 
four sampling routes covered a wide geographic area that spanned considerable variation in 
altitude, land use, and population density. Moreover, the four surveys provide information 
on the seasonal variation of VOC sources. 
In order to characterize the diurnal variation of VOCs throughout the region, hourly 

ambient canister samples were collected over 24 hour periods on September 8-9, 2006 in 

Waterford, ME, September 12-13, 2006 in Hinesburg, VT, September 27-28, 2006 at Pack 

Monadnock, NH and at six locations on January 13-14, 2007 and May 29-30, 2007 (Fig. 1b). 

These diurnal sampling sites were selected to cover a range of local housing and population 

densities and included public parks and private property where permission was granted 

from local authorities and landowners.  

Prior to sampling, the 2-liter electropolished stainless steel canisters (University of 
California, Irvine, CA) were prepared by flushing with UHP helium that had passed 
through an activated charcoal/molecular sieve (13X) trap immersed in liquid nitrogen. The 
canisters were then evacuated to 10-2 torr. After each sampling campaign, the canisters were 
analyzed at UNH on a three gas chromatograph (GC) system equipped with two flame 
ionization detectors (FID), two electron capture detectors (ECD), and a mass spectrometer 
(MS) for C2-C10 NMHCs, C1-C2 halocarbons, C1-C5 alkyl nitrates, OVOCs, and select reduced 
sulfur compounds (Sive et al., 2005; Zhou et al., 2005, 2008). The compounds discussed in 
this work are C2-C7 alkanes, C2-C3 alkenes, isoprene, ethyne, C6-C8 aromatics, monoterpenes 

(-pinene, -pinene), trichloroethene (C2HCl3), tetrachloroethene (C2Cl4), methyl iodide 
(CH3I), dibromomethane (CH2Br2), bromoform (CHBr3), methyl nitrate (MeONO2), ethyl 
nitrate (EtONO2), 2-propyl nitrate (2-PrONO2), and 2-butyl nitrate (2-BuONO2). A 1500 cc 
aliquot from one of two working standards was assayed every ninth analysis. The 
measurement precision for the whole air standards (i.e., relative standard deviation (RSD) = 
(standard deviation of peak areas/average of peak areas) was <1-4% for the C2-C10 NMHCs 
and 5-10% for the halocarbons and alkyl nitrates. 
Hourly measurements from the automated in situ GC system at TF (Sive et al., 2005; Zhou et 
al., 2005, 2008) corresponding to the same time periods as the regional sampling surveys are 
also used to describe the diurnal variation of NMHCs and to calculate emission rates. 
Details of the custom designed four channel (2 FIDs, 2 ECDs) GC system, sample 
preconcentrator, sample trapping and splitting, calibrations, and instrument control are 
given in Sive et al. (2005) and Russo et al. (2010b). A 1500 cc aliquot from one of two 
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working standards was assayed every tenth analysis. The precision (i.e., RSD) for each of the 
hydrocarbons discussed in this work ranged from 3-10%. Additionally, measurements of O3, 
CO2, wind speed, and wind direction (e.g., Mao and Talbot, 2004a, 2004b; Talbot et al., 2005) 
at TF are included to further characterize the air mass composition and atmospheric 
dynamics during each survey. 
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(a)      (b) 

Fig. 1. (a) Location of New England (enclosed in circle) in the United States. (b) Sampling 
sites during the four regional spatial surveys (blue dots) and diurnal studies (red stars) 
conducted throughout Maine, New Hampshire, Vermont, Massachusetts, northeastern 
Connecticut, and northern Rhode Island. 

3. Atmospheric distribution of VOCs throughout New England 

3.1 Seasonal variation and general distributions 
The general seasonal variation of C2-C8 NMHCs, C2HCl3, C2Cl4, and C1-C5 alkyl nitrates at 

TF during 2004-2008 is presented in detail in Russo et al. (2010a,b), but a brief discussion is 

given here. The dominant removal mechanism of NMHCs, C2HCl3, and C2Cl4 from the 

atmosphere is reaction with the hydroxyl radical (OH) which is produced following the 

photolysis of O3. Hence, atmospheric OH concentrations in the Northern Hemisphere are 

highest during the summer and are lowest during winter (e.g., Logan et al., 1981; 

Spivakovsky et al., 2000). Furthermore, the rate of reaction between NMHCs and OH 

generally increases with increasing carbon number (e.g., Atkinson et al., 2006). Overall, the 

highest monthly mean C2-C8 NMHC, alkyl nitrate, and halocarbon mixing ratios were 

observed in winter (December, January, February) and decreased throughout the spring at 

TF (Russo et al., 2010b).  The lowest mixing ratios were observed during middle to late 

spring through the summer corresponding to the time period when NMHC removal 

processes are fastest. Ethane is the longest lived NMHC in the atmosphere and was 

generally the most abundant. More specifically, ethane peaked in January-February (~2400 

pptv; pptv = parts per trillion by volume) and was minimum in late summer (~900 pptv, 

August-September). The C3-C4 alkane mixing ratios decreased from December-January peak 

levels (propane ~1500 pptv, i-butane ~270 pptv, n-butane ~500 pptv) to minimum mixing 

ratios in May-September (propane ~400-600 pptv, i-butane ~50-75 pptv, n-butane ~100-120 
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pptv). The minimum monthly mean mixing ratios of the short-lived VOCs (C5-C6 alkanes, 

propene, toluene and C2HCl3) occurred in April-May and were factors of 2-4 lower than in 

winter. Their monthly mean mixing ratios increased in early summer and remained at 

similar levels through late summer (September). Benzene, ethyne, and ethene exhibited 

minimum monthly mean mixing ratios from late spring through summer. The monthly 

mean C2Cl4 mixing ratios were fairly uniform all year (~10-15 pptv). The total alkyl nitrate 

(RONO2 = sum of C1-C5 alkyl nitrates) mixing ratio was highest in late winter (February-

March) and lowest in late summer. Methyl nitrate was relatively uniform (monthly mean ~3 

pptv) all year. Ethyl nitrate was slightly lower in summer (mean ~2.2 pptv) than in winter 

(~2.7 pptv). 2-propyl and 2-butyl nitrate were the most abundant alkyl nitrates and 

exhibited the largest seasonal variation (monthly mean mixing ratios were factors of 1.5-3 

higher in winter) (Russo et al., 2010a).  

The spatial distributions of NMHC, halocarbon, and alkyl nitrate mixing ratios during the 

four driving sampling campaigns are shown in Fig. 2, and the statistics for each survey are 

given in Table 1. Most hydrocarbon mixing ratios were lower during June 2006 than during 

the overnight September 2006, January 2007, and May 2007 sampling campaigns reflecting 

more active photochemistry during the summer and the daytime (Table 1). The minimum 

NMHC, halocarbon, MeONO2, and 2-PrONO2 mixing ratios observed during each survey 

were highest in January and follow the general seasonal trend in background mixing ratios 

discussed in the preceding paragraph. In addition, the mean and median mixing ratios of i-

butane, n-butane, ethyne, and benzene were higher during January than during the other 

three surveys (Table 1, Fig. 2). However, the distribution of VOCs throughout the 

atmosphere over New England during the four intensive spatial surveys exemplifies the 

influence of short-term pollution events and local emissions on the general VOC pattern.  

Ethane was the most abundant compound measured throughout the region in June (mean ± 

standard deviation ~990±150 pptv), January (mean ~1970±170 pptv), and May (~1440±3650 

pptv) (Fig. 2a, Table 1). Daytime propane levels during June were lower (390±370 pptv), 

with a few local hot spots above 1000 pptv. The highest mean and median mixing ratios of 

propane (mean 2150±2600 pptv), ethene (mean 580±480 pptv), propene (mean 175±150 

pptv), and ethylbenzene (mean 60±50 pptv) were observed during the September 2006 

survey (Table 1). During September 2006, propane was the most abundant NMHC followed 

by ethane (mean 1300±1300pptv). The major source of propane in New England is liquefied 

petroleum gas (LPG), while ethene and propene are minor components of LPG (Blake and 

Rowland, 1995; Chen et al., 2001; Jobson et al., 2004). These results suggest that LPG 

emissions had a significant influence on New England air quality on the night of September 

21-22, 2006. Despite the high mean and median levels in September, the maximum propane, 

ethene, propene, and ethylbenzene mixing ratios, as well as ethane, ethyne, n-heptane, 

benzene, toluene, m+p-xylene, and o-xylene, were observed during May.  

Furthermore, the C5-C7 alkanes exhibited comparable mean and median mixing ratios 

during September and May (mean i-pentane ~260 pptv, n-pentane ~120 pptv, n-hexane ~60 

pptv, n-heptane ~40 pptv) (Table 1). Their mean and medians were slightly higher in May 

likely reflecting strong evaporative emissions. Moreover, the average toluene and xylene 

mixing ratios were highest in May. Overall, these results indicate that local emissions had a 

strong influence on alkane, alkene, and aromatic mixing ratios throughout New England 
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during the nighttime September and May sampling surveys. Interestingly, the highest 

maximum i-butane, n-butane, i-pentane, n-pentane, and n-hexane mixing ratios were 

observed during the daytime June trip at a site off of a major traffic route in Northern, MA. 

This likely reflects strong local fuel evaporation emissions. 

 

  June 21, 2006 Sept. 21-22, 2006 Jan. 10-11, 2007 
May 22-23, 2007 

 

Ethane Mean (SD) 989 (149) 1313 (1299) 1966 (113) 2384 (3657) 

 Median (Range) 934 (889-1758) 933 (418-11545) 1951 (1739-2554)
1443  

(1271-28634) 

Propane Mean (SD) 388 (367) 2145 (2619) 1075 (381) 1991 (3126) 

 Median (Range) 266 (116-2690) 1196 (198-13782) 1025 (800-4486) 
1134  

(268-27537) 

i-Butane Mean (SD) 81 (332) 167 (242) 189 (27) 190 (383) 

 Median (Range) 33 (12-3200) 99 (22-1664) 185 (144-371) 98 (23-2643) 

n-Butane Mean (SD) 155 (735) 212 (374) 334 (33) 267 (489) 

 Median (Range) 49 (19-7048) 110 (35-3456) 332 (268-420) 171 (59-4618) 

i-Pentane Mean (SD) 185 (635) 257 (305) 133 (19) 264 (415) 

 Median (Range) 66 (18-5867) 159 (23-2404) 127 (106-203) 168 (42-3861) 

n-Pentane Mean (SD) 79 (243) 120 (133) 81 (10) 126 (174) 

 Median (Range) 33 (12-2306) 73 (7-1028) 80 (58-114) 80 (19-1194) 

n-Hexane Mean (SD) 24 (58) 64 (74) 26 (5) 62 (69) 

 Median (Range) 11 (3-543) 39 (5-483) 25 (15-43) 43 (6-537) 

n-Heptane Mean (SD) 16 (14) 37 (38) 16 (4) 40 (46) 

 Median (Range) 11 (3-72) 22 (4-215) 16 (7-30) 28 (8-377) 

Ethyne Mean (SD) 181 (113) 441 (529) 532 (123) 432 (432) 

 Median (Range) 138 (101-805) 287 (103-3825) 503 (438-1510) 341 (192-4184) 

Ethene Mean (SD) 166 (144) 579 (488) 277 (132) 469 (770) 

 Median (Range) 119 (42-819) 423 (42-2264) 241 (135-975) 299 (81-7035) 

Propene Mean (SD) 52 (42) 176 (150) 49 (26) 128 (235) 

 Median (Range) 36 (13-218) 130 (13-691) 43 (20-201) 82 (28-2022) 

Benzene Mean (SD) 37 (28) 99 (90) 116 (19) 103 (230) 

 Median (Range) 26 (4-129) 71 (11-620) 110 (96-230) 67 (29-2252) 

Toluene Mean (SD) 112 (121) 262 (256) 77 (26) 300 (452) 

 Median (Range) 67 (16-746) 153 (21-1142) 69 (47-200) 191 (43-3872) 
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  June 21, 2006 Sept. 21-22, 2006 Jan. 10-11, 2007 
May 22-23, 2007 

 

Ethylbenzene Mean (SD) 16 (22) 57 (47) 11 (4) 46 (82) 

 Median (Range) 9 (3-159) 43 (3-262) 10 (5-27) 26 (8-561) 

m+p-Xylene Mean (SD) 47 (78) 121 (112) 25 (14) 156 (298) 

 Median (Range) 22 (6-580) 79 (9-541) 22 (7-86) 90 (17-2190) 

o-Xylene Mean (SD) 17 (28) 45 (46) 12 (6) 63 (127) 

 Median (Range) 9 (2-209) 29 (4-230) 10 (5-25) 31 (6-827) 

Isoprene Mean (SD) 791 (585) 68 (55) - 33 (30) 

 Median (Range) 623 (127-3468) 42 (5-229) - 27 (5-200) 

-Pinene Mean (SD) 116 (83) 344 (362) 16 (6) 377 (619) 

 Median (Range) 91 (20-424) 263 (24-2598) 15 (6-32) 241 (21-5641) 

-Pinene Mean (SD) 50 (54) 166 (157) 6 (2) 222 (317) 

 Median (Range) 34 (2-300) 118 (18-921) 6 (5-8) 151 (4-2565) 

C2Cl4 Mean (SD) 11 (13) 18 (26) 8 (2) 17 (11) 

 Median (Range) 7 (5-115) 9 (2-205) 8 (6-22) 14 (5-65) 

C2HCl3 Mean (SD) 2.3 (2.7) 4.5 (7.4) 2.5 (0.7) 7.4 (18) 

 Median (Range) 1.3 (0.2-21) 1.2 (0.2-35) 2.3 (1.2-5.2) 1.9 (0.2-125) 

CH3I Mean (SD) 1.5 (1.6) 0.93 (0.72) 0.97 (0.28) 0.94 (0.65) 

 Median (Range) 0.76 (0.4-8.5) 0.76 (0.3-5.9) 0.91 (0.7-2.8) 0.71 (0.2-3.6) 

CH2Br2 Mean (SD) 0.92 (0.2) 0.98 (0.1) 1.1 (0.1) 0.99 (0.3) 

 Median (Range) 0.87 (0.7-1.7) 0.99 (0.6-1.5) 1.1 (0.9-1.7) 0.93 (0.7-2.6) 

CHBr3 Mean (SD) 1.8 (2.3) 3.4 (1.4) 3.7 (1.3) 2.7 (2.2) 

 Median (Range) 0.95 (0.5-13.9) 3.0 (0.7-9.9) 3.5 (2.0-8.4) 2.1 (0.5-14.5) 

MeONO2 Mean (SD) 2.4 (0.4) 2.1 (0.4) 3.3 (0.2) 2.7 (0.5) 

 Median (Range) 2.3 (2.0-3.5) 2.1 (1.2-3.3) 3.3 (2.9-3.6) 2.6 (1.8-4.2) 

EtONO2 Mean (SD) 1.9 (0.5) 1.4 (0.3) 2.7 (0.1) 4.3 (1.2) 

 Median (Range) 1.6 (1.4-3.5) 1.4 (0.6-2.3) 2.7 (2.4-2.9) 3.8 (2.6-7.3) 

2-PrONO2 Mean (SD) 3.1 (1.5) 2.6 (1.5) 5.8 (0.3) 5.5 (2.2) 

 Median (Range) 2.4 (1.7-7.9) 2.4 (0.9-3.4) 5.8 (4.2-6.5) 4.3 (3.2-11.3) 

2-BuONO2 Mean (SD) 2.1 (1.5) 2.2 (0.6) 7.8 (1.2) 5.1 (2.7) 

 Median (Range) 1.4 (0.8-8.5) 2.0 (0.7-3.3) 8.1 (1.9-9.8) 4.0 (2.5-13.6) 

Table 1. VOC statistics during the four regional surveys. Mixing ratios are in parts per 
trillion by volume (pptv). SD is the standard deviation.  
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Fig. 2. Spatial variation of VOC mixing ratios (pptv) during the four regional sampling 

surveys conducted throughout New England. The four panels for each compound represent 

the four surveys. upper left panel-June 21, 2006; upper right panel- September 21-22, 2006; 

bottom left panel- January 10-11, 2007; bottom right panel- May 22-23, 2007. (a) ethane, (b) 

propane, (c) i-butane, (d) n-butane, (e) i-pentane, (f) n-pentane, (g) ethene, (h) propene, (i) 

ethyne, (j) benzene, (k) toluene, (l) -pinene, (m) isoprene (not observed during January), (n) 

CH3I, (o) C2Cl4, (p) C2HCl3, (q) CH2Br2, (r) CHBr3, (s) MeONO2, (t) EtONO2, (u) 2-PrONO2, 

(v) 2-BuONO2.  
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Fig. 2 continued 

The biogenic NMHCs included in this analysis are isoprene and the monoterpenes, -pinene 

and -pinene. Isoprene and monoterpene emissions are dependent on both light and 
temperature (Guenther et al., 1995; Fehsenfeld et al., 1992). Isoprene is primarily emitted 
from deciduous vegetation and is detected in significant amounts when leaves are present 
(Guenther et al., 1995), specifically June-September at the TF site (Russo et al., 2010b). Thus, 
isoprene mixing ratios were highest during summer (Table 1). The mean isoprene mixing 
ratio was ~800±585 pptv, and isoprene was the second most abundant NMHC observed 
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following ethane in June. In contrast to isoprene, the monoterpenes were observed during 
all seasons. Alpha- and beta-pinene were lowest during January and were at comparable 
levels during September 2006 and May 2007 (mean and median ~120-380 pptv). 
Monoterpene mixing ratios were presumably lower in June compared to September and 
May because sampling was conducted during the day when removal rates were highest. 
 

 

 

Fig. 2 continued 
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Fig. 2. continued 

Methyl iodide (photolysis lifetime of several days to ~1 week) is the dominant organic 
iodine compound in the atmosphere and is primarily emitted from oceanic sources (e.g., Bell 
et al., 2002). A recent study conducted in the eastern U.S. identified a significant terrestrial 
source of CH3I as well (Sive et al., 2007). In addition to isoprene, CH3I was the only 
compound with highest mean (~1.5±1.6 pptv) and maximum (8.5 pptv) mixing ratios during 
June (Table 1). At the TF monitoring site, CH3I had a similar seasonal variation as isoprene 
(Sive et al., 2007). Overall, the range of CH3I mixing ratios (~0.2-6 pptv) was comparable 
throughout New England during September, January, and May. 
The anthropogenic halocarbons, C2HCl3 and C2Cl4, are primarily emitted from industrial 
sources (dry cleaning solvents, degreasing agents) (e.g., McCulloch and Midgley, 1996; 
Wang et al., 1995), and thus are excellent tracers of industrial emissions. The atmospheric 
distributions and budgets of C2HCl3 and C2Cl4 are of interest because they are (1) toxic air 
pollutants, (2) precursors to toxic oxidation products (phosgene, trichloroacetic acid) (e.g., 
Kindler et al., 1995), and (3) a potential source of chlorine atoms in the troposphere and 
stratosphere (Schauffler et al., 2003; Thompson et al., 2004). Similar to the pentanes and 
aromatics, the highest mean (7±18 pptv) and maximum (125 pptv) C2HCl3 was observed 
during May suggesting the influence of evaporative emissions (Table 1). This is consistent 
with results from the long-term measurements at TF which suggested that evaporative 
emissions from industrial sources contributed to the seasonal trend in ambient C2HCl3 
(Russo et al., 2010b). Median C2Cl4 mixing ratios (14 pptv) were also highest in May, while 
mean (18±25 pptv) and maximum (205 pptv) C2Cl4 mixing ratios were observed in 
September (Table 1). 
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Fig. 2 .continued 
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Fig. 2 continued 

Short-lived brominated organic gases, such as bromoform (CHBr3) (atmospheric lifetime 2-4 
weeks) and dibromomethane (CH2Br2) (atmospheric lifetime several months), are the largest 
source of organic bromine to the atmosphere and are a potential source of bromine to the 
upper troposphere and stratosphere (e.g., Butler et al., 2007; Liang et al., 2010; Quack and 
Wallace, 2003). Consequently, the Br atoms and BrO radicals produced following the 
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photodissociation of organobromine compounds can impact catalytic O3 destruction in the 
stratosphere (e.g., Schauffler et al., 1999). Organobromine compounds primarily originate 
from macroalgal and planktonic sources in surface seawater and enter the atmosphere 
through air-sea exchange processes. Anthropogenic sources (such as coastal power plants, 
chlorination of waste water and seawater, desalination) are minor (Quack and Wallace, 
2003; Zhou et al., 2005). Coastal seawater and estuarine regions have been identified as a 
significant source of CHBr3 and CH2Br2 to the atmosphere over New England (Zhou et al., 
2005, 2008). Thus, CHBr3 and CH2Br2 are useful tracers of marine emissions on New 
England air quality. Overall, the mean and median CH2Br2 mixing ratios were similar 
during the four surveys (~1 pptv) (Table 1). The median and mean CHBr3 mixing ratios 
were comparable in September and January (~3.0-3.7 pptv) and higher than in June and 
May. However, both CH2Br2 and CHBr3 had their highest peak mixing ratio in May. 
Furthermore, the highest CHBr3 maximum mixing ratios and standard deviations were 
observed in June and May suggesting larger mixing ratio variability during the warmer 
months. This is consistent with the long-term TF data and may reflect variability in emission 
rates and/or the more rapid removal during summer (e.g., Zhou et al., 2005). 
Alkyl nitrates are secondary compounds produced following the oxidation of their parent 

alkanes (i.e, methane, ethane, propane, n-butane) (Equations 1-6). The highest mean and 

median MeONO2, 2-PrONO2, and 2-BuONO2 mixing ratios were observed in January, 

whereas EtONO2 was highest in May (Table 1). The general distribution of the alkyl nitrates 

during the four spatial surveys was consistent with their long-term trends (Russo et al., 

2010a). More specifically, 2-PrONO2 (mean ~2.6-6 pptv) was the most abundant alkyl nitrate 

in June, September, and May while 2-BuONO2 (~8 pptv) was dominant in winter. 

3.2 Spatial variation and sources of VOCs 
Specific NMHCs are primarily emitted by certain sources and thus can be used as tracers of 

those sources. The following source signature information is used to interpret and identify 

the various VOC sources in this work. The major sources of ethyne, benzene, and alkenes 

are incomplete combustion of fossil fuels, biomass burning, and vehicle exhaust emissions 

(e.g., Choi and Ehrman, 2004; Harley et al., 1992; 2001; McLaren et al., 1996). C2-C4 alkanes 

are emitted from natural gas, incomplete combustion, and unburned gasoline. Fuel 

evaporation emissions (caused by ambient temperature changes or residual engine heat 

during vehicle operation, resting, or refueling) are a dominant source of C4-C5 alkanes 

because of their high vapor pressures (Choi and Ehrman, 2004; Harley et al., 2001). The 

leakage of unburned liquefied petroleum gas (LPG) (during storage, distribution, or 

refilling) is a significant source of propane, i-butane, and n-butane and a minor source of 

alkenes (Blake and Rowland, 1995; Chen et al., 2001; Jobson et al., 2004). Aromatics are a 

major component of liquid gasoline and are often observed in vehicle exhaust because of 

incomplete combustion or leakage of unburned fuel (e.g., Harley et al., 2000, 2001; 

Kirchstetter et al., 1999). Toluene, ethylbenzene, m+p-xylene, and o-xylene are also emitted 

from fuel evaporation and industrial processes (i.e., painting, architectural coating, 

manufacturing, printing, degreasing solvents) (e.g., Monod et al., 2001). Furthermore, as 

mentioned in the preceding section, C2Cl4 and C2HCl3 are tracers of industrial/solvent 

emissions, CH3I, CH2Br2, and CHBr3 reflect the influence of marine emission sources, and 

alkyl nitrates are indicators of photochemical processing. 
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Typical summer daytime NMHC mixing ratios were prevalent throughout the majority of 
the study area during the June 2006 sampling campaign (with the exception of a few isolated 
sites with high propane, butane, and pentane mixing ratios). Furthermore, most VOCs 
exhibited a relatively uniform range of mixing ratios throughout ME, NH, eastern VT, and 
northern MA (Fig. 2). During the daytime, the atmosphere is well mixed which may have 
contributed to the low variability in mixing ratios throughout New England. A region of 
higher NMHC, C2Cl4, and C2HCl3 mixing ratios was observed in eastern MA and northern 
RI which was likely associated with increased urban activity near Boston, MA and Providence, 
RI (Fig. 2). This coincided with enhanced CH3I (~3-8 pptv), MeONO2 (2.5-3.5 pptv), and 2-
PrONO2 (4-8 pptv) mixing ratios which extended into southeast NH. In addition, in June, the 
highest CHBr3 and CH2Br2 mixing ratios were observed in the seacoast region of NH and 
northeast MA, which likely reflects the influence of emissions from coastal algae (Fig. 2q, r). 
Biogenic NMHCs had a persistent influence throughout New England during June, 
September, and May reflecting the highly forested nature of the region. Isoprene mixing ratios 
ranged from 130-3500 pptv during the daytime June survey (Fig. 2m). A corridor of elevated 

isoprene (>100 pptv) was located in southeastern NH during September. Sites with elevated -

pinene (range <50-5600 pptv) and -pinene (range <50-2560 pptv) mixing ratios were 
distributed throughout New England overnight during September and May (Fig. 2l, Table 1).   
An important feature of the VOC spatial distributions (Fig. 2) is the region of enhanced 
NMHC, C2Cl4, and C2HCl3 mixing ratios in eastern and northeastern MA particularly 
during September and May. This reflects strong anthropogenic emissions from the Boston, MA 
area, southeast NH, and the I-95 corridor which extends northeastward into Maine. The fact 
that VOCs which are tracers of different sources were all elevated in this region indicates that a 
complex mixture of emissions from natural gas, LPG, fuel evaporation, unburned gasoline, 
combustion, and industrial sources contributed to the air quality of the region. 
Another notable observation is the region of enhanced propane mixing ratios (~2000-14000 
pptv) in northern NH during both the September and May surveys indicating strong local 
emissions from LPG leakage (Fig. 2b). The absence of elevated ethane, ethyne, and i-pentane 
corresponding to the areas of high propane suggests that natural gas, combustion, and fuel 
evaporation sources were not important contributors to the high propane mixing ratios. 
Moreover, the high propane levels are noteworthy because they occurred during the 
warmer time of year (spring-fall) and thus are not likely associated with residential heating. 
Furthermore, in September, enhanced ethene (>500 pptv) and propene (>150 pptv) mixing 
ratios were colocated with sites exhibiting high propane providing additional evidence of an 
impact from LPG leakage (Fig. 2g, h). 
A unique feature of the May regional survey is the corridor of enhanced CHBr3 mixing 
ratios (~3-7 pptv) extending from southeast NH to the northeast along the Maine coast; 
CH2Br2 exhibited a similar, but less pronounced, trend with mixing ratios of ~1-1.2 (Fig. 
2q,r). The elevated organobromine compound mixing ratios along the NH and ME coasts 
likely reflects the influence of marine emissions. Methyl iodide did not exhibit higher coastal 
mixing ratios illustrating the different marine sources or production mechanisms of 
brominated and iodinated halocarbons (e.g., Butler et al., 2007). Interestingly, high EtONO2, 
2-PrONO2, and to a lesser extent MeONO2, mixing ratios were colocated with several of the 
sites with enhanced CHBr3 in southwest ME (Fig. 2). This is suggestive of a marine 
contribution to the alkyl nitrates (e.g., Atlas et al., 1993; Chuck et al., 2002) or the presence of 
an air mass containing a mixture of marine and photochemically processed emissions. 
A significant feature of the January survey results is the uniform spatial distribution of VOC 
mixing ratios throughout the entire study area (Fig. 2). The low variability is illustrated by 
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the similar mean and median mixing ratios and the low standard deviations (Table 1). 
During the January 2007 sampling survey, the mean and median alkane, alkene, ethyne, 
benzene, toluene, ethylbenzene, C2Cl4, and C2HCl3 mixing ratios were lower than average 
(Russo et al., 2010b) indicating the presence of a clean air mass over New England. At TF, 
the wind direction was from the NW indicating the transport of clean, Canadian air to New 
England. The xylenes and alkyl nitrates were near typical January levels. 
An interesting observation during the January survey is the elevated CHBr3 (~4-6 pptv) and 
lower 2-BuONO2 (~4-7 pptv) mixing ratios in northern NH and western ME compared to 
the rest of the region (Figure 2r, v). In contrast, throughout Massachusetts and southern NH, 
CHBr3 and 2-BuONO2 mixing ratios ranged from ~2-4 pptv and 6-10 pptv, respectively. It is 
unlikely that the elevated CHBr3 in northern NH reflected marine emissions because the 
other marine tracers, CH2Br2 and CH3I, do not exhibit a similar trend. This observation may 
reflect a local winter CHBr3 source or a unique chemical signature from a source to the NW 
of New England and requires additional study.  

3.3 Ambient ratios 
In order to further characterize and identify the sources of VOCs in New England, ambient 
ratios were compared with emission ratios from the literature and from source samples 
collected near LPG refueling stations and gasoline storage containers throughout New 
Hampshire during summer 2004 and during the regional sampling trips. For example, 
typical ambient i-butane/n-butane ratios are ~0.2-0.3 for urban, fuel evaporation, and 
vehicle exhaust emissions, 0.46 for LPG emissions, and ~0.6 to >1 for natural gas (e.g., 
Barletta et al., 2002; Choi and Ehrman, 2004; Fujita, 2001; Goldan et al., 2000; Jobson et al., 
1998, 2004; Lawrimore & Aneja, 1997; Mukerjee et al., 2004, Scheff and Wadden, 1993; B. 
Sive, unpublished data; Velasco et al., 2007; Watson et al., 2001). During the June and 
January surveys, the i-butane/n-butane ratio ranged from ~0.4-1.1 suggesting that a mix of 
vehicular, evaporative, LPG, and natural gas emissions influenced New England air quality 
(Fig. 3a). Higher i-butane/n-butane ratios were observed during September (range 0.4-2.9) 
and May (range 0.4-6) illustrating the influence of widespread liquefied petroleum and 
natural gas emissions. The highest mean (0.80) and median (0.72) i-butane/n-butane ratios 
were observed in September further supporting the presence of strong LPG emissions 
demonstrated by the high mean and median propane, ethene, and propene mixing ratios 
discussed in section 3.1. 
The i-pentane/n-pentane emission ratios for several sources are fairly uniform with ranges 

of ~2.2-3.8 for vehicle exhaust, ~1.5-3 for liquid gasoline, and ~1.8-4.6 for fuel evaporation 

(e.g., Conner et al., 1995; Harley et al., 2001; Jobson et al., 2004; Lough et al., 2005; 

McGaughey et al., 2004; Mukund et al., 1996; Watson et al., 2001; Velasco et al., 2007). The 

mean and median i-pentane/n-pentane ratios during June, September, and May were 

similar at ~2.1 (range ~0.5-6.6) indicating the influence of emissions from exhaust, gasoline, 

and evaporative sources (Fig. 3b). The i-pentane/n-pentane ratio exhibits a seasonal 

variation at the TF site likely associated with enhanced fuel evaporation emissions of i-

pentane in the summer (e.g., Rubin et al., 2006). Based on data from TF throughout 2004-

2008, the i-pentane/n-pentane ratio is ~1.6 during the colder months (October-May) and 

increases to ~2.2 during the warmer months (June-September) (Russo et al., 2010b). The 

mean i-pentane/n-pentane ratio during the January regional survey was 1.6±0.1 which is 

consistent with the long-term measurements. 
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Fig. 3. Ambient NMHC ratios during the four regional surveys. The format is the same as in 

Figure 2. (a) i-butane/n-butane, (b) i-pentane/n-pentane, (c) propane/benzene. 
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example is to compare ratios between propane, benzene, and ethyne because their rate 

constants  for reaction with OH are similar to within ≤30% of each other (e.g., Atkinson et 

al., 2006). Propane is a tracer of liquefied petroleum gas while benzene and ethyne are 

tracers for vehicle exhaust and incomplete combustion. During the four regional surveys, 

the propane/benzene ratio ranged from 2-145 (with the exception of one site with a ratio of 

0.3). The mean (~24) and median (~16) propane/benzene ratios were similar in September 

and May and higher than in June and January (mean ~9 and 13, respectively) (Fig. 3c). 

Similarly, the average propane/ethyne ratios were higher in September (5.6±6.1) and May 

(4.8±5.0) compared to June (2.2±2.2) and January (2.1±0.8). These results are additional 

evidence of the widespread influence from LPG leakage and refilling during all seasons 

throughout New England and indicate a stronger relative impact from LPG, natural gas, or 

evaporative emissions relative to combustion. 

3.4 Regional emission rates 
Ambient emission rates of speciated VOCs are required for developing regional budgets, 

implementing effective control strategies, and evaluating emission inventories and air 

quality models. However, emission rate estimates based on ambient data are limited and are 

primarily reported on global scales (e.g., Boissard et al., 1996; Gupta et al., 1998) or in urban 

areas during specific campaigns (e.g., Blake and Rowland, 1995; Chen et al., 2001, Velasco et 

al., 2005). Additionally, emission rates are usually lumped into specific classes (i.e., alkane, 

alkene, aromatic, biogenic). A major reason for the lack of regional VOC emission rate 

estimates is the difficulty associated with differentiating between local, regional, and distant 

sources. In order to reduce this complication, we focused on measurements obtained when 

it was determined that air mass mixing was minimal. 

In order to estimate speciated emission rates, we followed a simple box model approach 

which has been effectively used in previous studies to calculate emission and removal rates 

of trace gases in New England using measurements from the TF field site (i.e., Russo et al., 

2010b; Sive et al., 2007; Talbot et al., 2005; White et al., 2008; Zhou et al., 2005). This method 

uses measurements made on nights with low wind speeds and when a stable inversion layer 

has developed because under these conditions, the exchange of air between the nocturnal 

boundary layer (NBL) and the residual layer above is limited (e.g., Gusten et al., 1998; 

Hastie et al., 1993; Talbot et al., 2005). Therefore, advection and vertical mixing of air masses 

can be neglected. Under these conditions, we can assume that a change in NMHC mixing 

ratios reflects local sources or sinks. Two criteria were used for identifying nights when a 

stable inversion layer developed: (1) wind speeds <1 m s-1 and (2) O3 < 10 ppbv. On both the 

nights of September 21-22, 2006 and May 29-30, 2007 at TF, O3 decreased to less than 10 

ppbv and the wind speed was stable at ~0.2 m s-1 demonstrating that a stable NBL 

developed (Figs. 4a and 5a). Another indication of a stable NBL is the significant increase in 

CO2 mixing ratios. On both nights, CO2 increased from background levels (~375 ppmv 

(parts per million by volume)) to near 440 ppmv reflecting local emissions from vegetation 

respiration or anthropogenic sources. Furthermore, the NMHC mixing ratios increased 

substantially compared to before the development of the NBL. For example, on September 

21-22, propane mixing ratios were a factor of 6 higher and the butanes, pentanes, ethyne, 

and benzene were factors of 2-4 higher under the NBL compared to the 3 hours prior to 

sunset (~18:00 EDT) (Fig. 4b). Similarly, on May 29-30 at TF, propane, butanes, pentanes, 
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ethyne, and aromatic mixing ratios increased by factors of ~1.5-6 while -pinene and -

pinene were factors of 13 and 20, respectively, higher under the NBL (Figs. 5b,c). Moreover, 

as demonstrated in Figure 5, the propane and -pinene mixing ratios at TF are within the 

range observed at the five additional sampling sites indicating that the emission rates 

calculated using measurements at TF are representative of the region. 
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Fig. 4. Trace gas, wind speed, and nitrogen dioxide photolysis rate (JNO2, indicator of when 

sunlight is available) between 08:00 September 21 to 08:00 September 22, 2006 (EDT) at the 

Thompson Farm field site in Durham, NH. (a) hourly average O3 (ppbv), CO2 (ppmv), and 

wind speed (m s-1) and (b) propane (left axis), ethyne, n-butane, i-pentane, n-pentane, and 

benzene (right axis) (pptv).  
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Fig. 5. (a) Hourly average O3 (ppbv), CO2 (ppmv), wind speed (m s-1), and JNO2 at Thompson 

Farm 12:00 May 29 to 13:00 May 30, 2007 (EDT). (b) Propane mixing ratio (pptv) at six 

diurnal sampling sites throughout New Hampshire and Massachusetts. The right axis 

shows the propane mixing ratio at the Keene, NH site. (c) same as (b) but for -pinene. The 

right axis shows the -pinene mixing ratio in Fitchburg, MA. 
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Emission rates (ER) were calculated by multiplying the slope of the linear regression 
between the change in hourly average concentrations (dC in molecules cm-3) per unit time 
(dt = 5 hours) by the boundary layer height:  

 H
dt

dC
ER  





 (1) 

As shown by Eq. 1, the emission rate estimates are directly proportional to the nocturnal 

boundary layer height. Stable nocturnal boundary layer heights typically range from ~50-

200 m at midlatitude continental locations and vary with meteorological conditions, time of 

day, and season (e.g., Gusten et al., 1998; Hastie et al., 1993; McKendry and Lundgren, 2000; 

Talbot et al., 2005; White et al., 2003); thus we chose 125 m as a representative value for the 

TF site (e.g., Mao et al., 2008; Sive et al., 2007; Talbot et al., 2005; White et al., 2008; Zhou et 

al., 2005). If H = 50 m or 200 m is used in Eq. 1, the emission rate estimates vary by ± 60%.  

The emission rates of several NMHCs are shown in Table 2. During both September 2006 
and May 2007, the propane emission rate (~18 x 109 molec. cm-2 s-1) at TF was an order of 
magnitude larger than the other NMHCs ((~0.5-6) x 109 molec. cm-2 s-1) on these calm nights 
reflecting local emissions rather than boundary layer dynamics or transport from a distant 
source. In fact, the propane emission rate may be larger than estimated here. For example, at 
the rural Lincoln, NH site in northwest NH, propane increased by ~1220 pptv/hour (from 
~650 to 4000 pptv) whereas propane only increased by ~300 pptv/hour at TF (Fig. 5b). 
Furthermore, these results indicate that high propane emission rates from northern New 
England occur during each season. These large propane emission rates are significant, 
particularly because of the rural nature of this region. LPG use as a heating and cooking fuel 
is widespread throughout northern New England (e.g., EIA, 2005). Assuming the emission 
rate calculated for TF is applicable to all of New Hampshire, potentially over 20 tons of 
propane are emitted on a daily basis (Table 2); ~1-10 tons of C4-C5 alkanes, benzene, and 
toluene may be emitted per day. Because propane is relatively long-lived compared to other 
NMHCs, large inputs to air masses transported off of the continent and across the Atlantic 
Ocean could significantly impact tropospheric O3 production, particularly in downwind 
locations, such as Europe.  
Emission rates estimated using the same method during summers 2003 and 2004 (White et 
al., 2008) and winter 2006 (Russo et al., 2010b) are also included for comparison (Table 2). 
The emission rates calculated in this work are consistent with the summer and winter 
emission rates presented in White et al. (2008) and Russo et al. (2010b). Both the summer 
2003 and 2004 ((3-20) x 109  molecules cm-2 s-1) and May 2007 (~5 x 109  molecules cm-2 s-1) 
emission rates illustrate the potential for significant monoterpene emissions from New 
England. Monoterpenes are extremely reactive in the atmosphere during spring and 
summer (lifetime of hours) and thus can contribute to O3 production. Furthermore, the 
oxidation of monoterpenes produces low volatility products which can subsequently 
nucleate or condense onto preexisting aerosol particles and produce SOA (e.g., Atkinson 
and Arey, 2003; Hoffman et al, 1997). 
The emission rates for a specific NMHC, which represent different seasons and years, agree 
within the given stated uncertainty (Table 2). This is an important result because it suggests 
that the emission rate of NMHCs from New Hampshire, and possibly all of New England, 
does not vary significantly with season or year. Thus, these emission rates may be useful for 
regional air quality modeling studies. 
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Emission Rate 

 (molecules cm-2 s-1) x 109 
New Hampshire Emission 

Rate (Mg/day) 

 
Summers  

2003 & 
2004a 

Winter 
2006b 

Sept. 21-22, 
2006c 

May 29-30, 
2007d 

Winter 
2006b 

Sept.    
2006c 

May 
2007d 

Propane 9-23 42±25 17±12 19±12 61±37 25±18 28±17 

i-Butane 0.2-1 3.2±2.0 0.9±0.6 2.2±1.7 6.1±3.8 1.7±1.1 4.3±3.2 

n-Butane 0.2-1.4 3.6±2.3 1.3±0.8 5.4±3.4 6.9±4.4 2.5±1.6 10.4±6.6 

i-Pentane 2 2.4±1.5 1.9±1.2 2.3±1.5 5.8±3.6 4.5±2.8 5.5±3.6 

n-Pentane  1.4±0.8 1.0±0.6 1.5±1.0 3.3±2.0 2.3±1.5 3.6±2.4 

Ethyne  7.4±4.9 4.0±2.8  6.4±4.2 2.4±2.4  

Benzene  1.6±1.1 0.6±0.5 0.2±0.2 4.3±2.8 0.5±0.5 0.5±0.5 

Toluene  2.7±1.7  1.8±1.2 8.2±5.3  5.6±3.7 

m+p-Xylene  1.3±0.8  0.6±0.5 4.4±2.9  2.2±1.8 

o-Xylene  0.5±0.3  0.2±0.2 1.8±1.1  0.8±0.6 

-Pinene 20   5.8±3.8   20.4±17 

-Pinene 3   5.3±3.5   18.6±16 

aWhite et al. (2008), bRusso et al. (2010b), c,dThis work 

Table 2. Emission rates (molecules cm-2 s-1) of C3-C10 NMHCs calculated using data from the 
Thompson Farm field site on the nights of September 21-22, 2006 and May 29-30, 2007. The 
uncertainty was were calculated by propagating the standard error of the linear regression 
between the change in NMHC concentration per unit time and the assumed variation in 
nocturnal boundary layer height (125 m±75 m). Emission rates for summers 2003 and 2004 
and winter 2006 were estimated in previous works and are included for comparison. 
Assuming the estimated emissions are representative of the region, the rates were 
extrapolated to the state of New Hampshire (Mg/day) using a land area of 2.3 x 1010 m2. 

4. Summary  

The objective of this analysis was to present an overview of the VOC distribution (C2-C10 
nonmethane hydrocarbons, tetrachloroethene, trichloroethene, methyl iodide, 
dibromomethane, bromoform, methyl nitrate, ethyl nitrate, 2-propyl nitrate, 2-butyl nitrate) 
in the atmosphere over New England during four regional surveys (June 21, 2006, 
September 21-22, 2006, January 10-11, 2007, May 22-23, 2007). The seasonal and spatial 
variation of VOCs during the four surveys was discussed and put in context with the 
general seasonal trends of VOCs at the Thompson Farm field site in Durham, NH. 
Additionally, VOCs sources were identified and emission rates of several NMHCs were 
estimated. Future  and ongoing research will include detailed analysis of the meteorological 
conditions on the days when regional surveys were conducted to determine the source 
regions more precisely and the influence of atmospheric dynamics on the VOC behavior, 
examination of additional trace gas (O3, CO, NO, NOy, SO2) data from TF, estimation of 
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emission rates from diurnal sampling sites located throughout ME, NH, and MA, and in 
depth comparisons with emission ratios and the long-term continuous VOC data from TF.  
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