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1. Introduction 

Advances in mathematical models to describe the formation, emission, transport and 
disappearance of air pollutants have led to a greater understanding of the dynamics of these 
pollutants. However, the more complex the model, the more information is required for 
their application to have sufficient certainty that the results will have technical or scientific 
value (Russell & Dennis, 2000). These deterministic models require much information that is 
not always possible to obtain; the data available have not always resulted in successful 
outcomes upon application of the model (Roth, 1999), or the cost of obtaining reliable data 
can be prohibitive (Pun & Louis, 2000). 
There are other methods requiring less information that can be used to study air pollution in 
some areas. These methods generally make use of statistical techniques such as regression or 
other data-fitting methods using numerical techniques to establish the respective 
relationships between the various physicochemical parameters and variable of interest 
based on routinely-measured historical data. 
The main objectives of these methods include investigating and assessing trends in air 
quality, making environmental forecasts and increasing scientific understanding of the 
mechanisms that govern air quality (Thompson et al., 2001). 
Among the techniques being examined to relate air quality in a given area to measured 
physical and chemical parameters, the three that have been used most often are i) multivariate 
regression (Hubbard & Cobourne, 1998, Comrie & Diem, 1999 , Davis & Speakman, 1999; 
Draxler, 2000, Gardner & Dorling, 2000), ii) artificial neural networks (ANN) (Perez & Reyes, 
2006; Brunelli et al., 2006; Thomas & Jacko, 2007; Grivas & Chaloulakou, 2005; Gardner & 
Dorling, 1999), and iii) time series and spectral analysis (Raga & Moyne, 1996, Chen et al., 1998; 
Milanchus et al., 1998, Salcedo et al., 1999, Sebald et al., 2000). 
Artificial neural networks have greater flexibility, efficiency and accuracy, since they have a 
large number of features similar to those of the brain; i.e., they are capable of learning from 
experience, of generalizing from previous cases to new cases, and of abstracting essential 
features from inputs containing irrelevant information; they use adaptive learning, one of 

www.intechopen.com



 
Air Quality - Models and Applications 36

the most attractive features of ANN, as well as the ability to learn to perform tasks based on 
training or initial experience. ANN do not need an algorithm to solve a problem because 
they can generate their own distribution of the weights of the links through learning and are 
easily inserted into the existing technology. Because of these characteristics, ANN generally 
has low computational requirements and their construction is less complex.  
The pollutant of interest in this study is tropospheric ozone, as it is the main component of a 
type of air pollution known as smog or photochemical smog. According to the National 
Ecology Institute (NEI), the Metropolitan Zone of Guadalajara, Mexico (GMA) is in second 
place in Mexico in exceeding the NOM-020-SSA1-1993 Mexican air pollution standard. 
Tropospheric ozone is one of the five major pollutants with harmful effects on human 
health, causing respiratory problems and ailments such as headaches, and eye irritation as 
well as affecting vegetation, metals and construction materials, dyes and pigments. 

1.1 Tropospheric ozone formation 
Photochemical smog is formed through a photochemical process from a combination of 
gases in the troposphere, such as nitrogen oxides (NOX, i.e., NO and NO2), volatile organic 
compounds (VOCs) and carbon monoxide (CO), as has been documented (Seinfeld, 1978; 
Boubel, 1994 & Godish, 1991, as cited scientist in Comrie, 1997). 
The sequence of events begins in the early hours of the morning when a heavy emission of 
hydrocarbons (HC) and nitrogen monoxide (NO) is produced at the start of human activity 
in large cities (heaters are turned on, and traffic density increases). Nitric oxide (NO) is 
oxidized to nitrogen dioxide (NO2), increasing the concentration of the latter in the 
atmosphere. Higher concentrations of NO2 together with increasing solar radiation as the 
morning wears on starts the photolytic NO2 cycle, generating atomic oxygen which, as it is 
transformed into ozone, leads to an increase in the concentration of oxygen and 
hydrocarbon free radicals. These, when combined with significant amounts of NO, cause 
NO in the atmosphere to decrease. 
This impedes completion of the photolytic cycle, rapidly increasing the ozone (O3) 
concentration (Comrie, 1997). 
These relationships can be expressed conceptually; the polluted urban atmosphere contains 
approximately one hundred different hydrocarbons, olefins being the most reactive. The 
result of the atomic oxygen attack on the olefin produces two free radicals. In the case of 
propylene, the first stage of the reaction is the addition of oxygen to the double bond to give 
a reactive complex (1) 

  3 2 3 2H C HC CH O H C HC CH O        (1) 

which can break up in two different ways (reactions 2 and 3) 

  3 2 3H C HC CH O H C HC CH O         (2) 

  3 2 3 3H C HC CH O H C H C C O         (3) 

The more likely reaction is (2), since it implies less regrouping of the activated complex than 
(H). CHO  and 3CH CO  radicals quickly form formaldehyde and acetaldehyde, 
respectively. Reactions (2) and (3) are the initial stages of a chain process 

 
3 2 3 2CH O CH O    (4) 
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3 2 3 2CH O NO CH O NO     (5) 

 
3 2 2CH O O HCHO HO     (6) 

 
2 2HO NO OH NO      (7) 

 
3 6 3 2 2C H OH CH CH H O     (8) 

The chain reaction enables rapid oxidation of NO to NO2 by alkoxyl radicals ( RO ) and 
peroxyacyl ( 2RO  ) without the intervention of atomic oxygen and O3, which provides some 
explanation for the changes observed in the concentration of gaseous pollutants during the day. 
When atmospheric concentrations of hydrocarbons increase because of motor vehicle 
activity, the photolytic cycle of NO2 is disturbed and NO is oxidized to NO2 by the chain 
reaction involving the hydrocarbon radical (equations 2–8). As a result, the constant low O3 
concentration found in the photolytic cycle of NO2 grows, and ozone is not consumed in the 
oxidation of NO to NO2 (Seinfeld, 1978). 
As the morning advances, solar radiation promotes the formation of photochemical 
oxidants, increasing their concentration in the atmosphere. When concentrations of 
precursors (NOX and HC) in the atmosphere are lowered, the formation of oxidants stops 
and their concentrations decrease as the day progresses. Hence, photochemical pollution in 
cities builds up mainly in the mornings. 
Due to industrial development in the GMA in recent years, there has been an urban–green–
industrial zone imbalance, leading to the generation of various kinds of pollutants that alter 
the quality of the environment and exceed the assimilative capacity of the ecosystem. 
Given this situation, it is vital to have a mathematical model that correctly predicts ozone 
concentrations at any given time, as this will help determine preventive measures and/or 
corrective actions to prevent exposure to high ozone concentrations. These models are able 
to relate air quality to certain other specific parameters of the air shed, such as emission 
levels and weather conditions. 

2. Data sources 

From an analysis of reports from 2002–2005, it was determined that the highest ozone 
concentrations were in the southern area of the GMA, so specific data for meteorological 
and chemical variables were obtained from the Miravalle weather station, located in the 
south. These are shown in Table 1. 
 

                             Year 
Station 

2002 2003 2004 2005 

Las Águilas 0.169 0.165 0.164 0.131 
Atemajac 0.152 0.185 0.165 0.144 

Centro 0.166 0.171 0.157 0.137 
L. Dorada 0.225 0.195 0.197 0.215 
Miravalle 0.232 0.225 0.226 0.154 

Tlaquepaque 0.142 0.149 0.138 0.109 
Vallarta 0.171 0.217 0.175 0.096 

Table 1. Peak ozone concentrations (ppm) for the years 2002, 2003, 2004 and 2005 (Semades, 2005)  
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2.1 Meteorological and chemical variables 
Meteorological data for the period April 1999 to June 2005 were obtained from the Mexican 
National Weather Service (MNWS). These data consist of averages over time intervals 
ranging from 0 to 23 hrs. 
The meteorological variables are Wind Direction (average and maximum average) (degrees), 
wind speed (average and maximum average) (km/h) Average Temperature (°C), Relative 
Humidity (%). Barometric Pressure (mbar), Precipitation (mm) and Solar Radiation (W/m2). 
The data were obtained from the Chapala station, which belongs to the Automatic 
Monitoring Stations (AMS) system. 
Data on the following chemical variables were provided by the National Ecology Institute 
(NEI) for the Miravalle station; Ozone, Nitrogen Oxides— NOX and NO2, as shown in 
Figure 1. 
 

 
Fig. 1. Distribution of GMA Atmospheric Monitoring Automatic Network (Semarnat & INE, 
2009). 

3. Selection of meteorological and chemical variables 

Meteorological and chemical variables used to carry out ground-level ozone forecasts were 
selected based on existing knowledge from the scientific literature and an analysis of 
correlations between different variables, and on availability of data from monitoring stations. 

3.1 Analysis of meteorological variables 
3.1.1 Wind speed 
Atmospheric movements of the air (i.e. winds) are responsible for the spread of high 
concentrations of pollutants (in this case the O3 and its precursors) through the atmosphere, 
but this may or not occur quickly, because if the winds are calm, i.e., the wind speed is low 
and the topography traps the air mass, pollutants can not disperse. More pollutants 
continue to accumulate and their concentration can reach very high levels. In contrast, if 
wind speeds are high, the pollutants tend to disperse quickly (Melas et al., 2000). 
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3.1.2 Temperature 
This variable has shown a strong correlation with the concentration of ozone. The basic 
reasoning is that photochemical reaction rates are sensitive to temperature, so that 
increasing the temperature in the troposphere stimulates a series of interlinked reactions 
that contribute to ozone formation. (Garcia, 2003) 

3.1.3 Relative humidity 
Water vapor is one of the most basic components of the atmosphere. Its amount can be quite 
variable. It is important because it is one of the atmospheric elements which most absorbs 
solar radiation, preventing it from interacting with the primary pollutants and forming 
secondary pollutants such as ozone (Ayllón, 1996). 

3.1.4 Precipitation 
This process is one of the main ways that pollutants are removed from the atmosphere, but 
as a result, pollutants removed from the air then contaminate the earth’s surface, which in 
some cases results in their becoming even more active due to their effects on surface water, 
plants and materials (acid rain) (Melas et al., 2000). 

3.1.5 Pressure 
The relationship between temperature and pressure is that the vertical motion of air is 
determined by vertical variation in temperature in the troposphere; temperature decreases 
at a rate of 0.64 ºC per 100 m of altitude. Thus, the earth’s surface warms the air parcel next 
to it, and this hot air expands, becoming less dense than the cooler air above it. The warm air 
rises and cool air takes its place to then be heated in turn, making contact with the surface, 
and subsequently also rises. This creates air currents (vertical mixing) that contribute to the 
dispersion of pollutants (Rodríguez & Tenorio, 2006).  

3.1.6 Solar radiation 
This is the factor that has the greatest effect on photochemical reactions, i.e., it is involved in 
the formation and destruction of the various compounds involved in the increase of 
tropospheric ozone (Melas et al., 2000). 
Photochemical dissociation in the atmosphere can be considered as a two-step process. The 
dissociation energy of a photon by a molecule causes it to be in an excited state, and the 
excited product disassociates into new products that can be highly reactive, generating 
photochemical smog (Wark & Warner, 2000), as explained in Section 1.1. 

3.2 Analysis of chemical variables 
Many pollutants are highly persistent, and it is generally accepted that the probability of 
pollution episodes is increased if the previous day’s pollution levels were higher than normal. 
In this study, the previous day’s maximum O3 and NOX are used as chemical input variables 
(Melas et al., 2000). 

3.2.1 Previous day’s ozone 
Even when the tropospheric ozone photolytic cycle is considered to be in equilibrium 
(generation and degradation of ozone in equilibrium with NOx), when hydrocarbons are 
involved (equations 2–8) the ozone generated is not consumed in the oxidation of NO to 
NO2 (Seinfeld, 1978). There is ozone remaining from the previous day, which should be 

www.intechopen.com



 
Air Quality - Models and Applications 40

input to the structure of the neural network model as an initial ozone concentration on the 
day of interest. 

3.2.2 Oxides of nitrogen 
These variables are the main precursors to ozone formation. Oxides that are present in the 
atmosphere in significant quantities are nitrogen monoxide and nitrogen dioxide (NOx = 
NO + NO2); approximately 90% of them are destroyed by photolysis in the formation of 
ozone (Wark & Warner, 2000). 
These variables experience higher photolytic breakdown between 11 a.m. and 3 p.m.; i.e., 
when there is a higher incidence of light, after which time the levels start to gradually rise. 
Thus the concentrations which remain following the photolytic period participate as raw 
material for the formation of ozone the next day. Therefore, the maximum concentration 
between 3 p.m. and 11 p.m. on the previous day is used as the input variable (Seinfeld, 1978). 

3.3 Statistical analysis 
In addition to the analysis described in 2.1 and 2.2, the selection of variables was based on 
1) individual regressions between the variable of interest (maximum ozone) and the various 
parameters (temperature, humidity, etc.), selecting only those with correlation coefficients 
(r) 0.3 and greater (Garcia, 2003); and 2) the t-ratio (t), used to obtain the degree of 
importance of each of the variables with respect to the dependent variable, namely ozone 
(see Table 2). 
This analysis indicates that the higher the absolute value of t, the more necessary the 
variable (Miller et al., 1992) in the ANN model. All values of meteorological variables 
correspond to the day in question, so if models are to be used in real time, the values for that 
day are required. The values of the chemical variables correspond to the day previous to the 
day of interest. 
 

                         Year 
Variable 

1999 2000 2001 2002 2003 2004 

Constant -2.344 -0.242 -10.033 -0.591 -1.295 -0.795 

Wind speed -0.049 -0.365 1.859 -0.719 -2.617 -3.490 

Temperature 7.847 4.637 2.519 10.951 7.031 5.036 

Humidity 1.340 1.583 -3.777 -0.437 -5.512 -3.978 

Pressure 2.261 0.197 10.228 0.499 1.358 0.806 

Precipitation -0.071 -0.905 .635 -1.721 -1.692 -1.092 

Solar radiation -2.959 -0.778 3.132 -2.973 -2.699 0.316 

NO2 previous day 0.243 -0.875 1.293 0.105 1.213 3.654 

NOX previous day -1.143 1.223 -0.950 -0.296 0.842 -0.152 

Table 2. t-ratio values by variable and year.  
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With the results shown in Table 2, the database used had daily maximum temperature 
values (°C) Solar Radiation (W/m2), nitrogen dioxide (NO2) on the previous day and oxides 
of nitrogen (NOX) on the previous day, the latter two measured from 3 p.m. to 11 p.m.; and 
daily average values of wind speed (km/h), humidity (%) pressure (mbar) and precipitation 
(mm). 

4. Artificial neural networks  

The artificial neural network employed was a multilayer backpropagation network, which 
has been used successfully in several studies (Garcia & Shigidi, 2005, Kuo et al., 2003, Helle 
et al., 2001; Yesilnacar et al., 2007; Yetilmezsoy & Demirel, 2007). 
The important feature of this network is its ability to self-adapt the weights of neurons in 
intermediate layers to learn the relationship between a set of patterns given as examples and 
their corresponding outputs, so that after having been trained, it can apply the same 
relationship to new input vectors and produce appropriate outputs from inputs that the 
system has never seen before, a feature known as the generalizability of an ANN (Mehrotra 
et al., 1997). 
 

 
Fig. 2. Schematic example of an m × n × o artificial neural network, showing a multilayer 
perceptron with a 4 × 6 × 1 structure (additional shaded circles indicate bias nodes), which 
each contain an activation function (∑) and a nonlinear transfer function (Comrie, 1997). 
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This type of network consists of three layers. There is an input layer Ai with m neurons, an 
output layer Ck with o neurons and at least one hidden layer Bj with n internal neurons. 
Each neuron in a layer (except the input layer) receives inputs from all neurons of the 
previous layer and sends its output to all neurons of the next layer (except the output layer), 
as shown in Figure 2 (Comrie, 1997). 
The learning algorithm involves a forward propagation step in which the input pattern is 
presented to the network and propagated through the layers until it reaches the output 
layer, followed by a backward propagation step in which errors are passed from the output 
layer back to all the neurons in the intermediate layer and then back to the input layer, 
adjusting the synaptic weights so that the system converges (Gurney, 2003). In this way the 
network learns to recognize different features of the input patterns (Freeman et al., 1993, Lek 
et al., 2000). The important point is that each iteration of the ANN decreases the error 
between the actual data and forecast values. 
To develop the ANN, we used the MATLAB version 7.4.0.287 computer program (R2007a), 
specifically the Neural Network Toolbox toolkit (Wang et al., 2006, Yetilmezsoy & Demirel 
et al., 2008, Garcia et al., 2008). 

4.1 Parameters used to build artificial neural network models  
The training algorithm selected for use in the ANN models was the Levenberg-Marquardt 
algorithm, because it achieves rapid convergence (TRAINLM) (Beale et al., 2010, 
Yetilmezsoy & Demirel et al., 2008 Yesilnacar et al., 2007, Wang et al., 2006) with a learning 
rate of 0.001. It is worth noting that when the learning rate increases or decreases, the 
performance of the models are neither improved nor impeded, so the 0.001 value was 
maintained. The ANN models were trained with 10,000 iterations on the training data 
(Comrie, 1997; Guardani et al., 1999). 
To evaluate the results of the ANN models, three performance features were considered; the 
mean square error (MSE), mean squared error with regularization (MSEREG) and the error 
sum of squares (SSE). In the hidden layer, a log-sigmoidal function (LOGSIG) was used, and 
in the output layer, the transfer function was linear (PURELINE).  

4.2 Number of hidden layers and hidden layer neurons 
ANN models generally have acceptable performance with three layers; input, hidden and 
output (Del Brio & Sanz, 2001, Yetilmezsoy & Demirel et al., 2008, Helle et al., 2001). 
Deciding the number of neurons in the hidden layer is usually not so obvious, so the 
decision was based on the rules suggested by Goethals et al., (2007). The number of hidden 
neurons is based on the number of input variables (Ni) and output nodes (No) as shown in 
Table 3. 
 

2/3 * Ni 2/3 * (9) = 6 

0.75 * Ni 0.75 * (9) = 6.75 ≈ 7 

0.5 * (Ni + No) 0.5 * (9 + 1) = 5 

2 * Ni + 1 (2 * (9)) + 1= 19 

2 * Ni 2 * (9) = 18 

Table 3. Rules suggesting the number of hidden neurons based on the number of input (Ni) 
and/or output (No) nodes Goethals et al., (2007). 
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With these rules, and various studies predicting tropospheric ozone (Comrie, 1997; 
Guardani et al., 1999; Hooyberghs et al., 2005, Jiang et al., 2004; McKendry et al., 2002; Melas 
et al., 2000, David & Speakman, 1999, Hubbard & Cobourn, 2001), four arrays were created 
for training and testing the ANN models, each with a different number of neurons in the 
hidden layer as shown in Table 4. This is because there is no rule for the optimal number of 
neurons in the hidden layer (Yetilmezsoy and Demirel et al., 2008, Helle et al., 2001). In each 
problem, different arrangements should be tried for organizing the internal representation, 
selecting the one that gives the best results according to the stated objectives. 

5. Development of artificial neural network models 

Four different ANN structures were created; 9×6×1 (nine input signals, six nodes in the transfer 
layer and one node in the output layer) (R-6); 9×10×1 (R-10), 9×12×1 (nine input signals, twelve 
nodes in the transfer layer and one node in the output layer) (R-12) and 9×15×1 (R-15). 
In training, the three performance criteria mentioned above were used; mean square error 
(MSE), mean squared error with regularization (MSEREG) and error sum of squares (SSE).  
As a source of data for the training process, a database was used which contained daily 
maximum temperature values (°C), Solar Radiation (W/m2), nitrogen dioxide (NO2) on the 
previous day, and nitrogen oxides (NOX) on the previous day; the latter two for the period 
3 p.m. to 11 p.m., and daily average values of Wind Speed (km/h), Humidity (%) Pressure 
(mbar) and Precipitation (mm) for the period 1999–2004. The database contained 2065 
validated data for each variable.  

5.1 Training of ANN models 
The models were trained on 1990–2004 data. Real and predicted O3 values were classified 
into three concentration ranges according to the NOM-020-SSA1-1993 standard, quantifying 
the number of data falling within each range (percentage of correct answers) in order to 
estimate the performance of each model. 
This was done under the assumption that it would be very difficult to try to get specific 
concentrations from models. The concentration ranges were: low <0.06 ppm, intermediate 
0.06–0.11 ppm and high >0.11 ppm, the latter corresponding to the maximum allowable 
range of the rule. 
The number of observed values and estimated values in each of these ranges were counted 
to find how many times the model made a correct estimate. 
In order to refine the 12 trained models, an analysis based on the correlation coefficient (r) 
was carried out. A linear regression was performed between real ozone and estimated ozone 
as shown in Table 4. Based on the results, the models with 12 and 15 neurons in the hidden 
layer were chosen, as they had the best correlation between the calculated and actual data, 
in both cases using MSE to evaluate performance. 
 

No. of neurons in 
hidden layer 

Performance criterion
MSE MSEREG SSE

6 0.740 0.664 0.744
10 0.735 0.688 0.752
12 0.753 0.722 0.743
15 0.744 0.735 0.739

Table 4. Correlation coefficients of the ANN with each performance criterion. 
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Figure 3 and 4 shows correlation plots of the networks with 12 and 15 neurons in the hidden 
layer, respectively, during the training phase using 1999–2004 data. The dispersion of clouds 
of points is very similar in the two cases, corresponding to correlation coefficients close to 
each other. 
 

 
Fig. 3. Scatterplot of the predicted vs. observed ozone concentrations (ppm) for the model 
with 12 neurons in the hidden layer in the training phase for the years 1999–2004. 

 

 
Fig. 4. As in Figure 3, but for the model with 15 neurons in the hidden layer. 
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5.2 Performance of ANN models 
Once training was completed, performance was evaluated with 2005 data. This second 
database has 173 validated values for each parameter under the same conditions as the 
training database, containing daily data from January to June 2005. 
Table 5 shows the number and percentage of times that correct concentrations were 
obtained by the networks with respect to the observed values, where R-12 and R-15 refer to 
networks with 12 and 15 neurons in the hidden layer respectively. 
 

 
Low 

(<0.06 ppm)
Medium 

(0.06–0.11 ppm)
High 

(>0.11 ppm) 

Total days 79 77 17 

R-12 41 (52%) 33 (43%) 0  (0%) 

R-15 50 (63%) 48 (62%) 2 (12%) 

Table 5. Number and percentage of correct estimated O3 values with respect to observed 
values, at the performance stage. 

Figure 5 shows the ANN regression models corresponding to 12 neurons in the hidden layer 
(R-12), and Figure 6 shows the ANN model with 15 neurons in the hidden layer (R-15), both 
models with data from January to June2005. 
Figure 5 shows the regression with the R-12 network, with a regression coefficient of 0.575, 
and Figure 6 shows the correlation of the network with 15 neurons and a regression 
coefficient of 0.545. 
 
 

 
 

Fig. 5. Scatterplot of the predicted concentrations with observed ozone concentrations for 
the model with 12 neurons in the hidden layer in the test phase for the year 2005. 
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Fig. 6. As in Figure 5, but for the model with 15 neurons in the hidden layer. 

The performance of the two networks is very similar. However, it is clear that it is difficult 
for both models to detect ozone concentrations exceeding the standard, which is important 
for this study. 
In order to remedy the estimation problem in the high concentration range, it was decided 
to scale the value estimated by the network. Thus, the final estimated value of ozone (O3) is 
calculated as 

 3 3
ˆ ˆO O  (9) 

where α is the scaling factor and O3 is the ozone concentration (ppm) estimated by the 
neural network model. The value of α was obtained by an incremental search of values that 
when the equation was applied, reached the number of times that the observed 
concentration standard for each year was exceeded, without knowing (until then) if the 
times when estimated concentration exceeded the standard also corresponded to the days 
when this actually occurred. This process yielded an average value of α for both models of 
1.21. Thus ozone values estimated by each network were multiplied by 1.21, giving the 
results in Table 3, which shows that efficiency is lost in the lower range at the expense of a 
gain in the intermediate and high ranges (which are of greatest interest). 
 

 
Low 

(<0.06 ppm)
Intermediate 

(0.06-0.11 ppm)
High 

(>0.11 ppm) 

Total days 79 77 17 

R-12 (α=1.21) 18 (23%) 57 (74%) 11 (65%) 

R-15 (α=1.21) 23 (29%) 57 (74%) 8   (47%) 

Tabla 6. Number and percentage of correct O3 values estimated by different networks using 
the scaling. 
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Table 6 shows that the overall performance of the networks is 50%, and 64% for the detection 
of elevated ozone concentrations with R-12, and 47% with R-15. It may be noted that using 12 
neurons in the hidden layer fails to detect a greater number of days in the high range. 
With the results, it was decided to work with the model with 12 neurons in the hidden layer; 
this model was selected in the present study for predicting tropospheric ozone 
concentrations in the metropolitan area of Guadalajara, Jalisco. Figure 7 shows a comparison 
with the previously selected model without the scaling factor. As can be seen graphically, 
the model shows a good trend in the low and intermediate range of tropospheric ozone 
concentrations but a poor performance for the higher concentrations. 
 

 
Fig. 7. Comparison of predicted concentrations Vs. observed concentrations of ozone from 
ANN model with 12 neurons in the hidden layer for 2005 without the scaling factor. 

In Figure 8 a scaling factor of 1.216 has been applied. Although accuracy is lost in the low 
range of concentrations, performance in the midrange is improved from 43% to 74%, that is, 
by 31 percentage points. 
 

 
Fig. 8. As in Figure 7, but with the scaling factor. 
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In the high range, it is clear that after the unscaled model did not detect any concentrations, 
after applying the scaling factor, efficiency was improved by 65%, i.e., it predicted 11 of the 
17 days that exceeded the concentration of 0.11 ppm. 

6. Conclusions 

With the results obtained by the model and selected variables, it was concluded that in the 
GMA, the most important meteorological variables for significantly reducing the 
tropospheric O3 concentration are wind speed, which can disperse ozone precursors or 
ozone itself,  decreasing the concentration of the pollutant; and rainfall, as this will wash out 
the atmosphere thereby lowering the concentration of ozone, as well as the concentrations of 
precursors and other pollutants (it can be observed that the morning after a day with rainfall 
tends to be clear in the early hours). 
The chemical variables that are important in increasing ozone concentration are maximum 
temperature, maximum solar radiation, O3 on the previous day, and oxides of nitrogen 
(NOX and NO2) (Gomez et al., 2006) because they are involved directly in the photochemical 
cycle of ozone formation (Wark & Warner, 2005). 
The important variables related to nitrogen oxides (NO2 and NOX) are maximum values, 
since these elements are directly involved in the photolytic cycle and influence the formation 
of ozone. They are measured from 3 p.m. to 11 p.m. because ozone formation takes place 
between 11 a.m. and 3 p.m., so there is no consumption of these two pollutants and 
accumulations of these oxides in the afternoon will serve as raw material for the next day. 
Along with the physical and chemical meteorological variables involved in increasing or 
decreasing O3 concentrations, the characteristics of the basin of the Jalisco Basin are also 
important. It is located 1583 meters above sea level, surrounded by the Sierra Madre 
Occidental, plateaus and the Neovolcanic Belt, and with industrial parks to the NW, SE, and 
SW. The Sierra Madre Occidental is formed by the Los Huicholes, Los Guajolotes and San 
Isidro mountains, the Gordo hill and the Tequila volcano. The Neo-Volcanic or Transversal 
Volcanic Belt includes the Cacoma, Manantlán Tapalpa and Lalo mountains, among others. 
Other notable peaks are El Tigre and Garcia, Cerro Viejo, the Tequila Volcano and to the 
south, the Nevado de Colima mountain and Colima Volcana, which create a particular basin 
structure and formation and dispersal patterns of specific pollutants that directly affect the 
GMA in terms of the model performance. 
The ANN models perform acceptably for predicting ozone in the lower and intermediate 
range, however the aim of this study was to predict high levels of ozone, so it was necessary 
to use the scaling factor so that the models would be able to predict concentrations in the 
high range. This scaling factor was obtained in training the models by matching observed 
and predicted days that exceeded the standard. Using the scaling factor, the model obtained 
can predict maximum O3 concentrations in ppm with an overall efficiency of approximately 
50%, and 65% for the detection of high concentrations. 
These models were trained on data from the period between 1999 and 2004 in the 
Guadalajara Metropolitan Area (GMA) and their performance was evaluated using data 
from the period from January to June 2005 with data from the SMN and INE. The 
performance of the two models was assessed and compared by comparing forecast and 
actual ozone concentrations in three ranges (called percent of correct answers) related to the 
NOM-020-SSA1-1993 standard, low (

3OC < 0.060 ppm), intermediate (0.060
3OC  0.110 
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ppm) and high (
3OC > 0.110 ppm), with high concentrations considered to be values that 

exceeded the standard. 
The general characteristics of the selected ANN model for forecasting of O3 are: 9 
independent variables (3 chemical and 6 weather). The structural arrangement of the 
network was 9×12×1 (input × hidden × output); transfer functions were sigmoidal in the 
hidden layer and linear in the output layer, the training function was TRAINLM; the 
performance criterion was mean square error (MSE) and the scaling factor was 1.21. 
This model is able to predict 22% of concentrations lower than 0.060 ppm, i.e. it predicted 17 
of 79 days for this range; a 74% success rate in the intermediate range of concentrations from 
0.060 to 0.110 ppm, i.e. 57 days of the 77 days recorded; and 65% success for concentrations 
greater than 0.110 ppm, i.e. 11 of the 17 days recorded for the 2005 period. 
The overall efficiency of the model for the period January to June 2005 was 49.13% with the 
scaling factor and 54.34% without the factor. 
The models obtained employed the meteorological variables maximum temperature and 
solar radiation, and average values of wind speed, barometric pressure, rainfall, relative 
humidity for each day of interest, and maximum values of the chemical variables ozone, 
NOx and NO2 on the previous day (measured from 3 p.m. to 11 p.m.). 
Finally, the models generated are easy to implement, have only moderate technological 
requirements and simple, easily understood structures, giving them minimal operating 
costs. These models can be used to help alert the community at times when the air quality is 
undesirable, so that precautionary measures can be taken to safeguard the health of the 
population. 

7. References 

Ayllón, M. T. (Second edition). (2003). Elementos de meteorología y climatología. Trillas, ISBN 
968-24-6725-X, México. 

Beale, M. H.; Hagan, M. T. & Demuth, H. B.  (Version 7). (2010). Neural Network Toolbox 7, 
User’s Guide, The MathWorks, Inc., ISBN 0-9717321-0-8, Natick, Massachussetts, USA. 

Brunelli, U.; Piazza, U. & Pignato, L. (2007). Two-days ahead prediction of daily maximum 
concentrations of SO2, O3, PM10, NO2, CO in the urban area of Palermo, Italy. 
Atmospheric Environment, Vol. 41, No. 14 (May 2007), pp. 2967–2995, doi: 
10.1016/j.atmosenv.2006.12.013 

Chen, J.-L.; Islam, S. & Biswas, P. (1998). Nonlinear dynamics of hourly ozone 
concentrations: nonparametric short term prediction, Atmospheric Environment, Vol. 
32, No. 11 (June 1998), pp. 1839–1848, doi: 10.1016/S1352-2310(97)00399-3  

Cobourn, W. G. & Hubbard, M.C. (1999). An enhanced ozone forecasting model using air 
mass trajectory analysis, Atmospheric Environment, Vol. 33, No. 28 (December 1999), 
pp. 4663–4674, doi: 10.1016/S1352-2310(99)00240-X  

Comrie, A. (1997). Comparing neural networks and regression models for ozone forecasting, 
Air & Waste Manage. Assoc., Vol. 47, (June 1997), pp. 653 – 663, ISSN 1047– 3289. 

Comrie, A.C. & Diem, J.E. (1999). Climatology and forecast modeling of ambient carbon 
monoxide in Phoenix, Arizona, Atmospheric Environment, Vol. 33, No. 30, (October 
1999), pp. 5023–5036, doi: 10.1016/S1352-2310(99)00314-3 

Davis, J.M. & Speckman, P. (1999). A model for predicting maximum and 8 h average ozone 
in Houston, Atmospheric Environment, Vol. 33, No. 16, (July 1999), pp. 2487–2500 
begin_of_the_skype_highlighting, doi: 10.1016/S1352-2310(98)00320- 

www.intechopen.com



 
Air Quality - Models and Applications 50

 3end_of_the_skype_highlighting  
Del Brío,  B. M. & Sanz, A. (3ª Edición). (2006). Redes Neuronales y Sistemas Borrosos, Ra–Ma 

Editorial, ISBN 978-84-7897-743-7, Spain.  
Draxler, R. R. (2000). Meteorological factors of ozone predictability at Houston, Texas, 

Journal of the Air & Waste Management Association, Vol. 50, No. 2, (February 2000), 
pp. 259–271, PMID: 10680356  

Freeman, J. A. & Skapura, D. M. (1993). Redes Neuronales: algoritmos, aplicaciones y técnica de 
programación. Díaz de Santos, ISBN 9780201601152, Spain. 

García, I. (2003). Aplicación de modelos semi-empíricos para el análisis y pronóstico de la calidad del 
aire en el Área Metropolitana de Monterrey, N.L., Master‘s thesis, ITESM, Monterrey, 
México.  

García, I.; Marbán, A.; Tenorio, Y. M. & Rodríguez, J. G. (2008). Pronóstico de la 
Concentración de Ozono en Guadalajara-México usando Redes Neuronales 
Artificiales, Información Tecnológica, Vol. 9, No. 3, (Junio 2010), pp. 89–96, doi: 
10.1612/inf.tecnol.3925it.07 

García, L. A. & Shigidi, A. (2006). Using neural networks for parameter estimation in ground 
water, Journal of Hydrology, Vol. 318, No. 1–4, (March 2006), pp. 215–231. doi: 
10.1016/j.jhydrol.2005.05.028 

Gardner, M. W. & Dorling, S. R. (1998). Artificial neural networks (the multilayer 
perceptron) – a review of applications in the Atmospheric Sciences, Atmospheric 
Environment, Vol. 32, No. 14–15, (August 1998), pp. 2627–2636, doi: 10.1016/S1352-
2310(97)00447-0  

Gardner, M.W. & Dorling, S. R. (2000). Statistical surface ozone models: an improved 
methodology to account for nonlinear behaviour, Atmospheric Environment, Vol. 34, 
No. 1, (January 2000), pp. 21–34, doi: 10.1016/S1352-2310(99)00359-3  

Goethals, P. L. M.; Dedecker, A. P.; Gabriels, W.; Lek, S. & De Pauw, N. (2007). Applications 
of artificial neural networks predicting macroinvertebrates in freshwaters,  Aquatic 
Ecology, Vol. 41, No. 3 (May 2007), pp. 41, 491–508, doi: 10.1007/s10452-007-9093-3 

Gómez, J; Martín, J.D.; Soria, E.; Vila, J.; Carrasco, J. & Valle, S. (2006). Neural networks for 
analysing the relevance of input variables in the prediction of tropospheric ozone 
concentration, Atmospheric Environment, Vol. 40, No. 32, (October 2006), pp. 6173–
6180, doi: 10.1016/j.atmosenv.2006.04.067  

Grivas, G. & Chaloulakou, A. (2006). Artificial neural network models for prediction of PM10 
hourly concentrations, in the Greater Area of Athens, Greece, Atmospheric 
Environment, Vol. 40, No. 7 (March 2006), pp. 12161229. doi: 
10.1016/j.atmosenv.2005.10.036 

Guardani, R.; Nascimento C.; Guardani, M.; Martins, M. & Romano, J. (1999). Study of 
atmospheric ozone formation by means of a neural network-based model, Air & 
Waste Manage. Assoc., Vol. 49, (March 1999), pp. 316323, ISSN 1047 – 3289. 

Gurney, K. (1997). An Introduction to Neural Networks, University College London Press, 
ISBN 1-85728-503-4, London. 

Helle, H. B.; Bhaatt, A. & Ursin, B. (2001). Porosity and permeability prediction from 
wireline logs using artificial neural networks: a North Sea case study, Geophysical 
Prospecting, Vol. 49, No. 4 (December 2001), pp. 431–444. doi: 10.1046/j.1365-
2478.2001.00271.x 

Hooyberghs, J; Mensink, C.; Dumont, G.; Fierens, F. & Brasseur, O. (2005). A neural network 
forecast for daily average PM10 concentrations in Belgium, Atmospheric 
Environment, Vol. 39, (January 2005), pp. 3279–3289, doi: 10-
1016/j.atmosenv.2005.01.050. 

www.intechopen.com



 
Artificial Neural Network Models for Prediction of Ozone Concentrations in Guadalajara, Mexico 51 

Hubbard, M. & Cobourn, W. G. (1998). Development of a regression model to forecast 
ground-level ozone concentration in Louisville, KY, Atmospheric Environment, Vol. 
32, No. 14-15, (August 1998), pp.  2637–2647, doi: 10.1016/S1352-2310(07)00444-5  

Jiang, D.; Zhang, Y.; Hu, X.; Zeng, Y.; Tan, J. & Shao, D. (2004). Progress in developing an 
ANN model for air pollution index forecast, Atmospheric Environment, Vol. 38, 
(October 2003), pp. 7055–7064, doi: 10-1016/j.atmosenv.2003.10.066. 

Kuo, Y.; Chen-Wuing, L. & Lin, K. (2004). Evaluation of the ability of an artificial neural 
network model to assess the variation of groundwater quality in an area of 
blackfoot disease in Taiwan, Water Research, Vol. 38, No. 1 (January 2004), pp. 148–
158. doi: 10.1016/j.watres.2003.09.026 

Lek, S. & Guégan, J. F. (2000). Artificial Neural Networks: application to ecology and evolution, 
Springer, ISBN 3540669213, Michigan. 

McKendry, I. (2002). Evaluation of artificial neural networks for fine particulate pollution 
(PM10 and PM2.5) forecasting, Air & Waste Manage. Assoc., Vol. 52, (September 
2002), pp. 1096–1101, ISSN 1047–3289. 

Melas, D.; Kioutsioukis I. & Ziomas I. (2000). Neural network model for predicting peak 
photochemical pollutant levels, Air & Waste Manage. Assoc., Vol. 50, (April 2000), 
pp. 495–501, ISSN 1047-3289. 

Mehrotra, K.; Mohan, C. K. & Ranka, S. (Second printing) (2000). Elements of Artificial Neural 
Networks, MIT Press, Cambridge MA. 

Milanchus, M.L.; Rao, T. & Zurbenko, I. G. (1998). Evaluating the effectiveness of ozone 
management efforts in the presence of meteorological variability, Journal of the Air 
& Waste Management Association, Vol. 48, No. 3, (1998), pp. 201-215, ISSN 1096-2247. 

Miller, I.R.; Freund, J. E. & Jonson. R. (4th edition). (2004).  Probabilidad y Estadística para 
Ingenieros, Reverté Ediciones, Spain.  

Secretaria de Salud, (2000). Norma Oficial Mexicana NOM-020-SSA1-1993, Salud ambiental. 
Criterio para evaluar el valor límite permisible para la concentración de ozono (O3) 
de la calidad del aire ambiental, Mexico   

Pérez P.; Trier, A. & Reyes, J. (2000). Prediction of PM2.5 concentrations several hours in 
advance using neural networks in Santiago, Chile, Atmospheric Environment, Vol. 
34, No. 8 (February 2000), pp. 1189–1196, doi: 10.1016/S1352-2310(99)00316-7.  

Perez P. & Reyes, J. (2006); An integrated neural network model for PM10 forecasting, 
Atmospheric Environment. Vol. 40, (January 2006), pp. 2845–2851, doi: 
10.1016/j.atmosenv.2006.01.010. 

Pun, B. K.; Louis, J. F.; Pai, P; Seigneur, C.; Altshuler, S. & Franco, G. (2000). Ozone 
formation in California’s San Joaquin Valley: A critical assessment of modeling and 
data needs, Journal of the Air & Waste Management Association, Vol. 50, No. 6, (2000), 
pp. 961 – 971, ISSN 1096-2247.  

Raga, G. B. & Le Moyne, L. (1999). On the nature of air pollution dynamics in Mexico City – 
I. Nonlinear analysis, Atmospheric Environment, Vol. 30, No. 23, (February 1999), pp. 
3987–3993, doi: 10.1016/1352-2310(96)00122-7  

Rodríguez, J. G. & Tenorio, Y. M. (2006). Desarrollo de modelos pronóstico para la calidad del  aire 
en la Zona Metropolitana de Guadalajara, Jalisco, Bachelor’s thesis, ESIQIE-IPN, 
Mexico. 

Roth, P. M. (1999). A qualitative approach to evaluating the anticipated reliability of a 
photochemical air quality simulation model for a selected application, Journal of the 
Air & Waste Management Association, Vol. 49, No. 9, (1999), pp. 1050–1059, ISSN 
1096-2247.  

www.intechopen.com



 
Air Quality - Models and Applications 52

Russell, A. & Dennis, R. (2000). NARSTO critical review of photochemical models and 
modeling, Atmospheric Environment, Vol. 34, No. 12-14, (March 2000), pp. 2283–
2324, doi: 10.1016/S1352-2310(99)00468-9  

Salcedo, R. L. R.; Alvim, M. C. M.; Alves, C. A. & Martins, F. G. (1999). Time-series analysis 
of air pollution data, Atmospheric Environment, Vol. 33, No. 15, (July 1999), pp. 2361 
–2372, doi: 10.1016/S1352-2310(99)80001-6  

Thomas, S. & Jacko, R. B. (2007). Model for forecasting expressway fine particulate matter 
and carbon monoxide concentration: Application of regression and neural network 
model, Air & Waste Management Association, Vol. 57, No. 4 (April 2007), pp. 480–488, 
ISSN 1096-2247. 

Sebald,  L.; Treffeisen, R; Reimery, E. & Hies, T. (2000). Spectral analysis of air pollutants. 
Part 2: Ozone time series, Atmospheric Environment, Vol. 34, No. 21, (June 2000), pp. 
3503–3509, doi: 10.1016/S1352-2310(00)00147-3 

Seinfeld, J.  (1978). Contaminación stmosférica. Fundamentos físicos y químicos, Instituto de 
Estudios de Administración Local, ISBN 8470882139, Madrid.  

Secretaria de Medio Ambiente para el Desarrollo Sustentable Jalisco. (2006). Informe de 
calidad del aire, evaluación: 2001–2005, Semades, Retrieved from 
<http://www.jalisco.gob.mx/wps/wcm/connect/813336004dbe3344a756 
ef5160bedb77/ReporteAire2006.pdf?MOD=AJPERES&CACHEID=813336004dbe33
44a756ef5160bedb77> 

Secretaria de Medio Ambiente y Recursos Naturales & Instituto Nacional de Ecología (2003).  
Segundo almanaque de datos y tendencias de la calidad del aire en seis ciudades mexicanas, 
Semarnat & INE, ISBN 968 817 614 177, Mexico. 

Thomas, S. & Robert, B. J. (2007). Model for forecasting expressway fine particulate matter 
and carbon monoxide concentration: Application of regression and neural network 
model, Air & Waste Management Association. Vol. 57, No. 4, (2007), pp. 480–488, 
ISSN 1096-2247. 

Thompson, M. L.; Reynolds, J.; Cox, L. H.M; Guttorp, P. & Sampson, P. D. (2001). A review 
of statistical methods for the meteorological adjustment of tropospheric ozone, 
Atmospheric Environment, Vol. 35, No. 3, (November 2000), pp. 617–630, doi: 
10.1016/S1352-2310(00)00261-2  

Wang, M. X.; Liu, G. D.; Wu, W. L.; Bao, Y. H. & Liu, W. N. (2006). Prediction of agriculture 
derived groundwater nitrate distribution in North China Plain with GIS-based 
BPNN, Environment Geology, Vol. 50,  No. 5, (April 2006), pp. 637–644, doi: 
10.1007/s00254-006-0237-x 

Wark, K. & Warner, C. F. (2004). Contaminación del aire: Origen y control, Limusa – Wiley, 
ISBN 9789681819545, Mexico. 

Yesilnacar, M. I.; Sahinkaya, E.; Naz, M & Ozkaya, B.; Naz M. & Bestamin O. (2007). Neural 
network prediction of nitrate in groundwater of Harran Plain, Turkey, 
Environmental Geology, Vol. 56, No. 1 (November 2007), pp. 19–25 doi: 
10.1007/s00254-007-1136-5 

Yetilmezsoy, K. & Demirel, S. (2008). Artificial neural networks (ANN) approach for 
modeling of Pb (II) adsorption from aqueous solution by Antep pistachio (Pistacia 
Vera L.) Shells, Journal of Hazardous Materials. Vol. 153, No. 3, (May 2008), pp. 1288–
1300. Doi: 10.1016/j.jhazmat.2007.09.092 

www.intechopen.com



Air Quality-Models and Applications

Edited by Prof. Dragana Popovic

ISBN 978-953-307-307-1

Hard cover, 364 pages

Publisher InTech

Published online 09, June, 2011

Published in print edition June, 2011

InTech Europe

University Campus STeP Ri 

Slavka Krautzeka 83/A 

51000 Rijeka, Croatia 

Phone: +385 (51) 770 447 

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai 

No.65, Yan An Road (West), Shanghai, 200040, China 

Phone: +86-21-62489820 

Fax: +86-21-62489821

Air pollution has been a major transboundary problem and a matter of global concern for decades. High

concentrations of different air pollutants are particularly harmful to large cities residents, where numerous

anthropogenic activities strongly influence the quality of air. Although there are many books on the subject, the

one in front of you will hopefully fulfill some of the gaps in the area of air quality monitoring and modeling, and

be of help to graduate students, professionals and researchers. The book is divided in five sections, dealing

with mathematical models and computing techniques used in air pollution monitoring and forecasting; air

pollution models and application; measuring methodologies in air pollution monitoring and control;

experimental data on urban air pollution in China, Egypt, Northeastern U.S, Brazil and Romania; and finally,

the health effects due to exposure to benzene, and on the influence of air pollutants on the acute respiratory

diseases in children in Mexico.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Ignacio Garcia, Jose G. Rodriguez and Yenisse M. Tenorio (2011). Artificial Neural Network Models for

Prediction of Ozone Concentrations in Guadalajara, Mexico, Air Quality-Models and Applications, Prof.

Dragana Popovic (Ed.), ISBN: 978-953-307-307-1, InTech, Available from:

http://www.intechopen.com/books/air-quality-models-and-applications/artificial-neural-network-models-for-

prediction-of-ozone-concentrations-in-guadalajara-mexico



© 2011 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.


