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1. Introduction  

Polisomnography (PSG) is the standard technique used to study the sleep dynamic and to 
identify sleep disorders. In order to obtain an integrated knowledge of different corporal 
functions during sleep, a PSG study must perform the acquisition of several biological 
signals during one or more nights in a sleep laboratory. The signals usually acquired in a 
PSG study include the electroencephalogram (EEG), the electrocardiogram (ECG), the 
electromiogram (EMG), the electro oculogram (EOG), the abdominal and thoracic 
breathings, the blood pressure, the oxygen saturation, the oro-nasal airflow and others 
biomedical records (Collop et. al., 2007). 
Particularly, the EEG is usually analyzed by physicians in order to detect neural rhythms 

during sleep. However, it is generally contaminated with different noise sources and mixed 

with other biological signals. Their common artifacts sources are the power line interference 

(50 or 60 Hz), the ECG and EOG signals. Figure 1 shows an example of real EEG ECG and 

EOG signals recorded simultaneously in a PSG study. It can be seen that EEG signal is 

contaminated by the QRS cardiac complexes which appear as spikes at the same time in 

ECG record. Likewise, the low frequencies present in the contaminated EEG correspond to 

the opening, closing or movements of the eyes recorded in EOG signal. These noise sources 

increase the difficulty in analyzing the EEG and obtaining clinical information.  

To correct, or remove the artifacts from the EEG signal, many techniques have been developed 
in both, time and frequency domains (Delorme et. al., 2007; Sadasivan & Narayana, 1995). 
More recently, component-based techniques, such as principal component analysis (PCA) and 
independent component analysis (ICA); (Akhtar et. al., 2010; Astolfi et. al., 2010; Jung et. al., 
2000), have also been proposed to remove the ocular artifacts from the EEG. The use of Blind 
Source Separation (BSS) (De Clercq et. al., 2005) and Parallel Factor Analysis (PFA)  methods to 
remove artifacts from the EEG have been used in this area too (Cichocki & Amari, 2002; 
Makeig et. al., 2004). Wavelet Transform (WT) (Senthil Kumar et. al., 2009), WT combined with 
ICA (Ghandeharion et. al., 2009) and Autoregressive Moving Average Exogenous (ARMAX) 
(Hass et. al., 2003; Park et. al., 1998), have been applied too, to remove artifacts from EEG. 
In this chapter, it is described a cascade of three adaptive filters based on a Least Mean 
Squares (LMS) algorithm to remove the common noise components present in the EEG 
signal recorded in polysomnographic studies. 
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Adaptive filters method has been used, among other applications, in external 
electroenterogram records (Mejia-García et. al., 2003) and in impedance cardiography 
(Pandey et. al., 2005). Other applications of this filtering technique in biomedical signals 
include, for example, removal of maternal ECG in fetal ECG records (Soria et. al., 1999) 
detection of ventricular fibrillation and tachycardia (Tompkins, 1993), cancellation of heart 
sound interference in tracheal sounds (Cortés, 2006), for pulse wave filter (Shen et. al., 2010), 
for tumor motion prediction (Huang et. al., 2010), detection of single sweep event related 
potential in EEG records (Decostre et. al., 2005), detection of SSVEP in EEG signals (Diez et. 
al., 2011) and for motor imagery (Jeyabalan et. al., 2007). 
In the particular case of artifacts removal in EEG records, He et. al. (2007) studied the accuracy 
of adaptive filtering method quantitatively using simulated data and compared it with the 
accuracy of the domain regression for filtering ocular artifacts from EEG records. Their results 
show that the adaptive filtering method is more accurate in recovering the true EEG signals. 
Kumar et. al. (2009) shows that adaptive filtering can be applied to remove ocular artifacts 
from EEG with good results. Adaptive filters have been used to remove biological artifacts 
from EEG by others authors (Chan et. al., 1998; Karjalainen et. al., 1999; Kong et. al., 2001). 
In order to improve the signal to noise ratio of EEG signals in PSG studies, we had proposed 
in a previous work a cascade of three adaptive filters based on a LMS algorithm (Garcés et. 
al., 2007). The first filter in the cascade eliminates line interference, the second adaptive filter 
removes the ECG complexes and the last one cancels EOG artifacts. Each stage uses a Finite 
Impulse Response (FIR) filter, which adjusts its coefficients to produce an output similar to 
the artifacts present in the EEG. In this chapter, we explain in detail the operation of the 
cascade of adaptive filters including novel tests to determinate the optimal order of FIR filter 
for each stage. Finally, we describe the results of the proposed filtering scheme in 18 real 
EEG records acquired in PSG studies.  

2. Materials 

Eighteen PSG records belonging to sixteen subjects were selected from the MIT-BIH 
Polysomnographic Database. All subjects are aged 44 +/- 12 years. This database contains 
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Fig. 1. Some biological signals acquired in a PSG study a) EEG recording (corresponding to 
Patient 41) corrupted with ECG and EOG artifacts, b) Real ECG signal, and c) Real EOG signal.  

a) 

b) 

c) 
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over 80 hours of four-, six-, and seven-channel PSG recordings. All of them contain EEG, 
ECG and Blood Pressure (BP) signals, some of them have Nasal or Plethysmograph 
Respiratory signals, five of them have O2 Saturation signal, EOG and EMG signals. All the 
subjects have ECG signals annotated beat-by-beat, and EEG and respiration signals annotated 
by an expert with respect to sleep stages and apnea (Goldberger et. al., 2000). In this work were 
used only the EEG, ECG and EOG signals, all of them were sampled at 250 Hz. 

3. Common artifacts in EEG records 

By artifacts it is understood all signals that appear in the EEG record which don't come from 

the brain. The most common artifacts in the EEG signal appear during the acquisition due to 

different causes, like as bad electrodes location, not clean hairy leather, electrodes 

impedance, etc. There is also a finding of physiological artifacts, that is, bioelectrical signals 

from other parts of the body (heart and muscle activity, eye blink and eyeball movement) 

that are registered in the EEG (Sörnmo & Laguna, 2005). 

The problem of those artifacts is that they can made a mistake in the analysis of a EEG 

record, either in automatic method or in visual inspection by specialist (Wang et. al., 2008).  

3.1 Power line interference 

Biological records, especially EEG signals, are often contaminated with the 50 or 60 Hz line 

frequency interference from wires, light fluorescents and other equipments which are 

captured by the electrodes and acquisition system. The ignition of light of fluorescents 

usually causes artificial spikes in the EEG. They are distributed in several channels of EEG 

and can made a mistake in the analysis of the record (Sanei & Chambers, 2007) 

3.2 Ocular artifacts  

The human eye generates an electrical dipole caused by a positive cornea and negative 

retina. Eye movements and blinks change the dipole causing an electrical signal known as 

an EOG. The shape of the EOG waveform depends on factors such as the direction of eye 

movements. A fraction of the EOG spreads across the scalp and it is superimposed on the 

EEG (Vigon et. al., 2000). 

Two kinds of ocular artifacts can be observed in EEG records, eye blinks and eye 

movements. Eye blinks are represented by a low frequency signal (< 4 Hz) with high 

amplitude. It is a symmetrical activity mainly located on the front electrodes (FP1, FP2) with 

low propagation. Eye movements are also represented by a low frequency signal (< 4 Hz) 

but with higher propagation, (Crespel et. al., 2006). In order for the EEG to be interpreted for 

clinical use, those artifacts need to be removed or filtered from the EEG.  

3.3 Cardiac artifacts  

Cardiac activity may have pronounced effects on the electroencephalogram (EEG) because 

of its relatively high electrical energy, especially upon the no-cephalic reference recordings 

of EEG. The QRS complexes appear in the EEG signal like regular spikes (Sörnmo & Laguna, 

2005). In figure 1 it can be observed the QRS complex present in a segment of EEG record. 

The QRS amplitudes in the ECG are of the order of mV, but in the external EEG they have 

been reduced. These artifacts in the EEG records could be clinically misleading. 
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3.4 Other artifacts 

The muscle disturbances are introduced in the EEG by involuntary muscle contractions of 
the patient, thus generating an electromyogram (EMG) signal present in the EEG record. 
The EMG and other biological artifacts have not been analyzing in the present work.  

4. Methodology 

Herein, we propose the use of adaptive filters to remove artifacts from EEG signal acquired 
in PSG studies. Usually, biological signals (ECG, EOG and others) have overlaped spectra 
with the EEG signal. For that, conventional filtering (band-pass, lower-pass or high-pass 
filters) cannot be applied to eliminate or attenuate the artifacts without losing significant 
frequency components of EEG signal. 
Due to this reason, it is necessary to design specific filters to attenuate artifacts of EEG 
signals in PSG studies. The adaptive interference cancellation scheme is a very efficient 
method to solve the problem when signals and interferences have overlapping spectra.  
Since the PSG recordings usually contain the ECG, EOG and EEG signals it is very 
convenient to apply this method to filter this kind of records. 

4.1 Adaptive filter 

Adaptive filters are based on the optimization theory and they have the capability of 
modifying their properties according to selected features of the signals being analyzed 
(Haykin, 2005). Figure 2 illustrates the structure of an adaptive filter. There is a primary 
signal d(n) and a secondary signal x(n). The linear filter H(z) produces an output y(n), which 
is subtracted from d(n) to compute an error e(n). 
The objective of an adaptive filter is to change (adapt) the coefficients of the linear filter, and 
hence its frequency response, to generate a signal similar to the noise present in the signal to 
be filtered. The adaptive process involves minimization of a cost function, which is used to 
determine the filter coefficients. Initially, the adaptive filter adjusts its coefficients to 
minimize the squared error between its output and a primary signal. In stationary 
conditions, the filter should converge to the Wiener solution. Conversely, in non-stationary 
circumstances, the coefficients will change with time, according to the signal variation, thus 

converging to an optimum filter (Decostre & Arslan, 2005). 

 

 

Fig. 2. Structure of an adaptive filter. 

In an adaptive filter, there are basically two processes: 
a. A filtering process, in which an output signal is the response of a digital filter. Usually, 

FIR filters are used in this process because they are linear, simple and stable. 
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b. An adaptive process, in which the transfer function H(z) is adjusted according to an 
optimizing algorithm. The adaptation is directed by the error signal between the 
primary signal and the filter output. The most used optimizing criterion is the Least 
Mean Square (LMS) algorithm. 

The structure of the FIR can be represented as, 
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where L is the order of the filter, x(n) is the secondary input signal, wk are the filter 
coefficients and y(n) is the filter output. 
The error signal e(n) is defined as the difference between the primary signal d(n) and the 
filter output y(n), that is,  
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The squared error expectation for N samples is given by 
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where rdx(n) and rxx(n) are, respectively, the cross-correlation function between the primary 
and secondary input signals, and the autocorrelation function of the secondary input, that is 
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The objective of the adaptation process is to minimize the squared error, which describes a 
performance surface. To get this goal there are different optimization techniques. In this 
work, we used the method of steepest descent (Semmlow, 2004). With this, it is possible to 
calculate the filter coefficient vector for each iteration k having information about the 
previous coefficients and gradient, multiplied by a constant, that is, 
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      1k k kw n w n      (9) 

where µ is a coefficient that controls the rate of adaptation.  
The gradient is defined as,  
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Substituting (10) in (9) leads to, 

    
  
 

2

1k k
k

e n
w n w n

w n



  


 (11) 

Deriving with respect to wk and replacing leads to, 
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Since d(n) and x(n) are independent with respect to wk , then, 

        1 2  k kw n w n e n x n k     (14) 

Equation (14) is the final description of the algorithm to compute the filter coefficients as 
function of the signal error e(n) and the reference input signal x(n). The coefficient µ is a 
constant that must be chosen for quick adaptation without losing stability. The filter is stable 
if µ satisfies the following condition, (Sanei & Chambers, 2007). 
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where L is the filter order and Pxx is the total power of the input signal. 

4.2 Artifacts removal from EEG 

As it is mentioned above, the adaptive interference cancellation is a very efficient method to 

solve the problem when signals and interferences have overlap spectra.  

The adaptive noise canceller scheme is arranged on the basic structure showed in Figure 2, 

where the primary and secondary inputs are called as ”corrupted signal” and “reference 

signal”, respectively. 

In this scheme, it is assumed that the corrupted signal d(n) is composed of the desired s(n) 
and noise n0(n), which is additive and not correlated with s(n). Likewise, it is supposed that 
the reference x(n) is uncorrelated with s(n) and correlated with n0(n). The reference x(n) 
feeds the filter to produce an output y(n) that is a close estimate of n0(n) (Tompkins, 1993). 
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To remove the main artifacts of the EEG signal, we propose a cascade of three adaptive 
filters (see Figure 3). The input d1(n) in the first stage is the EEG corrupted with artifacts 
(EEG + line-frequency + ECG + EOG). The reference x1(n) in the first stage is an artificial 
sine function generated with 50 Hz (or 60 Hz, depends on line frequency). The output of 
H1(z) is y1(n), which is an estimation of the line artifacts present in the EEG. This signal y1(n) 
is subtracted from the corrupted d1(n) to produce the error e1(n), which is the EEG without 
line-interference. The e1(n) error is forwarded as the corrupted input signal d2(n) to the 
second stage. The reference input x2(n) of the second stage can be either a real or artificial 
ECG. The output of H2(z) is y2(n), representing a good estimate of the ECG artifacts present 
in the EEG record. Signal y2(n) is subtracted from d2(n); its result produces error e2(n). Thus, 
we have obtained the EEG without line and ECG artifacts. Then, e2(n) enters into the third 
stage as the signal d3(n). The reference input x3(n) of filter H3(z) is also a real or artificial EOG 
and its output is y3(n), which is a replica of the EOG artifacts present in the EEG record. 
Such y3(n), subtracted from d3(n), gives error e3(n). It is the final output of the cascade filter, 
that is, the clean EEG without artifacts. 
The reference signals ECG and EOG and the corrupted EEG were acquired simultaneously 

in polysomnographic studies. EEG, ECG and EOG records belonged to adult patients and 

were downloaded from the MIT-BIH Polysomnographic Databas-Physiobank (Goldberger 

et. al., 2000). 

In section 4.3 there are present the tests that were carried out to determine the optimum 
order of H1(z), H2(z) and H3(z). 
 

Fig. 3. Structure of adaptive filters cascade for artifacts removal on EEG signal acquired in 
PSG studies. 

4.3 Optimal order of FIR filters 

To determine the optimum values of the orders L1, L2 and L3 of H1(z), H2(z) and H3(z) filters 
the EEG signal were artificially contaminated with different coloured noises. The test to 
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determinate the optimum values of the orders L1, L2 and L3 was done with a coefficient 
convergence rates μ fixed in 0.001. As soon as the optimum value of the L of each stage was 
obtained the coefficient convergence rates μ of each stage was recalculated with Eq. (15) to 
assure an adequate adaptation. If μ is too big, the filter becomes unstable, and if it is too 
small, the adaptation may turn out too slow. 
The tests were done using one stage of adaptive filter per time without using the cascade of 
three filters. 

4.3.1 Optimal estimation of order L1 for filter H1(z). 
The first stage filter attenuates the line frequency and was used to determinate the optimum 
value L1 of H1(z). To determinate L1, the EEG was artificially contaminated with a sinusoidal 
signal of 50 Hz which amplitude is adjusted in 30%, 50%, 80% and 100% of the Root Mean 
Square (RMS) value of original EEG signal. Then, the filter order L1 was adjusted with 
different values of 8, 16, 32, 64 and 128.  
In order to study the filter performance, we estimated the Power Spectral Density (PSD) of 
the original real EEG signal, the contaminated EEG and the different filtered versions of the 
EEG signal. PSD was computed using the Burg method with a model order equal to 12. 
Those graphics for one patient are presented in Figure 4 as an example. 
Then, we estimated the normalized area below the frequency coherence function and the 
maximum of temporal cross-correlation normalized function between the filtered EEG 
signals and the contaminated EEG. If the signals are identical these parameters must be 
equal to 1. This test was done for each patient.  
Table 1 show the averaged values of two parameters for all EEG records of the database. 
 

Contamination 
of line 

frequency 
L1 Coherence 

Cross-
correlation 

30% 

8 0.9943 0.9760
16 0.9940 0.9727
32 0.9947 0.9657
64 0.9939 0.9497

128 0.9912 0.9062

50% 

8 0.9936 0.9426
16 0.9932 0.9393
32 0.9938 0.9326
64 0.9930 0.9171

128 0.9902 0.8751

80% 

8 0.9918 0.8739
16 0.9914 0.8706
32 0.9919 0.8643
64 0.9909 0.8500

128 0.9879 0.8111

100% 

8 0.9903 0.8223
16 0.9898 0.8191
32 0.9901 0.8131
64 0.9890 0.7996

128 0.9859 0.7631

Table 1. Average values of the normalized parameters between filtered EEG signal and 
contaminated EEG signal with line interference for different values of L1. 
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Figure 4 is an example of PSD graphics for a EEG recording (corresponding to Patient 48) 
but all records of the database have a similar behaviour in the test. In this figure it could be 
observed that as L1 increases, the attenuation of the 50 Hz interference is more significant. 
However, if L1 is higher than 32, it can be seen than other frequencies of spectrum are 
modified.  
For this reason, there is a tradeoff between the 50 Hz interference attenuation and the 
modification of the main frequency components of EEG signal. 
In table 1 it can be observed that the best option between L1=8, L1=16 and L1=32 is L1=16, 
because it have the minimum area of coherence and similar values of maximum in cross- 
correlation with L1=32. Chosen this value of the order L1 there is a loss of information of 
original signal and there is not a modification in the rest of the spectrum.  
It is concluded that the optimum value of L1 for the first filter is L1=16 (for a sampling 
frequency of 250 Hz). For this order, the optimum value of the coefficient convergence rates 
μ calculated with Eq. (15) must be positive and lower than 0.047 
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Fig. 4. Power Spectral Density (PSD) of a EEG signal before and after the first adaptive filter 
H1(z). a) In blue: PSD of original EEG, in red: PSD of EEG signal contaminated with an artificial  
line interference. b) PSD of filtered EEG signal for different values of the order L1. Red: original 
EEG, Green: L1=8, Orange: L1=16, Purple: L1=32, Light Blue: L1=64, Blue: L1=128. 
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4.3.2 Optimal estimation of order L2 for filter H2(z). 

The second stage filter attenuates ECG artifacts (mainly QRS complexes) present in EEG 
signal, and was used to determinate the optimum value of the order L2 of H2(z). To 
determinate L2, the EEG was artificially contaminated with a coloured noise, with a -3dB 
bandwidth between 5 Hz and 40 Hz. This bandwidth was selected considering that QRS 
complexes have almost their total energy in this frequency band (Thakor, 1984). Then, the 
filter order L2 was adjusted with the different values of  16, 32, 64, 128, 256 and 512.  
As a similar way to optimum value estimation of L1, we estimated the PSD of the original 
real EEG signal, the contaminated EEG and the different filtered versions of the EEG signal.  
Figure 5 shows the PSD graphics for an EEG recording before and after the second adaptive 
filter. In this figure it could be observed that the possible optimum values of L2 to filter the 
cardiac frequencies between 5Hz and 40Hz are L2=16, L2=32 or L2=64, because the rest of the 
values of L2 modify the frequencies of the entire spectrum.  
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b) 

Fig. 5. Power Spectral Density (PSD) of a EEG signal before and after the second adaptive 
filter H2(z) . a) In blue: PSD of original EEG, in red: PSD of EEG signal contaminated with 
coloured noise (5Hz to 40 Hz). b) PSD of filtered EEG for different values of the order L2. 
Red: original EEG, Green: L2=16, Orange: L2=32, Purple: L2=64, Light Blue: L2=128, Blue: 
L2=256, Black: L2=512. 

www.intechopen.com



Noise Removal from EEG Signals 
in Polisomnographic Records Applying Adaptive Filters in Cascade 

 

183 

Table 2 shows the average of the normalized area below the frequency coherence function 
and the maximum of temporal cross-correlation normalized function (between the filtered 
EEG signals and the contaminated EEG) for all recordings analyzed and for different values 
of L2.  
 

L2 Coherence 
Cross-

correlation 

16 0.2588 0.5686 

32 0.2596 0.5595 

64 0.2927 0.5406 

128 0.2641 0.5087 

256 0.1756 0.4576 

512 0.1579 0.3463 
 

Table 2. Average values of the normalized parameters between filtered EEG signal and 
contaminated EEG signal for different values of L2. 

In table 2 it can be observed that the best option between L2=16, L2=32 or L2=64 is L2=32, 
because it have the minimum value of the normalized area below the frequency coherence 
function and the lower values of maximum of cross- correlation normalized function 
without losing information and not modifying the spectrum of the original EEG signal.  
It is concluded that the optimum value of L2 for second filter is L2=32. For this order, the 
optimum value of the coefficient convergence rates μ calculated with (15) must be positive 
and lower than 0.02367. 

4.3.3 Optimal estimation of order L3 for filter H3(z). 

As it is mentioned above, the third and last stage filter attenuates EOG artifacts present in 
EEG. In this section, we determinate the optimum value of the order L3 of H3(z). To 
determinate it, the EEG was artificially contaminated with a coloured noise with a -3dB 
bandwidth between 0.5 Hz and 10 Hz. This bandwidth includes the main frequency 
components of EOG artifacts. Then, we evaluated the filter performance with different L3 
values (4, 8, 16 and 32).  
As a similar way to optimum value estimation of L1 and L2, we estimated the PSD of the 
original real EEG signal, the contaminated EEG and the different filtered versions of the 
EEG signal.  
 

L3 Coherence 
Cross-

correlation 

4 0.8773 0.8014 

8 0.8586 0.7979 

16 0.8579 0.7937 

32 0.8584 0.7863 

64 0.8586 0.7842 
 

Table 3. Average values of the normalized parameters between filtered EEG signal and 
contaminated EEG signal for different values of L3. 

Figures 6 and 7 show the PSD graphics for an EEG recording before and after the third 
adaptive filter. It can be observed that all the values of the order L3 chosen have good result 
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to filter the frequencies lower than 10 Hz (see Figure 6). No one introduce interferences in 
other frequencies. But with values bigger than 256 it could be observed a distortion in high 
frequencies and a loss of information of the original signal in low frequencies (see Figure 7). 
The modification of the high frequencies and the losing of information in low frequencies 
are shown in figure 7, where there have been filtered the contaminated EEG with values of 
L3=256 and L3=512 
Table 3 shows the averaged values of the normalized area below the frequency coherence 

function and temporal cross-correlation normalized function (between the filtered EEG 

signals and the contaminated EEG) for all recordings analyzed and for different values of L3. 
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Fig. 6. Power Spectral Density (PSD) of a EEG signal before and after the third adaptive filter 

H3(z). a) In blue: PSD of original EEG, in red: PSD of EEG signal contaminated with coloured 

noise (0.5 Hz to 10 Hz). b) PSD of EEG signal filtered for different values of the order L3, 

Red: original EEG, Green: L3=4, Orange: L3=8, Purple: L3=16, Light Blue: L3=32, 

In Table 3 it can be observed that the best option of the value of the order L3 for the third 
filter is L3=16, because it have the minimum value of the normalized area below the 
frequency coherence function and the lower values of maximum of cross- correlation 
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normalized function without losing information of original signal and not modifying the 
spectrum of the original EEG. The results of the test using values of L3 bigger than L3=256 
have not been included in Table 3. 
It is concluded that the optimum value of L3 for the third filter is L3=32. For this value, the 
optimum value of the coefficient convergence rates μ calculated with (15) must be positive 
and lower than 0.02367. 
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Fig. 7. Power Spectral Density of a EEG signal before and after the third adaptive filter H3(z). 
In Red: PSD of the original EEG signal. In Green: PSD of the EEG signal contaminated with 
coloured noise (0.5 Hz to 10 Hz). In Purple: PSD of the EEG filtered for order L3=256. In 
Blue: PSD of the EEG filtered for L3=512. Note the modification in high frequencies and 
losing of information in low frequencies. 

5. Results 

Eighteen real EEG records acquired in PSG studies were processed with the cascade of 

adaptive filters. According to the previous tests, the values of the orders L1, L2 and L3 were 

adjusted as L1= 16, L2= 32 and L3= 32. 

As it was mentioned in section 2, only five subjects from the entire database have EOG 

signals. So, the EEG signals of these five patients have been filtered with the entire cascade 

shown in Figure 3. The others thirteen EEG (belonging to the rest of the patients) have not 

been filtered with the last third stage.  

The input d1(n) in the first stage is the EEG corrupted with artifacts (EEG + line-frequency + 

ECG + EOG). The reference x1(n) in the first stage is an artificial sine function generated with 

50 Hz with the same RMS of the EEG signal. The e1(n), which is the EEG without line-

interference, is forwarded as the corrupted input signal d2(n) to the second stage. The 

reference input x2(n) of the second stage is the real ECG. The error e2(n) is the EEG without 

line and ECG artifacts and enters into the third stage as the signal d3(n). The reference input 
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x3(n) of filter H3(z) is a real EOG. The error e3(n)  is the final output of the cascade filter, that 

is, the clean EEG without artifacts. 

In order to study the filter performance we estimated the normalized area below the 
frequency coherence function and the maximum of temporal cross-correlation normalized 
function between the filtered EEG signals of each stage and the original EEG for the entire 
data base. 
Table 4 shows the results obtained for each record of the database processed by the first 

stage of the propose filter. In this table, it is presented the values of the normalized area of 

frequency coherence function and the normalized maximum of temporal cross-correlation 

between the contaminated signal d1(n) and the error signal e1(n). Those values show that the 

first stage attenuates the line interference.  

 
 

Patient Coherence % 
Cross-

correlation 

1a 0.8690 0.6730 

1b 0.8901 0.6349 

2a 0.9833 0.4724 

2b 0.9507 0.5417 

3 0.9279 0.4044 

4 0.9776 0.3615 

14 0.9807 0.4698 

16 0.9816 0.4452 

32 0.9879 0.8309 

37 0.9881 0.9293 

41 0.9963 0.9857 

45 0.9928 0.7017 

48 0.9983 0.9413 

59 0.9839 0.3970 

60 0.9747 0.2807 

61 0.9663 0.4281 

66 0.9783 0.4213 

67 0.9734 0.5504 

average 0.9667 0.5816 
 

Table 4. Normalized area of frequency coherence function and maximum of temporal cross -

correlation function between the signals d1(n) and e1(n) of the first stage of proposed filter. 

Figure 8 illustrates a temporal segment of 10s of the original EEG record (corresponding to 

Patient 41) and its filtered version after the first stage of adaptive filter. In this figure it can 

be observed that the 50 Hz power line component is significantly filtered.  

Figure 9 shows the PSD function of the same original and filtered EEG signals shown in 

Figure 8. The PSD of the filtered signal shows that the first stage attenuates the line-

frequency artifacts. The H1(z) filter adapts the amplitude and the phase of the artificial 
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sinusoidal signal x1(n) (50Hz) in order to have as output a replica, y1(n), of the line-

frequency artifacts present in the EEG. 

After 50 Hz filtering, the EEG is forwarded to the second stage in order to remove ECG 

artifacts (see Figure 3). 
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Fig. 8. Example of a temporal segment of EEG filtered with stage 1 for patient 41. a) Red: 

Original EEG contaminated with 50 Hz power line interference, d1(n).b) Blue: EEG without 

line interference, e1(n). 
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Fig. 9. Example of first stage of the proposed filter. a) PSD of original EEG with artifacts. b) 

PSD of first stage output e1(n), where the 50 Hz component is attenuated.  
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Table 5 shows the results obtained for each record of the database processed by the second 

stage. In this table, it is presented the values of the normalized area of frequency coherence 

function and the normalized maximum of temporal cross-correlation between the 

contaminated signal d2(n) and the error signal e2(n). Those values show that the second stage 

attenuates QRS complexes artifacts introduced by ECG signal.  

 

 

Patient Coherence 
Cross-

correlation 

1a 0.8528 0.7514 

1b 0.8801 0.5180 

2a 0.9709 0.9467 

2b 0.9946 0.9845 

3 0.9107 0.9460 

4 0.9120 0.7910 

14 0.9276 0.8768 

16 0.9070 0.8757 

32 0.8364 0.3333 

37 0.8550 0.6725 

41 0.8204 0.7826 

45 0.7985 0.7981 

48 0.9096 0.6893 

59 0.9106 0.5431 

60 0.8224 0.3027 

61 0.8979 0.2482 

66 0.8097 0.5319 

67 0.8464 0.8209 

average 0.8342 0.6439
 

Table 5. Normalized area of frequency coherence function and maximum of temporal cross - 
correlation function between the signals d2(n) and e2(n) of the second stage of proposed 
filter. 

Figure 10 shows an example of 10s of EEG signal (corresponding to patient 41) processed by 

the second filter. The contaminated signal d2(n) is shown in red. It could be observed the 

presence and morphology similarity of QRS complexes of the ECG (in green) in the EEG 

record. The output signal y2(n) of H2(z) is drawn in black colour, this signal is an estimation 

of the ECG artifacts present in the EEG. The H2(z) filter adapts the amplitude and the phase 

of the reference signal x2(n) (ECG signal) in order to have as output a replica of the artifacts 

present in the EEG 

After 50 Hz and ECG filtering, the EEG is forwarded to the third stage in order to remove 
EOG artifacts. 
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Fig. 10. Example of a temporal segment of EEG filtered with stage 2 for patient 41. In Red: 

Contaminated EEG, d2(n). In Green: ECG signal. In Black: output signal from H2(z), that is 

y2(n). In Blue: EEG without ECG artifacts, e2(n). 

Table 6 shows the results obtained for five records of the database processed by the third 

stage. In this table, it is presented the values of the normalized area of frequency coherence 

function and the normalized maximum of temporal cross-correlation between the 

contaminated signal d3(n) and the error signal e3(n), which is the final output of the 

proposed filter. As it has been mentioned before only five patients have been filtered with 

the third stage, the rest of them do not have the reference signal x3(n). Those values show 

that this last stage attenuates artifacts introduced by the EOG.  

 

Patient Coherence 
Cross-

correlation 

32 0.9985 0.9907

37 0.9912 0.7949

41 0.9859 0.6052

45 0.9990 0.9500

48 0.9527 0.7943

average 0.9855 0.8270

Table 6. Normalized area of frequency coherence function and maximum of temporal cross - 

correlation function between the signals d3(n) and e3(n) of the third stage of proposed filter.* 

Patient without available EOG signal. 
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Figure 11 shows the same 10s of temporal EEG signal of patient 41. There it can be observed 

all signals of third stage. The contaminated signal d3(n) is drawn in red colour. It can be 

observed the presence and morphology similarity of the EOG signal in the EEG record. The 

output signal y3(n) of H2(z) is in black colour in the figure, this signal is an estimation of the 

EOG signal present in the EEG. The H3(z) filter adapts the amplitude and the phase of the 

reference signal x3(n) (EOG signal) in order to have as output a replica of the EOG artifacts 

present in the EEG. 
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Fig. 11. Example of temporal segment of EEG filtered with stage 3 for patient 41. In Red: 
Contaminated EEG, d3(n). In Green: EOG signal. In Black: output signal from H3(z), that is 
y3(n). In Blue: EEG without EOG artifacts, e3(n). 

Figure 12 show the PSD of the contaminated EEG of third stage, d3(n), of the reference signal 

x3(n),EOG, and of the filtered EEG signals illustrated in Fig. 11. Note that the low 

frequencies of the EOG present in the contaminated EEG are attenuated in the filtered EEG 

signal. 

Figure 13 is shown temporal temporal segments of 10s of EEG. In this figure it could be 

observed the attenuation of line frequency and biological artifacts without losing important 

information of the EEG signal. Results show that the proposed adaptive filter cancels 

correctly the line frequency interference and attenuate very well the biological artifacts 

introduced by the ECG and the EOG. 

6. Discussion and conclusion 

In this chapter, a novel filtering method based on three adaptive filters in cascade has been 

proposed to cancel common artifacts (line interference, ECG and EOG) present in EEG 

signals recorded in PSG studies.  
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Fig. 12. Example of third stage of the proposed filter a) PSD of the contaminated EEG, d3(n), 
b) PSD of the reference signal x3(n),EOG, c) PSD of the filtered EEG signal. 
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Fig. 13. Example of temporal segments of contaminated EEG and EEG filtered with the 
entire cascade for patient 41. In Red: Contaminated EEG, d1(n), In Black: final filtered EEG 
without line interference, ECG and EOG artifacts, e3(n). 

Other methods (like PCA, ICA, BSS or WT) have been described in the bibliography to 
cancel these artifacts in the EEG signals. However, those methods have some restrictions. 
For example, the properties of WT make it has an advantage in processing short-time 
instantaneous signal, but it needs that the frequency range of the EEG signal was not 
overlap with the bandwidth of noise sources and in this case the frequencies bands of the 
ECG and EOG signal are overlap with the frequencies of the EEG. ICA is a developed 
method for transforming an observed multidimensional vector into components that are 
statistically as independent from each other as possible. This method needs that the 
dimension of the signals were larger than that of original signals, and every original signal 
must be non-Gaussian. With more observed signals ICA will get better filtering result, 
which limits the application of this technique in few channels EEG recordings.  
The main advantages of the proposed adaptive filtering method can be summarized as: 
a. The method does not have restrictions about the signal to be filtered. 
b. The implementation of adaptive filtering is very simple and fast and the results can be 

obtained without complex calculations. 
c. The filter coefficients can be adapted to variations in heart frequency, abrupt changes in 

the line frequency (caused, say, by ignition of electric devices) or modifications due to 
eye movements. 

d. At each stage output, the error signals ei(n), EEG with one of the three attenuated 
artifacts are present; such separation (by artifacts) may be useful in some applications 
where such output might be enough. 

e. The filters have a linear phase response so no phase distortion is made. This is 
particularly important for the analysis of neurological rhythms in EEG signals 
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As soon as the optimal orders of the three filters were determinate, the method was tested in 
18 real EEG records acquired in PSG studies. Figure 13 is a good example of an EEG record 
corrupted by three types of artifacts and its corresponding filtered version. It can be seen 
that all artifacts have been eliminated or attenuated, improving the quality of EEG record. 
The remaining records analyzed in the work had obtained similar results and their filtered 
EEGs don’t have large artifacts. 
It has been concluded that proposed adaptive filtering scheme with the appropriate values 
of order Li, attenuate correctly ECG, EOG and line interference without removing significant 
information embedded in EEG signals registered in PSG studies. Due to the fact that the 
these studies usually have the ECG, EOG and EEG signals, the proposed cascade of 
adaptive filters is very useful and appropriate for the analysis of PSG recordings in sleep 
laboratories. The cascade could be used in others biomedical applications and in BCI 
applications. 
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Adaptive filtering is useful in any application where the signals or the modeled system vary over time. The

configuration of the system and, in particular, the position where the adaptive processor is placed generate

different areas or application fields such as: prediction, system identification and modeling, equalization,

cancellation of interference, etc. which are very important in many disciplines such as control systems,

communications, signal processing, acoustics, voice, sound and image, etc. The book consists of noise and

echo cancellation, medical applications, communications systems and others hardly joined by their

heterogeneity. Each application is a case study with rigor that shows weakness/strength of the method used,

assesses its suitability and suggests new forms and areas of use. The problems are becoming increasingly

complex and applications must be adapted to solve them. The adaptive filters have proven to be useful in

these environments of multiple input/output, variant-time behaviors, and long and complex transfer functions

effectively, but fundamentally they still have to evolve. This book is a demonstration of this and a small

illustration of everything that is to come.
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