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1. Introduction

ACTIVE NOISE CONTROL (ANC) is based on the simple principle of destructive interference
of propagating acoustic waves, (Elliot, 2001). The basic idea was proposed in 1936 (Lueg,
1936), however, real applications were quite limited till recently. Thanks to advancement in
the algorithms for adaptive signal processing and their implementation using digital signal
processors (DSPs); many successful applications of ANC have been reported, the most famous
being noise reduction headsets (Gan & Kuo, 2002; Kuo et al., 2006).
The most popular adaptive algorithm used for ANC applications is the filtered-x least mean
square (FxLMS) algorithm (Kuo & Morgan, 1996) which is a modified version of the LMS
algorithm (Widrow & Stearns, 1985). The FxLMS algorithm is computationally simple,
but its convergence speed is slow. Different ANC algorithms, with improved convergence
properties, have been proposed, viz., 1) lattice-ANC systems (Park & Sommerfeldt, 1996); 2)
infinite impulse response (IIR) filter-based LMS algorithms called filtered-u recursive LMS
(FuRLMS) (Eriksson et al., 1987), and filtered-v algorithms (Crawford & Stewart, 1997);
3) recursive least squares (RLS) based algorithms called filtered-x RLS (FxRLS) (Kuo &
Morgan, 1996) and filtered-x fast-transversal-filter (FxFTF) (Bouchard & Quednau, 2000); and
4) frequency-domain-ANC systems (see (Kuo & Tahernezhadi, 1997) and references there in).
There are the following problems with these approaches: 1) IIR-based structures have inherent
stability problems; 2) other approaches mentioned above increase the computational burden
substantially; and 3) RLS-based ANC systems have numerical instability problems. These
reasons make FxLMS still a good choice for ANC applications, and hence, in this chapter we
describe various concepts and methods using FxLMS algorithm.
The main objective of this chapter is to provide a comprehensive review of adaptive filtering
algorithms developed and employed for ANC systems. We also provide some recent results
for two challenging problems: ANC of impulsive-like noise sources, and mitigating effect of
the uncorrelated disturbances for which a correlated reference signal is not available. We see
that simple modifications and extensions of the existing algorithms and methods improve
robustness of the ANC systems.
The outline of the chapter is as follows. Section 2 details FxLMS algorithm for feedforward
and feedback type ANC systems. It also highlights signal processing issues and open
problems for further research. Section 3 describes development of various adaptive algorithm
for ANC for Impulsive Noise Sources, and Section 4 addresses issue of Mitigating
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Fig. 1. Block diagram of FxLMS algorithm-based single-channel feedforward ANC system.

Uncorrelated Disturbance appearing the error microphone of feedforward ANC system.
Section 5 presents results of Computer Simulations for two case studies discussed in this
chapter, viz., ANC for impulsive sources, and mitigating effect of uncorrelated disturbance.
Section 6 is an An Outlook on Recent ANC Applications and Section 7 gives the Concluding

Remarks.

2. FxLMS algorithm

In this section we give description of FxLMS algorithm for single-channel feedforward and
feedback type ANC systems. Furthermore, a brief review on various signal processing issues,
solved and unsolved, is also detailed.

2.1 Feedforward ANC

The block diagram for a single-channel feedforward ANC system using the FxLMS algorithm
is shown in Fig. 1, where P(z) is primary acoustic path between the reference noise source and
the error microphone. The reference noise signal x(n) is filtered through P(z) and appears as
a primary noise signal at the error microphone. The objective of the adaptive filter W(z) is
to generate an appropriate antinoise signal y(n) propagated by the secondary loudspeaker.
This antinoise signal combines with the primary noise signal to create a zone of silence in
the vicinity of the error microphone. The error microphone measures the residual noise e(n),
which is used by W(z) for its adaptation to minimize the sound pressure at error microphone.
Here Ŝ(z) accounts for the model of the secondary path S(z) between the output y(n) of the
controller and the output e(n) of the error microphone. The filtering of the reference signal
x(n) through Ŝ(z) is demanded by the fact that the output y(n) of the adaptive filter is filtered
through S(z) (Kuo & Morgan, 1996).
Assuming that W(z) is an FIR filter of tap-weight length Lw, the secondary signal y(n) is
expressed as

y(n) = wwwT(n)xxx(n). (1)

where
www(n) = [w0(n), w1(n), · · · , wLw−1(n)]

T (2)

is the tap-weight vector, and

xxx(n) = [x(n), x(n − 1), · · · , x(n − Lw + 1)]T (3)

22 Adaptive Filtering Applications
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Applications of Adaptive Filtering: Recent Advancements in Active Noise Control 3

Fig. 2. Block diagram of FxLMS algorithm-based single-channel feedback ANC systems.

is an Lw–sample vector the reference signal x(n). The residual error signal e(n) is given as

e(n) = d(n)− ys(n) (4)

where d(n) = p(n) ∗ x(n) is the primary disturbance signal, ys(n) = s(n) ∗ y(n) is the
secondary canceling signal, ∗ denotes linear convolution, and p(n) and s(n) are impulse
responses of the primary path P(z) and secondary path S(z), respectively.
Minimizing the mean squared error (MSE) cost function; J(n) = E

{

e2(n)
}

≈ e2(n), where
E{·} is the expectation of quantity inside; the FxLMS update equation for the coefficients of
W(z) is given as

www(n + 1) = www(n) + µwe(n)x̂xxs(n) (5)

where µw is the step size parameter,

x̂xxs(n) = [x̂s(n), x̂s(n − 1), · · · , x̂s(n − Lw + 1)]T (6)

is filtered-reference signal vector being generated as

x̂xxs(n) = ŝ(n) ∗ xxx(n), (7)

where ŝ(n) is impulse response of the secondary path modeling filter Ŝ(z).

2.2 Feedback ANC

The feedforward strategy as described above is widely used in ANC systems, where an
independent reference signal x(n) is available and is well correlated with the primary noise
d(n). Whenever the reference signal related to the primary noise source is unavailable
or several reference signals are in the enclosure, the use of feedforward control becomes
impractical. Under such circumstances, feedback control may be envisaged, in which
measured residual error signals are used to derive the secondary sources. The block diagram
for feedback ANC system is shown in Fig. 2, where v(n) represents a noise source for which
a correlated reference signal is not available. As shown, the feedback ANC system comprises

23Applications of Adaptive Filtering: Recent Advancements in Active Noise Control
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only error microphone and secondary loudspeaker. The output g(n) of the feedback ANC
B(z) passes through S(z) to generate the residual error signal eb(n) as

eb(n) = v(n)− gs(n), (8)

where gs(n) = s(n) ∗ g(n) is the cancelling signal for v(n). The residual error signal eb(n)
is picked by the error microphone and is used in the adaptation of the FxLMS algorithm for
B(z). The reference signal for B(z) is internally generated by filtering g(n) through secondary
path model Ŝ(z) and adding it to the residual error signal eb(n) as

u(n) = eb(n) + ĝs(n) = [v(n)− gs(n)] + ĝs(n), (9)

where ĝs(n) = ŝ(n) ∗ g(n) is the estimate of cancelling signal gs(n). Assuming that the
secondary path is perfectly identified; which can be obtained by using offline (Kuo & Morgan,
1996) and/or online modeling techniques (Akhtar et al., 2005; 2006); ĝs(n) ≈ gs(n), and hence
Eq. (9) simplifies to give estimate of uncorrelated noise source as u(n) → v(n). Using this
internally generated reference signal1, the output g(n) of feedback ANC B(z) is computed as

g(n) = bbbT(n)uuu(n). (10)

where
bbb(n) = [b0(n), b1(n), · · · , bLb−1(n)]

T (11)

is the tap-weight vector for B(z),

uuu(n) = [u(n), u(n − 1), · · · , u(n − Lb + 1)]T (12)

is the corresponding reference signal vector for u(n), and Lb is the tap-weight length of B(z).
Finally the FxLMS algorithm for updating B(z) is given as

bbb(n + 1) = bbb(n) + µbeb(n)ûuus(n) (13)

where µb is the step size parameter for B(z), and filtered-reference signal vector ûuus(n) =
[ûs(n), ûs(n − 1), · · · , ûs(n − Lb + 1)]T is generated as

ûuus(n) = ŝ(n) ∗ uuu(n). (14)

In feedback ANC, hence, the basic idea is to estimate the primary noise v(n), and use it as
a reference signal u(n) for the feedback ANC filter B(z). It is worth mentioning that the
feedforward ANC provides wider control bandwidth within moderate controller gain than
the feedback ANC, whereas feedback ANC gives significant performance for narrowband or
predictable noise sources.

2.3 Review on signal processing challenges

The FxLMS algorithm appears to be very tolerant of errors made in the modeling of S(z) by
the filter Ŝ(z). As shown in (Elliott et. al., 1987; Morgan, 1980), with in the limit of slow

1 This is why FxLMS algorithm for feedback ANC systems is sometimes referred as internal model
control (Kuo & Morgan, 1996)
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Applications of Adaptive Filtering: Recent Advancements in Active Noise Control 5

adaptation, the algorithm will converge with nearly 90◦ of phase error between Ŝ(z) and S(z).
Therefore, offline modeling can be used to estimate S(z) during an initial training stage for
ANC applications (Kuo & Morgan, 1999). For some applications, however, the secondary
path may be time varying, and it is desirable to estimate the secondary path online when the
ANC is in operation (Saito & Sone, 1996).
There are two different approaches for online secondary path modeling. The first approach,
involving the injection of additional random noise into the ANC system, utilizes a system
identification method to model the secondary path. The second approach attempts to model
it from the output of the ANC controller, thus avoiding the injection of additional random
noise into the ANC system. A detailed comparison of these two online modeling approaches
can be found in (Bao et al., 1993a), which concludes that the first approach is superior to
the second approach on convergence rate, speed of response to changes of primary noise,
updating duration, computational complexities, etc.
The basic additive random noise technique for online secondary path modeling in ANC
systems is proposed by (Eriksson & Allie, 1989). This ANC system comprises two adaptive
filters; FxLMS algorithm based noise control filter W(z), and LMS algorithm based secondary
path modeling filter Ŝ(z). Improvements in the Eriksson’s method have been proposed
in (Bao et al., 1993b; Kuo & Vijayan, 1997; Zhang et al., 2001). These improved methods
introduce another adaptive filter into the ANC system of (Eriksson & Allie, 1989), which
results in increased computational complexity. The methods proposed in (Akhtar et al., 2005;
2006) suggest modifications to Eriksson’s method such that improved performance is realized
without introducing a third adaptive filter. The development of robust and efficient online
secondary path modeling algorithm, without requiring additive random noise, is critical and
demands further research.
The feedforward ANC system shown in Fig. 1 uses the reference microphone to pick up the
reference noise x(n), processes this input with an adaptive filter to generate an antinoise y(n)
to cancel primary noise acoustically in the duct, and uses an error microphone to measure
the error e(n) and to update the adaptive filter coefficients. Unfortunately, a loudspeaker on
a duct wall will generate the antinoise signal propagating both upstream and downstream.
Therefore, the antinoise output to the loudspeaker not only cancels noise downstream,
but also radiates upstream to the reference microphone, resulting in a corrupted reference
signal x(n). This coupling of acoustic waves from secondary loudspeaker to the reference
microphone is called acoustic feedback. One simple approach to neutralize the effect of acoustic
feedback is to use a separate feedback path modeling filter with in the controller. This electrical
model of the feedback path is driven by the antinoise signal, y(n), and its output is subtracted
from the reference sensor signal, x(n). The feedback path modeling filter may be obtained
offline prior to the operation of ANC system when the reference noise x(n) does not exist.
In many practical cases, however, x(n) always exists, and feedback may be time varying as
well. For these cases, online modeling of feedback path is needed to ensure the convergence
and stability of the FxLMS algorithm for ANC systems. For a detailed review on existing
signal processing methods and various other techniques for feedback neutralization in ANC
systems, the reader is referred to (Akhtar et al., 2007) and references there in.
In the case of narrowband noise sources with signal energy being concentrated at a few
representative harmonics, the reference microphone in Fig. 1 can be replaced with a
non–acoustic sensor, e.g., a tachometer in the case rotating machines. The output from
non–acoustic sensor is used to internally generate the reference signal, which may be an
impulse train with a period equal to the inverse of the fundamental frequency of periodic
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Fig. 3. The PDFs of standard symmetric α-stable (SαS) process for various values of α.

noise, or sinusoids that have the same frequencies as the corresponding harmonic components
(Kuo & Morgan, 1996). Essentially, a narrowband ANC system would assume the reference
signal x(n) has the same frequency as the primary noise d(n) at the error microphone. In
many practical situations, the reference sinusoidal frequencies used by the adaptive filter may
be different than the actual frequencies of primary noise. This difference is referred to as
frequency mismatch (FM), and will degrades the performance of ANC systems. The effects
of FM and solution to the problems have been recently studied in (Jeon et al., 2010; Kuo &
Puvvala, 2006; Xiao et al., 2005; 2006).
Another signal processing challenge is ANC for sources with nonlinear behavior. It has been
demonstrated that the FxLMS algorithm gives very poor performance in the case of nonlinear
processes (Strauch & Mulgrew, 1998). For efficient algorithms for ANC of non linear source,
see (Reddy et al., 2008) and references there in.
In many practical situations, it is desirable to shift the quiet zone away from the location of
error microphones to a virtual location where error microphone cannot be installed (Bonito
et al., 1997). One interesting example is recently investigated snore ANC system, where
headboard of bed is mounted with loudspeakers and microphones (Kuo et al., 2008). In this
case, the error microphone cannot be placed at the ears of the bed partner, where maximum
cancellation is required, and hence an efficient virtual sensing technique is required to
improve the noise reduction around ears using error microphones installed on the headboard.
There has been a very little research on active control of moving noise sources. It is obvious
that acoustic paths will be highly time varying in such cases, and hence the optimal solution
for ANC would also vary when the positions of primary noise source change (Guo & Pan,
2000). The behavior of adaptive filters for ANC of moving noise sources is studied in (Omoto
et al., 2002), and further researcher is needed to investigate the effects of time varying paths
and developing efficient control algorithms that can cope with the Doppler effects.
In the following sections we discuss challenging task of ANC for impulsive noise sources, and
mitigating effect of uncorrelated disturbance. We demonstrate that proposed algorithms and
methods can greatly improve the convergence and performance of ANC systems for these
tasks.

26 Adaptive Filtering Applications
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Applications of Adaptive Filtering: Recent Advancements in Active Noise Control 7

3. ANC for impulsive noise sources

There are many important ANC applications that involve impulsive noise sources (Kuo et al.,
2010). In practice, the impulsive noises are often due to the occurrence of noise disturbance
with low probability but large amplitude. There has been a very little research on active
control of impulsive noise, at least up to the best knowledge of authors. In practice the
impulsive noises do exist and it is of great meaning to study its control.
An impulsive noise can be modeled by stable non-Gaussian distribution (Nikias, 1995; Shao
& Nikias, 1993). We consider impulse noise with symmetric α-stable (SαS) distribution f (x)
having characteristic function of the form (Shao & Nikias, 1993)

ϕ(t) = ejat−γ|t|α (15)

where 0 < α < 2 is the characteristics exponent, γ > 0 is the scale parameter called
as dispersion, and a is the location parameter. The characteristics exponent α is a shape
parameter, and it measures the “thickness” of the tails of the density function. If a stable
random variable has a small value for α, then distribution has a very heavy tail, i.e., it is more
likely to observe values of random variable which are far from its central location. For α = 2
the relevant stable distribution is Gaussian, and for α = 1 it is the Cauchy distribution. An
SαS distribution is called standard if γ = 1, a = 0. In this paper, we consider ANC of impulsive
noise with standard SαS distribution, i.e., 0 < α < 2, γ = 1, and a = 0. The PDFs of standard
SαS process for various values of α are shown in Fig. 3. It is evident that for small value of α,
the process has a peaky and heavy tailed distribution.
In order to improve the robustness of adaptive algorithms for processes having PDFs with
heavy tails (i.e. signals with outliers), one of the following solution may be adopted:

1. A robust optimization criterion may be used to derive the adaptive algorithm.

2. The large amplitude samples may be ignored.

3. The large amplitude samples may be replaced by an appropriate threshold value.

The existing algorithms for ANC of impulsive noise are based on the first two approaches. In
the proposed algorithms, we consider combining these approaches as well as borrow concept
of the normalized step size, as explained later in this section. The discussion presented is with
respect to feedforward ANC of Fig. 1, where noise source is assumed to be of impulse type.
It is important to note that the feedback type ANC works as a predictor and hence cannot be
employed for such types of sources.

3.1 Variants of FxLMS algorithm

Consider feedforward ANC system of Fig. 1, where we assume that noise source is impulsive
and follows SαS distribution as explained earlier. The reference signal vector; used in the
update equation of the FxLMS algorithm and in generating the cancelling signal y(n); is given
in Eq. (3) which shows that the samples of the reference signal x(n) at different time are treated
“equally”. It may cause the FxLMS algorithm to become unstable in the presence of impulsive
noise. To overcome this problem, a simple modification to FxLMS algorithm is proposed in
(Sun et al., 2006). In this algorithm, hereafter referred as Sun’s algorithm, the samples of
the reference signal x(n) are ignored, if their magnitude is above a certain threshold set by

27Applications of Adaptive Filtering: Recent Advancements in Active Noise Control
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statistics of the signal (Sun et al., 2006). Thus the reference signal is modified as

x′(n) =

{

x(n), if x(n) ∈ [c1, c2]
0, otherwise

(16)

Here, the thresholding parameters c1 and c2 can be obtained offline for ANC systems. A few
comments on choosing these parameters are given later. Thus Sun’s algorithm for ANC of
impulsive noise is given as (Sun et al., 2006)

www(n + 1) = www(n) + µwe(n)x̂xx′s(n), (17)

where x̂xx′s(n) = [x̂′s(n), x̂′s(n − 1), · · · , x̂′s(n − Lw + 1)]T is generated as

x̂xx′s(n) = ŝ(n) ∗ xxx′(n), (18)

where
xxx′(n) = [x′(n), x′(n − 1), · · · , x′(n − Lw + 1)]T (19)

is a modified reference signal vector with x′(n) being obtained using Eq. (16). The main
advantage is that the computational complexity of this algorithm is same as that of the FxLMS
algorithm.
In our experience, however, Sun’s algorithm becomes unstable for α < 1.5, when the PDF
is peaky and the reference noise is highly impulsive. Furthermore, the convergence speed
of this algorithm is very slow. The main problem is that ignoring the peaky samples in the
update of FxLMS algorithm does not mean that these samples will not appear in the residual
error e(n). The residual error may still be peaky, and in the worst case the algorithm may
become unstable. In order to improve the stability of the Sun’s algorithm, the idea of Eq. (16)
is extended to the error signal e(n) as well, and a new error signal is obtained as (Akhtar &
Mitsuhashi, 2009a)

e′(n) =

{

e(n), if e(n) ∈ [c1, c2]
0, otherwise

(20)

Effectively, the idea is to freeze the adaptation of W(z) when a large amplitude is detected in
the error signal e(n). Thus modified-Sun’s algorithm for ANC of impulse noise is proposed as

www(n + 1) = www(n) + µwe′(n)x̂xx′s(n). (21)

In order to further improve the robustness of the Sun’s algorithm; instead of ignoring the large
amplitude sample; we may clip the sample by a threshold value, and thus the reference signal
is modified as

x′′(n) =

⎧

⎨

⎩

c1, x(n) ≤ c1

c2, x(n) ≥ c2

x(n), otherwise
(22)

As stated earlier, ignoring (or even clipping) the peaky samples in the update of FxLMS
algorithm does not mean that peaky samples will not appear in the residual error e(n). The
residual error may still be so peaky, that in the worst case might cause ANC to become
unstable. We extend the idea of Eq. (22) to the error signal e(n) as well, and a new error

28 Adaptive Filtering Applications
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signal is obtained as

e′′(n) =

⎧

⎨

⎩

c1, e(n) ≤ c1

c2, e(n) ≥ c2

e(n), otherwise
, (23)

and hence proposed modified FxLMS (MFxLMS) algorithm for ANC of impulsive noise
sources is as given below

www(n + 1) = www(n) + µwe′′(n)x̂xx′′s (n), (24)

where x̂xx′′s (n) = [x̂′′s (n), x̂′′s (n − 1), · · · , x̂′′s (n − Lw + 1)]T is generated as

x̂xx′′s (n) = ŝ(n) ∗ xxx′′(n), (25)

where
xxx′′(n) = [x′′(n), x′′(n − 1), · · · , x′′(n − Lw + 1)]T (26)

is a modified reference signal vector with x′′(n) being obtained using Eq. (22).
It is worth mentioning that all algorithms discussed so far; Sun’s algorithm (Sun et al., 2006)
and its variants; require an appropriate selection of the thresholding parameters [c1, c2]. As
stated earlier, the basic idea of Sun’s algorithm is to ignore the samples of the reference signal
x(n) beyond certain threshold [c1, c2] set by the statistics of the signal (Sun et al., 2006). Here
the probability of the sample less than c1 or larger than c2 are assumed to be 0, which is
consistent with the fact that the tail of PDF for practical noise always tends to 0 when the
noise value is approaching ±∞. Effectively, Sun’s algorithm assumes the same PDF for x′(n)
(see Eq. (16)) with in [c1, c2] as that of x(n), and neglects the tail beyond [c1, c2]. The stability
of Sun’s algorithms depends heavily on appropriate choice of [c1, c2]. We have extended this
idea, that instead of ignoring, the peaky samples are replaced by the thresholding values c1

and c2. Effectively, this algorithm adds a saturation nonlinearity in the reference and error
signal paths. Thus, the performance of this algorithm also depends on the parameters c1 and
c2.
In order to overcome this difficulty of choosing appropriate thresholding parameters, we
propose an FxLMS algorithm that does not use modified reference and/or error signals, and
hence does not require selection of the thresholding parameters [c1, c2]. Following the concept
of normalized LMS (NLMS) algorithm (Douglas, 1994), the normalized FxLMS (NFxLMS) can
be given as

www(n + 1) = www(n) + µ(n)e(n)x̂xxs(n), (27)

where normalized time-varying step size parameter µ(n) is computed as

µ(n) =
µ̃

‖x̂xxs(n)‖2
2 + δ

(28)

where µ̃ is fixed step size parameter, ‖x̂xxs(n)‖2 is l2-norm of the filtered-reference signal vector
that can be computed from current available data, and δ is small positive number added to
avoid division by zero. When the reference signal has a large peak, its energy would increase,
and this would in turn decrease the effective step size of NFxLMS algorithm. As stated earlier,
the error signal is also peaky in nature and its effect must also be taken into account. We

29Applications of Adaptive Filtering: Recent Advancements in Active Noise Control
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propose following modified normalized step size for FxLMS algorithm of Eq. (27)

µ(n) =
µ̃

‖x̂xxs(n)‖2
2 + Ee(n) + δ

(29)

where Ee(n) is energy of the residual error signal e(n) that can be estimated online using a
lowpass estimator as

Ee(n) = λEe(n − 1) + (1 − λ)e2(n), (30)

where λ is the forgetting factor (0.9 < λ < 1). It is worth mentioning that the proposed
modified normalized FxLMS (MNFxLMS) algorithm, comprising Eqs. (27), (29) and (30), does
not require estimation of thresholding parameters [c1, c2].

3.2 FxLMP Algorithm and proposed modifications

For stable distributions, the moments only exist for the order less than the characteristic
exponent (Shao & Nikias, 1993), and hence the MSE criterion which is bases for FxLMS
algorithm, is not an adequate optimization criterion. In (Leahy et al., 1995), the filtered-x
least mean p-power (FxLMP) algorithm has been proposed, which is based on minimizing a
fractional lower order moment (p-power of error) that does exist for stable distributions. For
some 0 < p < α, minimizing the pth moment J(n) = E {|e(n)|p} ≈ |e(n)|p, the stochastic
gradient method to update W(z) is given as (Leahy et al., 1995)

www(n + 1) = www(n) + µw p(e(n))<p−1>x̂xxs(n), (31)

where the operation (z)<a> is defined as

(z)<a> ≡ |z|asgn(z), (32)

where sgn(z) is sign function being defined as

sgn(z) =

⎧

⎨

⎩

1, z > 0
0, z = 0

−1, z < 0
(33)

It has been shown that FxLMP algorithm with p < α shows good robustness to ANC of
impulsive noise. Our objective in this contribution is to improve the convergence performance
of the FxLMP algorithm proposed in (Leahy et al., 1995). Based on our extensive simulation
studies, we propose two modified versions of the FxLMP algorithm.
The first proposed algorithm attempts to improve the robustness of FxLMP algorithm by
using the modified reference and error signals as given in Eqs. (22) and (23), respectively.
Thus considering the FxLMP algorithm (Leahy et al., 1995) given in Eq. (31), a modified
FxLMP (MFxLMP) algorithm for ANC of impulse noise is given as2

w(n + 1) = w(n) + µw p(e′′(n))<p−1>xxx′′s (n). (34)

As done with the FxLMS algorithm, the second modification is based on normalizing the
step size parameter and hence, it avoids selection of the thresholding parameters [c1, c2]. In

2 Some preliminary results regarding this algorithm were presented at IEEE ICASSP 2009 (Akhtar &
Mituhahsi, 2009b).
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Fig. 4. Block diagram of FxLMS algorithm based single-channel feedforward ANC systems
in the presence of uncorrelated disturbance v(n) at the error microphone.

(Aydin et al., 1999), the concept of NLMS algorithm (Douglas, 1994) has been extended to
LMP algorithm and a normalized LMP (NLMP) algorithm has been proposed where step
size is normalized by the energy of reference signal vector. By extending this idea to FxLMP
algorithm (Leahy et al., 1995), the normalized FxLMP (NFxLMP) can be given as

www(n + 1) = www(n) + µ(n)p(e(n))<p−1>x̂xxs(n), (35)

where normalized time-varying step size parameter µ(n) is computed as

µ(n) =
µ̃

‖x̂xxs(n)‖
p
p + δ

, (36)

where ‖x̂xxs(n)‖p is pth norm computed from current filtered-reference signal vector. Since the
error signal e(n) is also peaky in nature and its effect must also be taken into account, we
propose following modified normalized step size for FxLMP algorithm of Eq. (35):

µ(n) =
µ̃

‖x̂xxs(n)‖
p
p + Ee(n) + δ

, (37)

where Ee(n) is energy of the residual error signal e(n). Thus a modified normalized FxLMP
(MNFxLMP) algorithm is suggested comprising Eqs. (35), (37) and (30).
In this section we have suggested ad hoc modifications to the existing adaptive algorithms
for ANC of impulsive noise. The simulation results presented later in Section 5.1 demonstrate
that these modifications greatly improve robustness of ANC system for the impulsive noise
sources.

4. Mitigating uncorrelated disturbance

The FxLMS algorithm is widely used in ANC systems, however performance of the FxLMS
algorithm in steady state will be degraded due to presence of an uncorrelated disturbance
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at the error microphone, shown as v(n) in Fig. 4. This situation arises in many real-world
applications. For example, in electronic mufflers for automobiles (Kuo & Gan, 2004),
the undesired disturbance such as the noises generated by other passing-by automobiles
will affect the stability and performance of the ANC systems. In industrial installations,
neighboring machinery near to the location of error microphone may generate uncorrelated
disturbance. In the presence of uncorrelated disturbance, v(n), the error signal picked-up by
the error microphone is given as

eo(n) = e(n) + v(n) = [d(n)− ys(n)] + v(n), (38)

and hence, the update equation for FxLMS algorithm for W(z) can be written as

www(n + 1) = www(n) + µwe(n)x̂xxs(n) + µwv(n)x̂xxs(n). (39)

It is evident that the adaptation is perturbed by the uncorrelated noise component v(n), and
as shown in (Sun & Kuo, 2007), the steady-state performance of the FxLMS algorithm will
be degraded significantly. Furthermore, v(n) appearing uncontrolled at the error microphone
degrades the noise reduction performance of the ANC system.
Up to the best knowledge of Authors, a little research has been done to cope with the
uncorrelated disturbance problem. In (Kuo & Ji, 1996), an adaptive algorithm consisting of
two interconnected adaptive notch filters is proposed to reduce the disturbance problem.
However, this algorithm is effective only for narrowband, single-frequency ANC systems.
In (Sun & Kuo, 2007), this algorithm has been generalized to multifrequency narrowband
feedforward ANC systems using a single high-order adaptive filter, and a cascaded ANC
system is proposed. This method improves the convergence of the FxLMS algorithm,
however, cannot mitigate the effect of the uncorrelated disturbance v(n) from the residual
noise e(n). One solution to this problem of uncorrelated disturbance is offered by a hybrid
ANC comprising feedforward and feedback control strategies (Esmailzadeh et al., 2002). The
feedforward ANC attenuates the primary noise that is correlated with the reference signal,
whereas the feedback ANC takes care of the narrowband components of noise that are not
observed by the reference sensor. We observe that the performance of the hybrid ANC system
degrades in certain situations, as explained later in this section.

4.1 Existing solutions for uncorrelated disturbance

The main idea of cascading ANC system (Sun & Kuo, 2007) is to update the adaptive filter
W(z) using estimate of the desired error signal e(n) instead of using a disturbed error signal
eo(n). The block diagram of cascading ANC system is shown in Fig. 5, where the adaptive
filter H(z) is introduced to estimate the desired error signal e(n).
It is evident that H(z) is excited by the reference signal x(n), and the error signal eo(n) is used
as a desired response for its adaptation. Thus output of H(z), yh(n), converges to that part in
eo(n) which is correlated with x(n). From Eqs. (1), (3), and (4), it is clear that in eo(n) given
in Eq. (38), e(n) = [d(n)− ys(n)] is correlated with x(n) and v(n) is the uncorrelated part.
Hence, when H(z) converges, its output converges to yh(n) ≈ e(n) = [d(n)− ys(n)], which is
the desired error signal for the adaptation of W(z). Thus FxLMS algorithm for this cascading
ANC is given as

www(n + 1) = www(n) + µwyh(n)x̂xxs(n). (40)
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Fig. 5. Block diagram of the cascading ANC system for improving adaptation of FxLMS
algorithm in the presence of uncorrelated disturbance v(n) (Sun & Kuo, 2007).

Since a disturbance free error signal is used, cascading ANC improves the convergence of the
FxLMS algorithm. However, it cannot mitigate effect of the uncorrelated disturbance v(n)
from the residual noise eo(n).
One solution for ANC of correlated and uncorrelated disturbances would be to consider a
hybrid ANC system comprising feedforward ANC W(z) and feedback ANC B(z) as shown
in Fig. 6 (Kuo & Morgan, 1996). We assume that the two noise sources are independent from
each other, and thus the primary disturbances d(n) and v(n) are uncorrelated with each other.
The reference signal x(n) from the reference microphone is correlated with d(n) and is input
to feedforward ANC W(z). The total cancelling signal is sum of outputs of W(z) and B(z) and
is passed through S(z) to generate the residual error signal eo(n) as

eo(n) = [d(n)− ys(n)] + [v(n)− gs(n)]. (41)

This error signal is used in the FxLMS algorithm for both W(z) and B(z). Comparing eo(n)
in Eq. (41) with e(n) in Eq. (4) and with eb(n) in Eq. (8), we see that eo(n) comprises two
components. The first component is required for the adaptation of feedforward ANC W(z)
and acts as a disturbance for feedback ANC B(z). The second component plays exactly the
reverse role, i.e., a disturbance for W(z) and desired error signal for adaptation of B(z).
The reference signal for W(z), x(n), is given by the reference microphone, and the reference
signal for B(z), u(n), is internally generated as

u(n) = eo(n) + ŷs(n) + ĝs(n)

= [d(n)− ys(n) + ŷs(n)] + [v(n)− gs(n) + ĝs(n)]

≈ d̂(n) + v̂(n). (42)
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Fig. 6. Block diagram of conventional hybrid ANC system with combination of feedforward
ANC W(z) and feedback ANC B(z).

Thus the reference signal u(n) comprises two parts; estimates of disturbances d(n) and
v(n). Since objective of the feedback ANC B(z) is to cancel only uncorrelated primary
noise v(n), the presence of d̂(n) (which may be broadband and unpredictable in general)
gives a corrupted reference signal for B(z). Thus, both W(z) and B(z) are adapted using
inappropriate error signals and may converge slowly. Furthermore, B(z) is excited by a
corrupted reference signal and might not converge at all, making whole ANC system unstable.
From above discussion, we conclude that

• the cascading ANC (Sun & Kuo, 2007) improves the convergence of the FxLMS algorithm,
however, it cannot remove the effect of the uncorrelated disturbance from the residual
noise, and that

• the conventional hybrid ANC (Kuo & Morgan, 1996) can provide control over correlated
and uncorrelated noise sources, however, its performance might be poor, as ANC filters
are using inappropriate error and/or reference signals.

In order to solve these limitations of the existing methods, a modified hybrid ANC is
developed as explained in the next section.

4.2 Modified hybrid ANC System

The block diagram of modified hybrid ANC system is shown in Fig. 7 (Akhtar & Mituhahsi,
2011), and as shown, this method comprises three adaptive filters: 1) a feedforward ANC filter
W(z) to cancel the primary noise d(n), 2) a feedback ANC filter B(z) to cancel the uncorrelated
disturbance v(n), and 3) a supporting filter H(z). The W(z) is excited by the reference signal
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Fig. 7. Block diagram of a modified hybrid ANC system for controlling correlated and
uncorrelated noise sources.

x(n), and the B(z) is excited by an internally generated reference signal u(n). Both ANC filters
W(z) and B(z) are adapted by FxLMS algorithms.
The residual error signal eo(n) is given in Eq. (41) and as explained earlier, the first term is
desired error signal for the adaptation of W(z) and second term is desired error signal for B(z).
To achieve cancellation [ideally eo(n) = 0], W(z) needs to be excited by the input correlated
with d(n) [the reference signal x(n) is indeed that input], and B(z) needs to be excited by
the input correlated with v(n) [such input is not available directly and needs to be generated
internally].
As shown in Fig. 7, the third adaptive filter H(z) is excited by the reference signal x(n), and
its output, yh(n), is given as

yh(n) = hhhT(n)xxx(n), (43)

where hhh(n) is the tap-weight vector for H(z). The residual error signal eo(n) given in Eq.
(41), is used as a desired response, and the error signal for LMS equation of H(z), eh(n), is
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computed as

eh(n) = eo(n)− yh(n) (44)

= [d(n)− ys(n)] + [v(n)− gs(n)]− yh(n),

and H(z) is adapted using LMS algorithm as

hhh(n + 1) = hhh(n) + µheh(n)xxx(n), (45)

where µh is the step size for H(z). Since H(z) is excited by x(n), minimizing the error signal
eh(n) means that the output of H(z), yh(n), would converge to that part in Eq. (44) which is
correlated with x(n), thus

yh(n) → [d(n)− ys(n)], (46)

and hence eh(n) would converge to the remaining uncorrelated part

eh(n) → [v(n)− gs(n)]. (47)

Comparing Eq. (46) with Eq. (4), we see that that yh(n) can be used as an error signal for
adaptation of W(z), and hence FxLMS algorithm for W(z) is given as

www(n + 1) = www(n) + µwyh(n)x̂xxs(n) (48)

and similarly, comparing Eq. (47) with Eq. (8), we observe that eh(n) can be used as an error
signal for feedback ANC filter B(z), and corresponding FxLMS algorithm for B(z) is thus
given as

bbb(n + 1) = bbb(n) + µbeh(n)ûuus(n) (49)

where ûuus(n) = ŝ(n) ∗ uuu(n), and the reference signal u(n) is generated as

u(n) = eh(n) + ĝs(n)

≈ [v(n)− gs(n)] + ĝs(n)

→ v̂(n). (50)

Comparing Eq. (50) with Eq. (42), we see that the input u(n) for feedback ANC filter B(z) in
the modified hybrid ANC of Fig. 7 is equal to estimate of only uncorrelated noise source v(n).
A comparison between the modified hybrid ANC and existing approaches is as given below:

• The modified hybrid ANC provides control over both correlated and uncorrelated
disturbances, where as cascading ANC of (Sun & Kuo, 2007) can only improve the
convergence of W(z), but cannot reduce the uncorrelated disturbance.

• In modified hybrid ANC, role of H(z) is partly same as that in Sun’s method. It
generates desired error signal for adaptation of W(z) to provide cancellation for correlated
disturbance signal d(n). Furthermore, it is used to generate appropriate signals for
adaptation of B(z) to cancel uncorrelated disturbance v(n). Therefore, as compared with
the conventional hybrid ANC, proposed structure results in generating appropriate signals
for two adaptive filter, and hence, an improved convergence and residual noise reduction
is expected.

• The modified hybrid ANC comprises three adaptive filters and its computational
complexity is higher than the existing approaches. This increased computational
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Fig. 8. Frequency response of the primary path P(z) and secondary path S(z). (a) Magnitude
response and (b) phase response.

complexity may be considered as the price paid for improved performance. In fact,
the simulation results presented in Section 5.2 demonstrate that modified hybrid ANC
achieves the performance which is not possible with neither cascading ANC nor
conventional hybrid ANC working alone.

5. Computer simulations

In this section results of computer simulation are presented for two case studies discussed in
this chapter, viz., ANC for impulsive noise sources, and mitigating uncorrelated disturbance.
The acoustic paths are modeled using data provided in the disk attached with (Kuo &
Morgan, 1996). Using this data P(z) and S(z) are modeled as FIR filter of length 256 and
128 respectively. The characteristics of the acoustic paths are shown in Fig. 8. It is assumed
that the secondary path modeling filter Ŝ(z) is exactly identified as S(z).

5.1 ANC for impulsive noise sources

The simulation setup is same as shown in Fig. 1, where noise source is assumed to be
impulsive and the ANC filter W(z) is selected as an FIR filter of tap-weight length Lw = 192.
The performance comparison is done on the basis of mean noise reduction (MNR), being
defined as

MNR(n) = E

{

Ae(n)

Ad(n)

}

, (51)

where E{·} denotes expectation or ensemble averaging of quantity inside, and Ae(n) and
Ad(n) are estimates of absolute values of residual error signal e(n) and disturbance signal
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Fig. 9. Mean noise reduction (MNR) curves for various algorithms for ANC of impulsive
noise with α = 1.45. (a) FxLMS algorithm, (b) FxLMP algorithm, (c) Sun’s algorithm, (d)
Modified-Sun’s algorithm, (e) MFxLMS algorithm, (f) MFxLMP algorithm, (g) MNFxLMS
algorithm, and (h) MNFxLMP algorithm.

d(n), respectively, at the location of error microphone. These estimates are obtained using
lowpass estimators as

Ar(n) = λAr(n − 1) + (1 − λ)|r(n)| (52)

where | · | is the absolute value of quantity, and λ is same as defined in Eq. (30).
The reference noise signal x(n) is modeled by standard SαS process with α = 1.45 (which
corresponds to a very peaky distribution more toward Cauchy distribution), and α =
1.65 (corresponding to distribution towards Gaussian distribution). All simulation results
presented below are averaged over 25 realization of the process. Extensive simulations are
carried out to find appropriate values for the thresholding parameters [c1, c2], and are selected
as: [0.01, 99.99] for Sun’s algorithm in Eq. (17), [0.5, 99.5] for modified-Sun’s algorithm in
Eq. (21), and [1,99] for MFxLMS algorithm in Eq. (24). The detailed simulation results
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Fig. 10. Mean noise reduction (MNR) curves for various algorithms for ANC of impulsive
noise with α = 1.65. (a) FxLMS algorithm, (b) FxLMP algorithm, (c) Sun’s algorithm, (d)
Modified-Sun’s algorithm, (e) MFxLMS algorithm, (f) MFxLMP algorithm, (g) MNFxLMS
algorithm, and (h) MNFxLMP algorithm.

for two cases are given in Figs. 9 and 10, respectively, where the objective is to study the
effect of step size parameter. It is seen that, the FxLMS algorithm is not able to provide
ANC for impulsive noise, even for a very small step size. Furthermore, in comparison
with the Authors’ algorithms, the performance of Sun’s algorithm and FxLMP algorithm
is very poor. On the basis of best results for the respective algorithms, the performance
comparison for two cases is shown in Figs. 11 and 12, respectively. These results show
that the proposed algorithms outperform the existing algorithms and, among the algorithms
discussed in Section 3, appears as a best choice for ANC of SαS impulsive noise.
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Fig. 11. Performance comparison between various algorithms for ANC of impulsive noise
with α = 1.45. (a) FxLMS algorithm (µ = 1 × 10−7), (b) FxLMP algorithm (µ = 1 × 10−7), (c)
Sun’s algorithm (µ = 1 × 10−7), (d) Modified-Sun’s algorithm (µ = 1 × 10−5), (e) MFxLMS
algorithm (µ = 1 × 10−5, (f) MFxLMP algorithm (µ = 1 × 10−5, (g) MNFxLMS algorithm
(µ̃ = 1 × 10−3), and (h) MNFxLMP algorithm (µ̃ = 5 × 10−3).
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Fig. 12. Performance comparison between various algorithms for ANC of impulsive noise
with α = 1.65. (a) FxLMS algorithm (µ = 1 × 10−7), (b) FxLMP algorithm (µ = 1 × 10−6), (c)
Sun’s algorithm (µ = 1 × 10−6), (d) Modified-Sun’s algorithm (µ = 1 × 10−5), (e) MFxLMS
algorithm (µ = 1 × 10−5, (f) MFxLMP algorithm (µ = 1 × 10−5, (g) MNFxLMS algorithm
(µ̃ = 1 × 10−3), and (h) MNFxLMP algorithm (µ̃ = 2.5 × 10−3).
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Fig. 13. Simulation results for mitigating uncorrelated disturbance v(n). (a) Feedforward
ANC without uncorrelated disturbance v(n). (b) Feedforward ANC in the presence of
uncorrelated disturbance v(n). (c) Norm of weight vector, ‖www(n)‖, at steady state.

5.2 Mitigating uncorrelated disturbance

In this section we present simulation results for various methods studied for mitigating
uncorrelated disturbances. Essentially, we consider following methods in our study:

1. feedforward ANC shown in Fig. 4,

2. cascading ANC system of Fig. 5,

3. conventional hybrid ANC of Fig. 6, and

4. modified hybrid ANC of Fig. 7.

The noise source x(n) is assumed as a unit variance narrowband signal composed of three
sinusoids with frequencies of 165, 290, and 410 Hz. A white noise with variance 0.001
is added to count for measurement noise at the reference microphone. The uncorrelated
disturbance v(n) is another unit variance narrowband signal comprising three sinusoids with
frequencies of 250, 350, and 500 Hz, and a white noise with variance 0.001 is added to count for
measurement noise at the error microphone. The sampling frequency is 4 kHz, and the results
shown are average of 10 realizations. The adaptive filters W(z), B(z), and H(z) are selected
as FIR filters of tap-weight lengths 192, 192, and 32, respectively. All adaptive filters are
initialized by null vectors of an appropriate order. The step sizes are selected experimentally,
such that fast and stable performance is obtained and are adjusted as, feedforward ANC:
µw = 1 × 10−5, cascading ANC: µw = 1 × 10−5, µh = 1 × 10−3, conventional hybrid ANC:
µw = 1 × 10−5, µb = 1 × 10−6, and modified hybrid ANC: µw = 1 × 10−5, µb = 1 × 10−5,
µh = 5 × 10−3.
The effect of the uncorrelated disturbance v(n), on the performance of feedforward ANC
of Fig. 4, is studied in Fig. 13. We see that feedforward ANC cannot control the
uncorrelated disturbance v(n) appearing at the error microphone, and hence, its noise
reduction performance is degraded, as indicated by increased level of residuals noise e(n) (Fig.
13 (a) and (b)). Furthermore, the uncorrelated disturbance disturbs the convergence of ANC
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Fig. 14. Simulation results for mitigating uncorrelated disturbance v(n). (a) Convergence of
norm of tap-weights for ANC filter W(z), ‖www(n)‖. (b) Zoomed curves for region marked by
dashed ellipse in (a).

filter, as shown in Fig. 13 (c). Our objective is to improve the noise reduction performance and
have stable steady state convergence of tap-weights.
The adaptation of adaptive filter W(z), in terms of ‖www(n)‖, which is Euclidean norm of weight
vector www(n), is shown in Fig. 14(a). An enlarged view of curves in steady state is shown in Fig.
14(b). We see that the modified hybrid ANC can provide control over the uncorrelated noise
source v(n), and hence can remove its effect from the convergence of W(z). In fact, the steady
state solution achieved by the modified hybrid ANC is close to that obtained by feedforward
ANC without uncorrelated disturbance. We see that, this is a far better performance as
compared with the conventional hybrid ANC.
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Fig. 15. Simulation results for mitigating uncorrelated disturbance v(n). (a) Curves for mean
squared error (MSE) for various methods. (b) Magnitude spectrum of residual error signal
e(n) at steady-state for various methods in comparison with the magnitude spectrum of
primary disturbance d(n).

The noise reduction performance, in terms of MSE, for various methods is shown in Fig. 15(a).
We see that the uncorrelated disturbance v(n) appearing at the error microphone degrades
the noise reduction performance of the feedforward ANC system. The conventional and
modified hybrid ANC systems, incorporating a separate ANC filter B(z) for uncorrelated
disturbance, give significantly improved noise reduction performance, with the proposed
method converging at a faster rate. Fig. 15(b) shows the power spectral density of the residual
error signal e(n) in the steady state. The spectrum of the primary disturbance d(n) is also
shown as a reference. We see that, as compared with the feedforward ANC, the conventional
and modified hybrid ANCs are more effective in removing the uncorrelated disturbance.
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6. An outlook on recent ANC applications

In this section, we give a brief overview of new applications of ANC systems in consumer
electronics and medical instruments. The first example is active control of speech signals for
privacy-phone handsets (Kondo & Nakagawa, 2007). The idea is to generate out–of–phase
speech to cancel the original speech in space, thus allowing private and quiet voice
communication in public areas. Developing efficient algorithms and methods for efficient
speech emission control in 3D environment requires further research.
In hospitals, there are a lot of life-saving equipment such as breathing and IV pumps that
generate impulse-like noises. For example, infant incubators are used in neonatal intensive
care units (NICU) to increase the survival of premature and ill infants. The application of ANC
for reducing incubator noise in NICU was reported in (Liu et al., 2008), where a nonlinear
filtered-X least mean M-estimate algorithm is developed for reducing impulse-like noise in
incubators. In Section 3 we have presented some robust algorithms for ANC of impulsive
noise sources, and theoretical performance analysis, real-time experiments, and development
of more effective ANC algorithms is open for further research.
Recently very interesting results have been reported concerning head mounted ANC for the
noise generated during magnetic resonance imaging (MRI) (Kida et al., 2009). The noise
generated during MRI is found to be of a narrowband nature, and work presented in (Kida
et al., 2009) considers feedback type ANC. It would be interesting to investigate, whether we
can get better performance by employing proposed hybrid ANC system for MRI noise.
In the recent years, traffic noise coming from streets, highways, railways, and airports has
been of increasing concern. In such situations the positions of noise sources are time varying,
and it is necessary to study and develop dynamic ANC systems for moving noise sources
relative to the ANC installation. One challenging, yet a very interesting, application would be
to study an efficient ANC system for a quiet car interior even when the window or sunroof is
open.
In some applications, it is desirable to retain a low-level residual noise with a desired spectral
shape or changed noise signature. Active sound quality control (ASQC), which changes
amplitudes of noise components with predetermined values, is a useful and important
extension of ANC, see (Kuo & Ji, 1995) for narrowband ASQC and (Kuo & Yang, 1996)
for broadband ASQC. The broadband ASQC algorithm uses a shaping filter to control the
residual noise spectrum, and further research is needed to design an appropriate shaping
filter. Recently noise reduction for motorcycle helmets is evaluated and some interesting
results using hybrid ANC have been reported in (Castañé-Selga & Sánchez Peña, 2010). In
such applications, ASQC systems must be employed so that noise and horn–sounds from the
neighboring vehicles are not completely removed.

7. Concluding remarks

In this chapter we have provided a comprehensive review of adaptive filtering algorithms
developed for ANC systems. We mentioned several signal processing challenges with
open problems for further research and development. Furthermore, we presented efficient
algorithms and methods for two challenging problems in ANC systems: 1) active control
of impulsive-like noise sources, and 2) controlling uncorrelated disturbance for which
a correlated reference signal is not available. Finally an outlook of some challenging
applications of ANC is provided.
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