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1. Introduction 

Due to the ability to handle control and state constraints, MPC has become quite popular 
recently. In order to guarantee the stability of MPC, a terminal constraint and a terminal cost 
are added to the on-line optimization problem such that the terminal region is a positively 
invariant set for the system and the terminal cost is an associated Lyapunov function [1, 9].  
As we know, the domain of attraction of MPC can be enlarged by increasing the prediction 
horizon, but it is at the expense of a greater computational burden. In [2], a prediction 
horizon larger than the control horizon was considered and the domain of attraction was 
enlarged. On the other hand, the domain of attraction can be enlarged by enlarging the 
terminal region. In [3], an ellipsoidal set included in the stabilizable region of using linear 
feedback controller served as the terminal region. In [4], a polytopic set was adopted. In [5], 
a saturated local control law was used to enlarge the terminal region. In [6], SVM was 
employed to estimate the stabilizable region of using linear feedback controller and the 
estimated stabilizable region was used as the terminal region. The method in [6] enlarged 
the terminal region dramatically. In [7], it was proved that, for the MPC without terminal 
constraint, the terminal region can be enlarged by weighting the terminal cost. In [8], the 
enlargement of the domain of attraction was obtained by employing a contractive terminal 
constraint. In [9], the domain of attraction was enlarged by the inclusion of an appropriate 
set of slacked terminal constraints into the control problem. 
In this paper, the domain of attraction is enlarged by enlarging the terminal region. A novel 
method is proposed to achive a large terminal region. First, the sufficient conditions to 
guarantee the stability of MPC are presented and the maximal terminal region satisfying these 
conditions is defined. Then, given the terminal cost and an initial subset of the maximal 
terminal region, a subsets sequence is obtained by using one-step set expansion iteratively. It is 
proved that, when the iteration time goes to infinity, this subsets sequence will converge to the 
maximal terminal region. Finally, the subsets in this sequence are separated from the state 
space one by one by exploiting SVM classifier (see [10,11] for details of SVM).  

2. Model predictive control 

Consider the discrete-time system as follows 
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 ( )1 ,k k kx f x u+ =   (1) 

where n
kx R∈ ， m

ku R∈  are the state and the input of the system at the sampling time k  

respectively. 1
n

kx R+ ∈  is the successor state and the mapping : n m nf R R+   satisfying 

( ),f =0 0 0  is known. The system is subject to constraints on both state and control action. 

They are given by kx X∈ ， ku U∈ ，where X  is a closed and bounded set, U  is a compact 

set. Both of them contain the origin.  

The on-line optimization problem of MPC at the sample time k , denoted by ( )N kP x , is 

stated as 

 

( )
( ) ( ) ( )( ) ( )( )

( ) ( ) ( )( )
( ) ( ) ( )

1

,
0

min , , , , ,

. . 1, , , ,

1, , , , ,

k

N

N k k k k
u i x U

i

k k k

k k k f

J x q x i x u i x F x N x

s t x i x f x i x u i x

x i x X u i x U x N x X

−

∈
=

= +

+ =

+ ∈ ∈ ∈

u

 (2) 

where ( )0, k kx x x=  is the state at the sample time k , ( ),q x u  denotes the stage cost and it is 

positive definite, N is the prediction horizon, fX  denotes the terminal region and it is 

closed and satisfies fX X∈ ⊆0 , ( )F ⋅  satisfying ( ) 0F =0  is the terminal cost and it is 

continuous and positive definite. 
Consider an assumption as follows. 
Assumption 1. For the terminal region and the terminal cost, the following two conditions 
are satisfied [1]: 

(C1) ( )F ⋅  is a Lyapunov function. For any fx X∈ , there exists  

( ) ( ) ( )( ){ }min , ,
u U

F x q x u F f x u
∈

≥ + . 

(C2) fX  is a positively invariant set. For any fx X∈ , by using the optimal control resulting 

from the minimization problem showed in (C1), denoted by optu  , we have ( ), opt ff x u X∈ . 

Let ( )*
N kJ x  be the minimum of ( )N kP x  and ( ) ( ) ( ){ }0, , , 1,k k kx u x u N x= ⋅ ⋅ ⋅ −* * *

N N N
u  be the 

optimal control trajectory. The control strategy of MPC is that, at the sample time k , 

( )0, ku x*

N
 is inputted into the real system and at the sample time 1k + , the control inputted 

into the system is not ( )1, ku x*

N
 but the first element of the optimal control trajectory 

resulting from the similar on-line optimization problem. At the sample time 1k + , the state 

is ( )( )1 , 0,k k kx f x u x+ = *

N
 and the on-line optimization problem, denoted by ( )1N kP x + , is 

same as (2) except that kx  is replaced by 1kx + . Similarly, let ( )*
1N kJ x +  be the minimum of 

( )1N kP x +  and ( ) ( ) ( ){ }1 1 10, , , 1,k k kx u x u N x+ + += ⋅ ⋅ ⋅ −* * *

N N N
u  be the optimal control trajectory. 

The control inputted into the system at the sample time 1k +  is ( )10, ku x +
*

N
. So, the control 

law of MPC can be stated as ( )*( ) 0, , 0,1,2, ,k N kx u x k= = ⋅ ⋅ ⋅ ∞
RH

u . 
The closed-loop stability of the controlled system is showed in lemma 1. 

Lemma 1. For any 0x X∈ , if 0x  satisfies ( )*
0,N fx N x X∈  and assumption 1 is satisfied, it is 

guaranteed that, 0x  will be steered to 0  by using the control law of MPC.  
The proof can be found in [1]. 
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Proof. The proof of lemma 1 is composed of two parts: the existence of feasible solution; the 

monotonicity of ( )*
NJ ⋅ .  

Part 1. At the sample time 1, ( ) ( )( )1 0 0 01, , 0,x x x f x u x= =* *  is obtained by inputting 

( )00,u x*  into the system, where ( )00,u x*  denotes the first element of the optimal solution 

of ( )0NP x . It is obvious that, ( ) ( ) ( ) ( )( ){ }1 0 0 01, , , 1, , ,optx u x u N x u x N x= ⋅ ⋅ ⋅ −* * *
u  is a feasible 

solution of ( )1NP x  since ( )0, fx N x X∈*  and ( ) ( )( )( )0 0, , ,opt ff x N x u x N x X∈* *  as 

assumption 1 shows.  

Part 2. When ( )1xu  is used, we have 

( )( ) ( )

( ) ( )( )( ) ( ) ( )( )( )( )
( ) ( )( ) ( )( )

( ) ( )( )

*
1 1 0

0 0 0 0

0 0 0

0 0

,

, , , , , ,

0, , 0, ,

0, , 0,

0

N N

opt opt

J x x J x

q x N x u x N x F f x N x u x N x

q x x u x F x N x

q x x u x

−

= +

− −

≤ −

≤

* * * *

* * *

* *

u

 

Since ( ) ( )( )*
1 1 1,N NJ x J x x≤ u , it follows that, ( ) ( )* *

1 0 0N NJ x J x− ≤ .  
Endproof.  

3. Using subsets sequence to approach the maximal terminal region 

Using SVM classifier to estimate the terminal region is not a new technology. In [6], a large 

terminal region was achieved by using SVM classifier. However, the method in [6] is 

somewhat conservative. The reason is that, the obtained terminal region actually is the 

stabilizable region of using a predetermined linear feedback controller.  

In this section, a novel method of computing a terminal region is proposed. Given the 

terminal cost and a subset of the maximal terminal region, a subsets sequence is constructed 

by using one-step set expansion iteratively and SVM is employed to estimate each subset in 

this sequence. When some conditions are satisfied, the iteration ends and the last subset is 

adopted to serve as the terminal region.  

3.1 The construction of subsets sequence 
Consider an assumption as follows. 
Assumption 2. A terminal cost is known. 

If the stage cost is a quadratic function as ( ), T Tq x u x Qx u Ru= +  in which Q , R  are 

positive definite, a method of computing a terminal cost for continuous-time system can be 

found in [3]. In this paper, the method in [3] is extended to discrete-time system. Consider 

the linearization of the system (1) at the origin 

1k d k d kx A x B u+ = +  

with ( )( )/ 0,0dA f x= ∂ ∂  and ( )( )/ 0,0dB f u= ∂ ∂ . 
A terminal cost can be obtained through the following procedure: 

Step 1. Solving the Riccati equation to get 0G , 
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( )( ) ( )
1

0 0 0 0 0
T T T T
d d d d d d d dG A G A A G B B G B R B G A Q

−
= − + +  

Step 2. Getting a locally stabilizing linear state feedback gain K , 

( ) ( )
1

0 0
T T
d d d dK B G B R B G A

−
= − +  

Step 3. Computing KG  by solving the following Riccati equation, 

( ) ( )T
K K K K KA G A G Qα α − = −  

where K d dA A B K= + , T
KQ Q K RK= + , and [1, )α ∈ +∞  is an adjustable parameter 

satisfying ( )max 1KAα λ < . Then, ( ) T
KF x x G x=  can serve as a terminal cost. 

Given ( )F ⋅  and from conditions (C1,C2), the terminal region fX  can be defined as   

 ( ) ( ){ }*: |
ff XX x X F x F x= ∈ ≥  (3) 

where ( )*

fXF x  is the minimum of the following optimization problem 

 
( ) ( ) ( )( )

( )

min , ,

. . ,

fX
u U

f

F x q x u F f x u

s t f x u X

∈
= +

∈
  (4) 

Remark 1. The construction of fX  has two meanings: (I) the optimization problem (4) has 

feasible solution, that is to say, u U∃ ∈ , s.t. ( ), ff x u X∈ ; (II) the minimum of the 

optimization problem satisfies that ( ) ( )*

fXF x F x≤ . 

Remark 2. From the definition of fX , it is obvious that, the terminal region is essentially a 

positively invariant set of using the optimal control resulting from the optimization problem 

(4) when ( )F ⋅  is given. 

Remark 3. In [3,4,6], the linear feedback control is attached to the construction of fX  and 

fX  is the stabilizable region of using the linear feedback controller. In [5], a saturated local 

control law was used. But, in this paper, there is no explicit control attached to the definition 

of fX . So, the requirement on fX  is lower than that in [3-6] while guaranting the stability 

of the controlled system.  

From the definition of fX , it can not be determined whether a state point belongs to fX . 

The difficulty lies in that, the fX  itself acts as the constraint in the optimization problem (4). 

To avoid this problem, the method of using one-step set expansion iteratively is adopted. 

Define ,maxfX  as the largest terminal region and consider an assumption. 

Assumption 2. A subset of ,maxfX , denoted by 0
fX  and containing the origin, is known.  

Assumption 3. 0
fX  is a positively invariant set, that is to say, for any 0

fx X∈ , u U∃ ∈ , s.t. 

( ) ( ) ( )( ), ,F x q x u F f x u≥ +  and ( ) 0, ff x u X∈ .  

Given 0
fX , another subset of ,maxfX , denoted by 1

fX , can be constructed as  
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 ( ) ( ){ }0
1 *: |

f
f X

X x X F x F x= ∈ ≥  (5) 

where ( )0
*

fX
F x  is the minimum of  

 
( ) ( ) ( )( )

( )

0

0

min , ,

. . ,

fXu U

f

F x q x u F f x u

s t f x u X

∈
= +

∈
 (6) 

As mentioned in remark 1, the construction of 1
fX  contains two meanings: (I) for any 

1
fx X∈ , u U∃ ∈ , s.t. ( ) 0, ff x u X∈ ; (II) the minimum of (6) satisfies ( ) ( )0

*

fX
F x F x≤ . The 

constructions of j
fX  in sequel have the similar meanings.  

Lemma 2. If assumption 3 is satisfied, there is 0 1
f fX X⊆ . 

Proof. If assumption 3 is satisfied, it is obvious that, for any 0
fx X∈ , u U∃ ∈ , s.t. 

( ) ( ) ( )( ), ,F x q x u F f x u≥ +  and ( ) 0, ff x u X∈ . It follows that, ( ) ( )0
*

fX
F x F x≥ . From the 

construction of 1
fX , we can know 1

fx X∈ , namely, 0 1
f fX X⊆ . 

Endproof. 

Remark 4. From the construction of 1
fX , it is obvious that, if assumption 3 is satisfied, 1

fX  is 

a positively invariant set. We know that, for any 1
fx X∈ , u U∃ ∈ , s.t. 

( ) ( ) ( )( ), ,F x q x u F f x u≥ +  and ( ) 0, ff x u X∈ . Because of 0 1
f fX X⊆  as showed in lemma 2, we 

have ( ) 1, ff x u X∈ . 

Similarly, by replacing 0
fX  with 1

fX  in the constraint of (6), another subset, denoted by 2
fX , 

can be obtained as follows 

 ( ) ( ){ }1
2 *: |

f
f X

X x X F x F x= ∈ ≥  (7) 

where ( )1
*

fX
F x  is the minimum of 

 
( ) ( ) ( )( )

( )

1

1

min , ,

. . ,

fXu U

f

F x q x u F f x u

s t f x u X

∈
= +

∈
  (8) 

Repeatedly, j
fX , 3,4, ,j = ⋅ ⋅ ⋅ ∞  can be constructed as 

 ( ) ( ){ }1
*: | j

f

j
f X

X x X F x F x−= ∈ ≥   (9) 

where ( )1
*

j
fX

F x−  is the minimum of 

 

( ) ( ) ( )( )

( )

1

1

min , ,

. . ,

j
fXu U

j
f

F x q x u F f x u

s t f x u X

−
∈

−

= +

∈
 (10) 
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This method of constructing j
fX  given 1j

fX −  is defined as one-step set expansion in this 

paper. By employing it iteratively, a subsets sequence of largest terminal region, denoted by 

{ }j
fX , 1,2, ,j = ⋅ ⋅ ⋅ ∞ , can be achived.  

Remark 5. Similar with lemma 2 and remark 4, any subset in this sequence is positively 

invariant and any two neighbouring subsets satisfy 1j j
f fX X− ⊆ . 

As j  increases, { }j
fX  will converge to a set, denoted by fX+∞ . Theorem 1 will show that, 

fX+∞  is equal to the largest terminal region. 

Theorem 1. If assumption 2 and assumption 3 are satisfied, for j
fX  constructed in (9) and (10), 

when j  goes to infinity, { }j
fX  will converge to ,maxfX .  

Proof. This theorem is proved by contradiction. 

(A) Assume that, there exists a set which is denoted by spoX  satisfying ,maxspo fX X⊂  and 
j

spofX X→  when j → +∞ . From remark 5, we can know 0
f spoX X⊆ . It is obvious that 

spoX∈0  because of 0
fX∈0  as showed in assumption 2. It follows that, ,max \f spoX X∉0  and 

for any ,max \f spox X X∈ , we have ( ) 0F x >  since ( )F ⋅  is positive definite. Define ξ  as the 

infimum of ( ){ },max| \f spoF x x X X∈ , it is satisfied that, 0ξ > . 

From the construction of j
fX , we know that, for any 0 ,max \f spox X X∈ , there exists no such 

a u U∈  satisfying ( ) ( ) ( )( )0 0 0, ,F x q x u F f x u≥ +  and ( )0 , spof x u X∈  because of 

,maxspo fX X⊂ . However, from (C1) and (C2), we know that, ( )0u x U∃ ∈ , s.t. 

( ) ( )( ) ( )0 0 0 1,F x q x u x F x≥ +  and 1 ,maxfx X∈ , where ( )( )1 0 0,x f x u x= . It is obvious that, 

1 spox X∉ . So we have, 1 ,max \f spox X X∈ . Similarly, we can know, ( )1u x U∃ ∈ , s.t. 

( ) ( )( ) ( )1 1 1 2,F x q x u x F x≥ +  and 2 ,max \f spox X X∈ , where ( )( )2 1 1,x f x u x= , since 

1 ,max \f spox X X∈ . 

Repeatly, for ,max \i f spox X X∈ , ( )iu x U∃ ∈ , s.t. ( ) ( )( ) ( )1,i i i iF x q x u x F x +≥ +  and 

1 ,max \i f spox X X+ ∈ , where ( )( )1 ,i i ix f x u x+ = , 2, ,i = ⋅ ⋅ ⋅ ∞ . It is clear that, ( ) 0iF x →  when 

i → ∞ . We know that, for the infimum of ( ){ },max| \f spoF x x X X∈ , defined as ξ ,  there is a 

positive real number δ  satisfing 0 δ ξ< < . Since ( ) 0iF x →  when i → ∞ , 0Nδ∃ > , s.t. for 

any i Nδ≥ , we have ( )iF x δ< . Obviously, this is contradicted with that ξ  is the infimum 

of ( ){ },max| \f spoF x x X X∈ . 

(B) Similarly, assume that, there exists a spoX  satisfying ,maxspo fX X⊃  and j
spofX X→  when 

j → +∞ . For any spox X∈ , we have that ( ) ( ) ( )( ){ }min , ,
u U

F x q x u F f x u
∈

≥ +  and ( ), spof x u X∈ . 

Obviously, this is contradicted with that ,maxfX  is the largest one satisfying (C1) and (C2). 
Endproof. 

Remark 6. In this paper, the largest terminal region means the positively invariant set satisfying 

conditions (C1) and (C2). But, (C1) and (C2) are sufficient conditions to guarantee the stability of 

the controlled system, not the necessary conditions. There may be a set larger than ,maxfX  and 

the stability of the controlled system can be guaranteed by using this set as the terminal region.  

Remark 7. In the calculation of ,maxfX , it is impossible to keep iteration computation until 

j → +∞ . When the iteration time goes to j E=  ( E  is a positive integer), if E
fX  is equal to 

1E
fX −  in principle, it can be deemed that { }j

fX  converges to E
fX  in rough. Hence, E

fX  can be 

taken as the terminal region and it is a good approximation to ,maxfX .  

Remark 8. If the iteration time does not go to infinity, the obtained set may be just a large 

positively invariant subset of ,maxfX . This has no effect on the stability of the controlled 
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system. The only negative influence is that its corresponding domain of attraction is smaller 

than that corresponding to ,maxfX .  

Untill now, it seems that we can choose any j
fX  in the subsets sequence as the terminal 

region. This is infeasible. Since j
fX  is not described in explicit expression, it can not serve as 

the terminal constraint in the optimization problem (2) directly. Then, an estimated one 

described in explicit expression is needed. Due to the strong optimizing ability of SVM, 

SVM is exploited to separate each j
fX  from the state space. 

3.2 Support vector machine 
SVM is the youngest part in the statistical learning theory. It is an effective approach for 
pattern recognition. In SVM approach, the main aim is to obtain a function, which 
determines the decision boundary or hyperplane. This hyperplane optimally separates two 
classes of input data points.  

Take the example of separating X  into A  and \X A . For each ix A∈ , an additional 

variable 1iy = +  is introduced. Similarly, for each \ix X A∈ , 1iy = −  is introduced. Define 

{ }: : 1iI i y+ = = +  and { }: : 1iI i y− = = − , SVM will find a separating hyperplane, denoted by 

( ) ( ): 0iO x w x bφ= ⋅ + = , between A  and \X A . Therefore, A  can be estimated as 

( ){ }ˆ | 0A x X O x= ∈ ≥ , where ( )O x  is determined by solving the following problem: 

 

( )1
min     , -

2

s.t.      0

          0 , ; 0,

i j i j i j i
i j i

i i
i

i i

y y ker x x

y

C i I i I

α
α α α

α

α α+ −

=

≤ ≤ ∀ ∈ ≥ ∀ ∈

 

   (11) 

where ( ),ker ⋅ ⋅  denotes the kernel function and the Gaussian kernel as follows is adopted in 

this paper:   

 ( )
2

2
, exp

2

i
i

x x
ker x x

σ

 −
 = −
 
 

  (12) 

with σ  being the positive Gaussian kernel width. 

When { }iα  are computed out, some support vectors are chosen from { }ix  and the optimal 

hyperplane can be determined with these support vectors and their relevant weights. 

Denote sP  as the number of support vectors and sX  as the support vectors set, the optimal 

hyperplane is described as:  

 ( ) ( )
1

,
sP

i i
i

O x w ker x x b
=

= ⋅ +   (13) 

where i sx X∈  is the support vector and i i iw yα=  satifying 
1

0
sP

i
i

w
=

=  is the relevant weight. 
There are many software packages of SVM available on internet. They can be downloaded 
and used directly. To save space, it is not introduced in detail in this paper. For more details, 
please refer to [10] and [11]. 
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3.3 Estimating the subset by employing SVM 

From subsection 3.2, we know that, SVM find a separating hyperplane between { }|ix i I+∈  

and { }|ix i I−∈ .This hyperplane is used to separate X  into A  and \X A . All of { }ix  and 

their relevant { }iy  compose a set, named the training points set. This subsection will show 

how to achieve the training points set when estimating j
fX  and how to determine j

fX  when 

the separating hyperplane is known. 

Firstly, choose arbitrary points ix X∈ , 1,2,...,i P= ( P  is the number of training points); 

then, assign iy  to each ix  by implementing the following procedure:  
IF  (I) the following optimization problem has feasible solution 

( ) ( ) ( )( )

( ) 1

min , ,

ˆ. . ,

j
f

i i iXu U

j
i f

F x q x u F f x u

s t f x u X

∈

−

= +

∈
. 

(When 1j = , 0 0ˆ
f fX X= .) 

(II) its minimum satisfies  

( ) ( )*
j
f

i iX
F x F x≥ . 

THEN 1iy = +  

ELSE 1iy = −  
ENDIF. 

By implementing this procedure for every ix , each iy  is known. Input { }ix  and { }iy  into 

SVM classifier, an optimal hyperplane ( ) 0jO x =  will be obtained. Therefore, the estimated 

set of j
fX  can be achieved as ( ){ }ˆ | 0j j

fX x X O x= ∈ ≥ . 

When ˆ j
fX  is known, the training points for separating 1j

fX +  from X can be computed by 

the similar procedure. By inputting them into SVM classifier, a hyperplane ( )1 0jO x+ =  and 

an estimated set of 1j
fX + , denoted by ( ){ }1 1ˆ | 0j j

fX x X O x+ += ∈ ≥  will be obtained. 

Repeatedly, ( ){ } , 1,2, ,jO x j = ⋅ ⋅ ⋅ ∞  and { }ˆ j
fX  can be be achieved by the similar technology. 

4. Estimating the terminal region 

Section 3 showed how to achieve the subsets sequence by employing SVM. Theoretically, 

the larger the iteration time j , the higher the precision of ˆ j
fX  approaching to ,maxfX . But, it 

is impossible to keep computation until j → +∞ . To avoid this problem, the iteration should 

be ended when some conditions are satisfied.  

When j E= , if it is satisfied that, for , 1i s Ex X −∈ , , 11,2, , s Ei P −= ⋅ ⋅ ⋅ , there exists 

 ( ) ( )
, 1

1
, 1

1

s EP
E E

i i s E
i

O x O x Pε
−

−
−

=

− ≤ , (14) 
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it can be deemed that ˆ E
fX  is equal to 1ˆ E

fX −  in principle and ˆ j
fX  converges to ˆ E

fX . In (14), 

s, 1EX −  is the support vectors set at 1j E= − , , 1s EP −  is the number of support vectors and ε  

is a tunable threshold. The smaller ε  is, the higher the precision of ˆ E
fX  approximating 

to ,maxfX  is. Finally, ˆ E
fX  is used to serve as the terminal region.  

Remark 9. Here, we used the information that, in SVM classifier, the hyperplanes are only 

determined on the support vectors. 

Now, the concrete algorithm of estimating the largest terminal region is displayed as follows. 

Step 4. Step 1 Set the number of training points P  used in SVM and the tunable threshold ε . 

Step 5. Step 2 For 1,2, ,j = ⋅ ⋅ ⋅ ∞ , use SVM to achieve the optimal hyperplane ( ) 0jO x =  and 

the estimated set of j
fX , denoted by ˆ j

fX .  

Substep 1.  Choose arbitrary points ix X∈  , 1,2,...,i P= .  

Substep 2.  Assign iy  to each ix  by implementing the procedure in subsection 3.3. 

Substep 3.  Input { },i ix y  into the SVM. An optimal hyperplane ( ) 0jO x =  will be 

obtained and j
fX  can be approximated by ( ){ }ˆ | 0j j

fX x X O x= ∈ ≥ , where 

( ) ( )
,

1

,
s jP

j
i i j

i

O x w ker x x b
=

= ⋅ +  

with ,s jP  denoting the number of support vectors, ix  being the support vector, iw  

denoting its relevant weight and jb  denoting the classifier threshold. 
Step 6. Step 3 Check the iteration status. When j E= , if inequality (14) is satisfied, end 

iteration and take ˆ E
fX  as the largest terminal region.  

Remark 10. It is obvious that, ˆ j
fX  is achieved one by one. Namely, ˆ j

fX  can only be achieved 

when 1ˆ j
fX −  is known.  

5. Simulation experiment 

The model is a discrete-time realization of the continuous-time system used in [3, 6]:  

( )
( )

( )
( )

( )
( )

( )
( )
( )

( )1 1 1

2 2 2

11 1 0

11 0 4 1

T Tx k x k T x k
u k u k

T Tx k x k T x k

µ µ

µ µ

       + −   
= + +          + − −          

 

where 0.5µ = , 0.1T s= , and the state constraint and control constraint are 

{ }1
| 4X x x= ≤ ， { }| 2U u u= ≤ , respectively.  

The stage cost is ( ), T Tq x u x Qx u Ru= +  where 0.5Q I=  and 1R = . The terminal cost is 

chosen as ( ) TF x x Gx=  where [1107.356   857.231; 857.231     1107.356]G =  and 0
fX  is given 

as the terminal region in [3] which is 
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0 16.5926 11.5926
| 0.7

11.5926 16.5926
T

fX x X x x
   

= ∈ ≤  
   

. 

To estimate each j
fX , 4000 training points are generated. Set 2.5ε = , when 22j = , there exists 

( ) ( )
,21

22 21
,21

1

sP

i i s
i

O x O x Pε
=

− ≤ , 

where s,21ix X∈ , s,21X  is the support vectors set and ,21sP  is the number of support vectors 

at 21j = . Then, it is deemed that, 22ˆ
fX  is equal to 21ˆ

fX  in principle and 22ˆ
fX  can be taken as 

the final estimation of ,maxfX . Figure 1 shows the approximation process of ,maxfX .  

In figure 1, the blue ellipsoid is the terminal region in [3], which serves as 0
fX  in the 

estimation of ,maxfX  in this paper. The regions surrounded by black solid lines are 

{ }ˆ , 1,2, 22j
fX j = ⋅ ⋅ ⋅  in which the smallest one is 1ˆ

fX , the largest one is 22ˆ
fX  and the regions 

between them are { }ˆ , 2,3, 21j
fX j = ⋅ ⋅ ⋅  satisfying 1ˆ ˆj j

f fX X− ⊆ . The time cost of employing SVM 

to estimate each ˆ j
fX  is about 44 minutes and the total time cost of computing the final 

estimation of ,maxfX , namely, 22ˆ
fX  is about 16 hours. 
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Fig. 1. The approximation process 
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Set the prediction horizon as 3N = , some points in the region of attraction (this example is 

very exceptional, the region of attraction is coincident with the terminal region in rough. 
Therefore, these points are selected from the terminal region) are selected and their closed-
loop trajectories are showed in Figure 2. 
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Fig. 2. The closed-loop trajectories of states 

In figure 2, the blue ellipsoid is the terminal region in [3] and the region encompassed by 

black dash lines is the result in [6]. The region encompassed by black solid lines is the 

terminal region in this paper. We can see, the terminal region in this paper contain the result 

in [3], but not contain the result in [6] although it is much larger than that in [6]. The reason 

is that, the terminal region in this paper is the largest one satisfying conditions (C1) and 

(C2). However, (C1) and (C2) are just the sufficient conditions to guarantee the stability of 

the controlled system, not the necessary conditions as showed in remark 6. The red solid 

lines denote the closed-loop trajectories of the selected points. Note that, with the same 

sampling interval and prediction horizon as those in this paper, these points are not in the 

regions of attraction of MPC in [3] and [6]. But, they can be leaded to the orgin by using the 

control law of MPC in this paper. 

6. Conclusion 

Given the terminal cost, a sequence of subsets of the maximal terminal region are extracted 

from state space one by one by employing SVM classifier. When one of them is equal to its 
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succesive one in principle, it is used to serve as the terminal region and it is a good 

approximation to the maximal terminal region.  
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