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Chapter 5 

 
Tooth 

 
Tissue-engineered odontogenesis 
One important goal of dental research is the efficient regeneration of lost teeth [1, 2]. Tooth 
formation, or odontogenesis, is a complex process that has been characterized as a series of 
reciprocal epithelial-mesenchymal interactions, culminating in the differentiation of the 
interacting tissues [3-6]. Tissue engineering of tooth structures on biodegradable polymer 
scaffolds has been recently achieved [7]. The method involves dissociating porcine third 
molar tooth buds into single-cell suspensions and seeding them onto biodegradable 
polymers, but this regeneration process is not yet fully understood. To characterize the 
process in greater detail, we followed the regeneration of tissue-engineered teeth by 
histology and immunohistochemistry with specific markers of epithelial and mesenchymal 
differentiation as well as ameloblasts, odontoblasts, and cementoblasts. In the present study, 
we show that the development of these engineered teeth closely parallels that of natural 
odontogenesis. 
 

Preparation of biodegradable polymer scaffolds 
Three-dimensional scaffolds were prepared as described previously [8], with the following 
modifications: polyglycolic acid (PGA) fiber mesh (fiber diameter = 13 µm; density = 60 
mg/ml) was packed into 96-well plates and sterilized in 75% ethanol. The scaffold 
dimensions were approximately 1 cm3. Before seeding the cells, the scaffolds were 
collagen-coated overnight at 4°C (1 mg/ml type I collagen in 10 mM HCI), followed by three 
times washings in PBS and three times in DMEM. 
 
Isolation and dissociation of porcine third molar tissue 
Tooth bud cells were harvested and prepared as described previously [7]. The tooth buds 
were removed early in development at the early stage of crown formation from the 
mandibles of 6-month-old pigs, which were purchased from a local slaughterhouse and 
transported to the laboratory on ice. Briefly, third molar tooth buds were removed from the 
fresh mandibles with their inner and outer epithelial layers as well as the dental papilla and 
dental follicle intact (Fig. 25). After the calcified tissue was removed, all tooth bud tissue, 
including the dental follicles, was minced into <1 mm3 pieces in Hanks Balanced Salt 
Solution (HBSS) and dissociated with 2 mg/ml collagenase and dispase for 50 minutes at 
37°C, followed by gentle trituration. Digested tooth bud tissues were then strained through 
a nylon filter (70 µm pores), and the isolated single cells (1.0 × 107 cells) were seeded onto a 
PGA fiber mesh scaffold which had been precoated with type I collagen (1 mg/ml type I 
collagen in 10 mM HCl) for 3 hours at 4°C before placing them into the omentum in the host 
rats (Fig. 26). 
The animals were anesthetized with an intraperitoneal injection of sodium pentobarbital (15 
mg/kg), and the scaffolds seeded with cells were implanted into the omenta of the athymic 
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rats (n = 30) [9]. Samples developed for 2, 4, 6, 8, 10, 15, 20, and 25 weeks were dissected and 
immediately fixed in freshly prepared 4%  paraformaldehyde in PBS at 4°C for 6-8 hours. 
After fixation, the tissues were demineralized for 4 h in 0.2N HCl and, after extensive 
washing in PBS, were dehydrated in an ethanol gradient, cleared in xylene, and embedded 
in paraffin. Tissue sections 6 µm thick were mounted on glass slides and stained with 
hematoxylin and eosin (H-E)  .  
 

A B 

 
Fig. 25. A: A third molar tooth bud used in experiments stained with toluidine blue. The 
cusps of the molar are already calcified (black arrow). B: Single cells dissociated by straining 
through a nylon filter (70-µm pores) before seeding onto the PGA fiber mesh scaffold (black 
arrow) (From Honda et al. 2005. Reprinted with permission). 
 

(b) 

(d) 
(c) 

(a) 

 
Fig. 26. Schematic diagram of the strategy used to produce the tissue-engineered tooth. 
Tooth-germ was derived from isolated cells seeded on a PGA fiber mesh scaffold. (a) Tissue 
was harvested from third molar tooth buds. (b) Isolate the tooth bud. (c) Isolated cells were 
seeded on PGA mesh. (d) Implantation in rat omentum (From Honda et al. 2005). 
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In vivo implantation and histology 
Aggregates of epithelial cells were first observed 4-6 weeks after implantation (Fig. 27). 
These aggregates assumed three different shapes: a natural tooth germ-like shape, a circular 
shape, or a bilayer-bundle. Based on the structure of the stellate reticulum in the dental 
epithelium, the circular and bilayer-bundle aggregates could be clearly classified into two 
types: one with extensively developed stellate reticulum, and the other with negligible 
stellate reticulum. The epithelial cells in the circular aggregates differentiated into 
ameloblasts. The continuous bilayer bundles eventually formed the epithelial sheath, and 
dentin tissue was evident at the apex of these bundles. Finally, enamel-covered dentin and 
cementum-covered dentin formed, a process most likely mediated by 
epithelial-mesenchymal interaction. These results suggest that the development of these 
engineered teeth closely parallels that of natural odontogenesis derived from the immature 
epithelial and mesenchymal cells. 
 

A B 

D C 

 
Fig. 27. A, B: At 6-8 weeks after implantation. A: The cells have formed either circular 
aggregates (black arrow). B: Sheets of a bilayer of cells (black arrow) which separate two 
very different densities of surrounding cells. C: At higher magnification, the cells in circular 
aggregates are low columnar in shape with nuclei in the center of the cytoplasm (black 
arrow). D: While the cells in the sheets clearly form a two-cell thick layer, which separates a 
low density of cells (black arrow) from a denser region of cells (white arrowhead), which is 
densest just adjacent to the bilayer (white arrow) (From Honda et al. 2005. Reprinted with 
permission). 
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Effects of shear stress 

During tooth organogenesis, reciprocal interactions between epithelial-mesenchymal cells 
result in the cytodifferentiation of epithelial cells into ameloblasts and ectomesenchymal 
cells into odontoblasts [5, 11-13]. These differentiated cells produce the enamel and the 
dentin matrix. Amelogenesis is the process of enamel formation which occurs in three 
distinct stages: the presecretory stage, consisting of ameloblast cytodifferentiation; the 
secretory stage, with the bulk of enamel matrix formation; and the maturation stage, 
associated with matrix mineralization [14-16]. Dentinogenesis is the process of dentin 
formation, by which the dental papilla cells located at the epithelial-mesenchymal interface 
gradually differentiate into odontoblasts concomitant with ameloblast differentiation [17-20]. 
Recently, several in vitro and in vivo studies have demonstrated that dental pulp cells are 
also capable of differentiating into odontoblasts and producing a mineralizing matrix [21]. 
There is accumulating evidence that mechanical stress has a variety of effects on cell growth 
and differentiation [22, 23]. For example, such stress is known to facilitate the differentiation 
of osteoblasts [24] and chondrocytes [25]. In particular, shear stress induced by fluid flow 
facilitates the secretion of bone matrix protein [24, 26]. It is demonstrated that subjecting 
osteoblasts to fluid shear stress increases expression of genes including c-fos and 
cyclooxygenase-2 (COX-2) [27]. We hypothesized that appropriate shear stress is essential to 
facilitate the differentiation of odontogenic cells, which would facilitate the regeneration 
process. The purpose of this study was to investigate the effect of applying shear stress on 
the differentiation of odontogenic cells and histogenesis of odontogenic tissues. This study 
shows for the first time that shear stress facilitates tissue-engineered odontogenesis. 
Furthermore, using RT-PCR and Western blot technique, we provide evidence for the 
expression of teeth-related marker as to whether tooth cells facilitate cell differentiation by 
exposure to shear stress. 
 

Shear stress exposure 
In preliminary studies, we examined the effects of three different types of mechanical stress 
on the differentiation of the cells. Uniaxial stretch, ultrasonic wave, and shear stress 
generated by bi-directional fluid flow were given, and the levels of alkaline phosphatase 
(ALP) activity were evaluated as a marker for pulp cellular differentiation [28, 29]. Among 
the mechanical stresses examined, only shear stress succeeded in increasing ALP activity. 
From this result, the shear stress appeared to influence most clearly the cells on the ALP 
activity. Shear stress was generated by bi-directional fluid flow inside a tube, the velocity of 
which depended on the frequency of the agitating motion of the Shaker. After cells were 
seeded onto the scaffolds, cell-polymer constructs (CPCs) were first cultured for 2 hours 
under static conditions. Subsequently, CPCs were placed into 15-ml centrifuge tubes with 
DMEM containing 10% of fetal calf serum (FCS). To determine the more effective stress, we 
compared three distinct shear stresses by exposing seeding cells and evaluated the ALP 
activity. The used frequencies were between 10-20, 40-50, and 70-80 rpm at 37°C for 12 hours. 
Swing frequencies of constructs were 40, 90, and 120 rpm, respectively. Their mechanical 
load exerted on the CPCs was estimated at 0.7 × 10-4 N, 1.2 × 10-4 N, and 1.6 × 10-4 N, 
respectively. In vitro studies, the expression of both epithelial and mesenchymal 
odontogenic-related mRNAs was significantly enhanced by shear stress for 2 hours. Twelve 
hours after exposure to shear stress, the expression of amelogenin, bone sialoprotein and 
vimentin protein was significantly enhanced compared with that of control. After 7 days, 
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alkaline phosphatase activity exhibited a significant increase without any significant effect 
on cell proliferation in vitro. In vivo, enamel and dentin tissues formed after 15 weeks of in 

vivo implantation in constructs exposed to in vitro shear stress for 12 hours. Such was not the 
case in controls. We concluded that shear stress facilitates odontogenic cell differentiation in 

vitro as well as the process of tooth tissue engineering in vivo. 

 
Collagen sponge as a 3-D scaffold  
Tooth structure can be regenerated by seeding dissociated tooth cells onto PGA fiber mesh, 
although the success rate of tooth production is low. The present study was designed to 
compare the performance of collagen sponge with PGA fiber mesh as a 3-D scaffold for 
tooth-tissue engineering (Fig. 28). Porcine third molar teeth at the early stage of crown 
formation were enzymatically dissociated into single cells, and the heterogeneous cells were 
seeded onto collagen sponge or the PGA fiber mesh scaffolds. Scaffolds were then cultured 
to evaluate cell adhesion and ALP activity in vitro. An in vivo analysis was performed by 
implanting the constructs into the omentum of immunocompromised rats and evaluating 
tooth production up to 25 weeks (Fig. 29). After 24 hours, there were a significantly higher 
number of cells attached to the collagen sponge scaffold than the PGA fiber mesh scaffold. 
Similarly, the ALP activity was significantly higher for the collagen sponge scaffold was 
than the PGA fiber mesh scaffold after 7 days of culture. The area of calcified tissue formed 
in the collagen sponge scaffold was also larger than in the PGA fiber mesh scaffold (Fig. 30). 
The results from in vivo experiments show conclusively that a collagen sponge scaffold 
allows tooth production with a higher degree of success than PGA fiber mesh. Taken 
together, the results from this study show that collagen sponge scaffold is superior to the 
PGA fiber mesh scaffold for tooth-tissue engineering.  
 

A B 

 
Fig. 28. SEM images of both scaffold types. A: Collagen sponge. B: PGA fiber mesh (From 
Sumita et al. 2006. Reprinted with permission).  
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Fig. 29. Gross appearance of the original scaffold and implants after 8 and 20 weeks 
implantation. (A, C and E) show the collagen sponge scaffold before implantation and the 
implants obtained from the collagen sponge scaffold at 8 (A and C) and 20 weeks (E) after 
implantation. (B, D and F) show the PGA fiber mesh scaffold before implantation and the 
implants at 8 (B and D) and 20 weeks (F) after implantation. A: The original collagen sponge 
scaffold (left) and the implant at 8 weeks after implantation (right). The diameter of the 
original collagen sponge scaffold was approximately 11 mm, while the diameter of the 
implant was approximately 7 mm. B: The original PGA fiber mesh scaffold (left) and the 
implant at 8 weeks after implantation (right). The diameter of the original PGA fiber mesh 
scaffold was approximately 11 mm, while the diameter of the implant was approximately 7 
mm. C: The perpendicular thickness of the original collagen sponge scaffold was 
approximately 2 mm (left), while the perpendicular thickness of the implant at 8 weeks was 
approximately 7 mm (right). D: The perpendicular thickness of the original PGA fiber mesh 
scaffold was approximately 1–2 mm (left), while the perpendicular thickness of the implants 
at 8 weeks was approximately 7 mm (right). E: The original collagen sponge scaffold (left) 
and the implant at 20 weeks after implantation. The diameters of the implant were 
approximately 11 mm by 11 mm by 10 mm (right). F: The original PGA fiber mesh scaffold 
(left) and the implant at 20 weeks after implantation. The diameters of the implants were 
approximately 11 mm by 11 mm by 10 mm (right) (From Sumita et al. 2006. Reprinted with 
permission). 
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Fig. 30. Histological and immunohistochemical analyses of TE-teeth at 25 weeks after 
implantation. (A–G) show H-E staining and panel (H) shows immunohistochemical staining 
for BSP. A: The circular-shaped TE-teeth obtained from the collagen sponge scaffold 
revealed the enamel (e) and dentin (d). B: The stick-shaped TE-teeth obtained from the 
collagen sponge scaffold revealed the dentin (d), cementum-like tissue (ce), pulp (p) and 
HERS (black arrow). C: A typical tooth with normal morphology was observed in the 
implant obtained from the collagen sponge scaffold. TE-teeth revealed (e), (d), (p) and (ce). 
(D–H) are higher magnifications of (C) as indicated by the squares. D: The reduced enamel 
epithelium cells (black arrow) were recognized on the surface of the enamel. E: The 
odontoblasts (od) and blood vessels (black arrow) were identified in the pulp. F: Bilayers of 
epithelial cells were similar to Hertwig’s epithelial root sheath (black arrow). G: Cellular 
cementum-like tissue (ce) was observed on the surface of the root dentin. H: BSP expression 
was located in cellular cementum-like tissue (black arrow) and odontoblasts (black 
arrowhead) (From Sumita et al. 2006. Reprinted with permission). 

 
Sequential seeding 
Progress is being made toward regenerating teeth by seeding dissociated postnatal 
odontogenic cells onto scaffolds and implanting them in vivo, but tooth morphology remains 
difficult to control. In this study, we aimed to facilitate tooth regeneration using a novel 
technique to sequentially seed epithelial cells and mesenchymal cells so that they developed 
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appropriate interactions in the scaffold. Dental epithelium and mesenchyme from porcine 
third molar teeth were enzymatically separated and dissociated into single cells. 
Mesenchymal cells were seeded onto the surface of the scaffold and epithelial cells were 
then plated on top so that the two cell types were in direct contact. The cell-scaffold 
constructs were evaluated in vitro and also implanted into immunocompromised rats for in 

vivo analysis (Fig. 31). Control groups included constructs where direct contact between the 
two cell types was prevented. In scaffolds, seed using the novel technique, ALP activity, was 
significantly greater than controls, the tooth morphology in vivo was developed similar to 
that of a natural tooth, and only one tooth structure formed in each scaffold. These results 
suggest that the novel cell-seeding technique could be useful for regulating the morphology 
of regenerated teeth. 
 

(a) 

(d) 

(f) 

(c) 

(b) 

(f) 

(e) 

(g) (h) 

(i)  (j) 

(k) 

 
Fig. 31. Experimental design for the study.(a) Tooth germ. (b) Epithelium. (c) Mesenchyme. 
(d) Epithelial cell suspension. (e) Mesenchymal cell suspension. (f) Collagen sponge. (g) 
Group I, mesenchymal cells were plated onto the scaffold, and epithelial cells were then 
plated on top of the mesenchymal cells; (h) Group II, mesenchymal cells were plated onto a 
scaffold in the lower compartment, and epithelial cells onto a scaffold in the upper 
compartment of a dish divided by a microporous membrane; (i) Group III, epithelial cells 
alone were seeded into the scaffold; and (j) Group IV, mesenchymal cells alone were seeded 
into the scaffold. For the in vivo study, the groups were similar but with an additional (k) 
Group V, in which both epithelial cells and mesenchymal cells were plated randomly into 
each scaffold (From Honda et al. 2007. Reprinted with permission). 
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