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Netherlands 

1. Introduction 

Parkinson disease (PD) is a slow destructive disorder of the central nervous system in which 
dopamine, i.e., catecholamine neurotransmitter in the central nervous system is lost. PD 
hurts patients’ movement and speech ability. Sometimes, it can also affect patients’ mood, 
behavior, and thinking ability. Falling down is a common problem in PD patients and on 
time fall detection is important to assist PD patients and prevent them from being injured. 
To this end, being able to correctly distinguish various activities, e.g. walking, sitting, 
standing still, is a must. To monitor activities and moving patterns of PD patients, a wireless 
body sensor network (BSN) may prove to be useful. By attaching various wireless sensor 
nodes on the body of PD patients or integrating them into their shoes or cloths, their 
activities and physiological conditions can be checked regularly and an alarm can be 
generated in case of emergency or need for additional assistances.  
A wireless body sensor network consists of a number of wireless sensor nodes that 
cooperatively monitor physical (e.g. motion) and physiological (e.g. heart rate) conditions of 
a person.  In addition to sensors, each sensor node is typically equipped with a radio 
transceiver or other wireless communication devices, a small microcontroller as processing 
unit, and an energy source in a form of a battery. Sensor nodes may vary in size and type of 
sensors they are equipped with. Size and cost constraints on sensor nodes cause limitations 
on their resources in terms of energy, memory, and computational processing. Figure 1 
shows an example of a body sensor network. 
Previous studies for activity recognition of PD patients mostly use accelerometer and 
occasionally gyroscope sensors attached to various parts of patients’ body (JJ., HA. et al. 
1991; Aminian, Robert et al. 1999; JI., AA. et al. 2001; JI., V. et al. 2004; N., T. et al. 2004; 
White, Wagenaar et al. 2006; Moorea, MacDougalla et al. 2007; Salarian, Russmann et al. 
2007). One of the main criticisms on the previous studies is that they use centralized 
techniques which not only require expensive equipments to monitor physiological 
conditions and activities of patients [e.g. Vitaport 3 (White, Wagenaar et al. 2006)] but also 
introduce delays in the detection process. Also due to having a single point of failure they 
are more prone to failures and crashes. In contrary, we propose a fusion-based distributed 
algorithm which can be easily implemented on resource constrained wireless sensor nodes 
and detect and distinguish activities in (near) real-time. Our approach offers three main 
advantages: (i) distributed processing and reasoning which decreases the data processing 

www.intechopen.com



 
Sensor Fusion - Foundation and Applications 172 

time and provides fast activity detection and classification, (ii) robustness against sensors 
failure, and (iii) accurate detection through use of sensor fusion. 
 

Fig. 1. An example of a body sensor network. 

Our approach is based on implementing classification techniques on wireless sensor nodes 
attached to patients’ body, online evaluation of the classification results on individual 
nodes, and fusing results of various nodes to resolve possible conflicts between sensor 
nodes and reach a consensus. Previously in (Bahrepour, Meratnia et al. 2009; Bahrepour, 
Meratnia et al. 2009; Bahrepour, Zhang et al. 2009; Bahrepour, Meratnia et al. 2010; 
Bahrepour, Meratnia et al. 2010; Bahrepour, van der Zwaag et al. 2010), we have shown 
capability of machine learning based classification techniques in distributed detection of 
environmental events such as fire. There is no reason to believe that classification techniques 
used in other domains are not applicable for medical domain. The challenge here, however, 
is twofold: (i) investigating capabilities of these classification techniques for a more complex 
data such as activity data, and (ii) being able to determine the most relevant sensor data 
among a large number of sensor types for a specific purpose, e.g., fall detection of PD 
patients. In what follows we address both challenges. 
The organization of this paper is as follows. Section 2 provides an overview of the related 

work. Section 3 introduces the machine learning based classification and sensor fusion 

techniques that will be used in this study for the purpose of activity recognition. In section 4, 

our processing models are introduced, which will be followed by our proposed approach 

explained in Section 5. Section 6 describes the dataset and presents experimental results. 

Conclusions are drawn in Section 7 and the obtained results are discussed.  

2. Related work 

Related work on use of wireless body sensor network in medical domain can be generally 
classified into three groups:  
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i. those related to hardware platform design [e.g. (Kern, Schiele et al. 2003; Park, Liu et al. 
2005; Lorincz, Kuris et al. 2007; Ying, Schlösser et al. 2008; Nabar, Banerjee et al. 2010)];  

ii. those related to activity recognition methods and algorithms (Aminian, Robert et al. 
1999; Veld, M.H.A. et al. 2005; Moorea, MacDougalla et al. 2007; Osmani, 
Balasubramaniam et al. 2007; Salarian, Russmann et al. 2007; Osmani, Balasubramaniam 
et al. 2008; Lee, Kim et al. 2009; Khattak, Vinh et al. 2010); 

iii. those related to making the information flow between patients and medical team more 
efficient [e.g. (Centeno, Giachetti et al. 2003; Martinez-Garcia and Menndez-Olague 
2003; Wijewickrama and Takakuwa 2006; Sanchez, Tentori et al. 2008)].  

While the first group focuses on design and implementation of small, easy to wear, and 
cheap sensor node platforms equipped with a set of sensors, the second group focuses on 
design of computationally light signal processing, feature extraction, classification, and 
pattern recognition techniques. The focus of the third group is on providing timely 
information to the doctors in charge, reducing patients waiting time, and improving 
interaction between doctors and patients, etc.  
The main objectives of performing activity recognition in medical domain are: 

- Prevention (e.g., (Steele, Belza et al. 2003; Wu, Bui et al. 2008; Le and Pan 2009; Benocci, 
Tacconi et al. 2010)   

- Rehabilitation (e.g., (Jarochowski, Shin et al. 2007; Soini, Nummela et al. 2008; Zhang 
and Sawchuk 2009) 

- Assistance and care giving (e.g., (Hou, Wang et al. 2007; S. Bosch 2009) 
To perform activity recognition usually the following steps are taken (Krishnan, Juillard et 
al. 2009; Avci, Bosch et al. 2010; Horst and Meratnia 2011): 
- Sampling, which refers to the process of taking measurements from the body sensors. 

Success of this process heavily depends on robustness of the sensor node platform, 
radio communication, as well as availability of accurate timing. 

- Preprocessing, which involves refining the sensor data. More specifically this step deals 
with noise reduction through for example filtering (Yun, Lizarraga et al. 2003) as well as 
signal transformation through use of for example Fourier transformation (Wu, Pan et al. 
2009). 

- Segmentation, which is the process of identification of beginning and end of an 
important feature in the sensor data stream. Segmentation can be performed manually, 
e.g., (Jafari, Li et al. 2007) or automatically, e.g., (Guenterberg, Bajcsy et al. 2007; 
Guenterberg, Ostadabbas et al. 2009).  

- Feature extraction, classification, and pattern recognition, which refer to the process of 
giving semantic to the identified feature and identification of repeated patterns and 
trends. During feature extraction, time-domain, frequency-domain, or time-frequency 
domain features can be identified.  Techniques such as neural network, Bayes network, 
hidden markov model, support vector machine, and decision trees are often used for 
the classification purpose.  

- Pattern matching, which deals with comparing the identified patterns and features 
either with those identified on other nodes or with pre-defined templates. 

- Feedback, which is the process of taking appropriate action based on output of 
classification. 

For a more elaborate overview of state of the art on use of wireless body sensor networks in 
medical domain, reader is referred to (Abbate, Avvenuti et al. 2010; Avci, Bosch et al. 2010; 
Horst and Meratnia 2011).  
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3. Classification and fusion techniques 

For the purpose of activity recognition and classification, we use Feed Forward Neural 
Network (FFNN), Naïve Bayes (NB), and Decision Tree (DT). For the purpose of sensor 
fusion, we use reputation-based voting and majority voting. In this section, we first provide 
a short explanation of the concepts used by these techniques. 

3.1 Feed forward neural network (FFNN)  
Feed forward neural network (FFNN) is a type of the neural network, in which each layer is 
fed by its back layer (Mehrotra, Mohan et al. 1996). FFNN consists of one input layer, one or 
more hidden layers and one output layer. The challenge faced in using FFNN as a classifier 
is finding correct weights. The process of finding these weights, which is called ‘learning’, 
can be carried out using algorithms such as gradient descent (GD) algorithm (Wikipedia ; 
ALPAYDIN 2004). 

3.2 Naïve bayes classifier (NB) 
A Naïve Bayes classifier uses Bayesian statistics and Bayes theorem to find the probability of 
each instance belonging to a specific class. It is called Naïve because of its emphasis on 
independency of the assumptions. Naïve Bayes classifier finds the probability of 
belongingness of each instant to a specific class.  

3.3 Decision tress 
A decision tree is a learning algorithm that uses tree-like graphs to model and evaluate 
discrete functions (Russell and Norvig 2003; ALPAYDIN 2004). Construction of a decision 
tree for classification purpose requires a training phase (ALPAYDIN 2004), which employs a 
set of data and a learning algorithm to find a minimum depth decision tree. The tree should 
contain the minimum required nodes (or minimum depth) to reduce time and memory 
complexities. Therefore, the training algorithm is usually a local search greedy algorithm to 
find an optimum decision tree (ALPAYDIN 2004).  Once the decision tree is created, the tree 
can be used by evaluating nodes from the root down to the leaves. The final leaf contains a 
value that shows the result of the classification. After the decision tree is constructed in the 
learning phase, it can be pruned to save memory. Pruning is only required for large trees to 
alleviate computational complexity.  

3.4 Reputation-based voting 
Reputation based voting is a fusion technique that happens after classification. Once each 
classifying entity makes its individual decision about belogness of an instance to a class, a 
consensus needs to be reached among the classifying entities. Reputation-based voting 
approaches are based on finding reputation of individual classifying entity and choosing the 
decision made by the classifying entities having the highest reputation. Assuming that 
classifying entities have correctly classified instances, they should judge how well the other 
entities have performed the classification. To do the judgment, each entity first sends its 
classification result, called Detection Value (DV), to all other entities in its neighborhood. 
The DVs received from the neighbors will be stored in a table called Neighbors Detection 
Value Table (NDVT). In the next step, each entity should judge about its neighboring entity 
by considering itself as the reference. The judgment is accomplished by comparing the 
difference between value of entity itself and value of the other neighboring classifying 
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entities. If the difference is less than a threshold value θ  (which is chosen based on the 

context), the “judging” entity gives a positive vote ( 1new oldV V= + ) to the other entities. 

Otherwise, the “being judged” entity receives a negative vote ( 1new oldV V= − ).  Finally, 

NDVT tables are sent to a voter to reach a consensus among different opinions. The 
challenging part of reputation-based voting is how to assign a global reputation value to 
each entity in order to choose high reputed entity and its classification result. There are 
various ways to do so, two of which are explained here:   

3.4.1 Reputation technique 1 
This reputation technique checks local reputation of every individual entity from the other 

entities’ perspective. The local reputation value is obtained based on average value of Vi 

(positive or negative votes which were given by the other entities) for each classifying entity. 

Then, the average local reputation is multiplied by the weight of sensor nodes calculated 

using Equation 1 to assign global reputation values. The class with the highest reputation 

weight (W) is the result of the voting procedure. Equation 1 shows how the weights are 

calculated. 

 W沈 = 迎沈 × 畦潔潔沈 (1) 

where W辿 is the reputation value corresponding to classifying entity i, R辿 is the local 

reputation value of classifying entity i from other entities’ perspective, and Acc辿 is weight of 

classifying entity i (Bahrepour, Meratnia et al. 2010). 

3.4.2 Reputation technique 2 
In this reputation technique, two threshold values, i.e., 肯怠,	肯態 are used. Comparing the local 

reputation value (迎沈) with 肯怠 and	肯態 gives an insight about how well classification is 

performed. If	岫迎沈 ≥	肯怠岻, then classifying entities have made perfect decisions, if 岫肯怠 > 迎沈 ≥	肯態岻 then classifying entities have made OK decisions, and if 岫肯態 	≥ 迎沈岻 then classifying 

entities have made poor decisions. We assign 0.5 to poor classification performance, 1 to 

normal classification performance, and 2 to perfect classification performance. Based on 

these values, this reputation technique uses Equation 2 to assign reputation to each 

classifying entity. 

 W沈 = 鯨沈 × 畦潔潔沈 (2) 

where W沈 is the reputation value corresponding to classifying entity i, 鯨沈 is obtained from 

Eq. 3, and 畦潔潔沈 is weight of classifying entities (Bahrepour, Meratnia et al. 2010). 

 S沈 = 班 になど.5 件血	岫迎沈 ≥	肯怠岻										件血	岫肯怠 > 迎沈 ≥	肯態岻件血	岫肯態 	≥ 迎沈岻	  (3) 

θ1 and θ2 are application dependant. 

3.5 Majority voting 
Majority voting is a simple voting technique, which selects the classification result obtained 

from majority of sensor nodes. 
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4. Classification models  

In this section, we present our general classification models regardless of which classifier is 

being used for the classification purpose. For more information about properties of these 

models and their performance, reader is referred to (Bahrepour, Meratnia et al. 2009; 

Bahrepour, Meratnia et al. 2009).   

4.1 Local classification model 
Local model assumes that each sensor node performs classification individually without 

communicating and cooperating with others. Figure 2 illustrates processing model of local 

classification, which consists of (i) a number of sensors providing input to the classifier, (ii) 

the classifier, which is responsible for activity recognition and determining the belogness of 

each instance to an activity class, and (iii) classification output, which is called activity. One 

should note that not all sensor nodes need to have the same classifiers. 

 
 

 

Fig. 2. Local classification model 

4.2 Fusion-based classification model 
The local approach is simple and works fine in situations, in which the sensor nodes are 

highly accurate and not prone to noises. However, generally speaking sensors, sensor nodes, 

and communication links are not always reliable and their failure is a common practice. 

Fusion-based classification model tolerates individual sensor and sensor node failures and 

involves more than one sensor node in the classification process. By doing so, it ensures that 

there are always some sensor nodes contributing to the classification process and 

compensating for the errors.  The fusion-based approach uses the basic notions of the local 

approach and lets individual sensor nodes first classify and detect activities on their own. 

Then, the classification results are all sent to a fuser/ voter node (e.g., a cluster head) to 

reach a consensus. Figure 3 illustrates processing model of fusion-based classification. 

Similar to the local model, not all sensor nodes (including the fuser node) need to have the 

same classifiers.  

In this study we use fusion-based classification model for activity recognition and 

investigate its performance by making use of various classifiers. Choice of classifier not only 

has direct effect on classification accuracy but also on complexity, as presented in the 

following sections.  

Sensor Nodei 

Running a classifier  
Activity

…
 

Sensors 
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Fig. 3. Fusion-based classification model 

4.3 Computational complexity consideration  
4.3.1 Complexity of local model using FFNN and naïve bayes 
Complexity of FFNN is function of m(number of features or number of nodes in the input 

layer),z (number of neurons in the hidden layer), and p(number of neurons in output layer). 

Equation 4 presents time complexity of FFNN in the local model (Bahrepour, Meratnia et al. 

2009): 

 ( )FFNNO O m z p= × ×  (4) 

 

Complexity of Naïve Bayes is a function of m (number of features), c (number of classes), 

and j (number of partitions for distribution estimation). Equation 5 presents time complexity 

of Naïve Bayes classifier (Bahrepour, Meratnia et al. 2009) in the local model: 

 
( )NaiveBayesO O m c j= × ×

 (5) 

Since training phase of FFNN and Naïve Bayes is conducted offline and only once, the 
computational complexity of training part can be disregarded.   

4.3.2 Complexity of fusion-based model using FFNN and naïve bayes 
When naïve Bayes or FFNN are used in the fusion-based model, the data-fuser has to wait 

till all classification results from the sensor nodes are available. In the worst case for n time 

duration (where, n is the number of sensor nodes involved in the classification process) 

Sensor Node #1 
Running a 
classifier 

Sensor Node #2 
Running a 
classifier 

Sensor Node #n 
Running a 
classifier 

…
 

Data Fuser 
Running a classifier, 

reputation based  voting 

or majority voting  

Activity 

…
 

 

…
 

 

…
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Sensor # i1 
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Sensor #1n 

Sensor # i2 
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FFNN or naïve Bayes classifiers on sensor nodes run in parallel. In this case, computational 

complexities of classifiers running on the fuser and on the sensor nodes are added together. 

The computational complexities of the fusion-based model using FFNN and Naïve Bayes 

are presented by Equation  6 and Equation 7, respectively (Bahrepour, Zhang et al. 2009). 

 [( ) ( )] ( )FFNNO O m z p m z p O m z p= × × + × × = × ×  (6) 

 
[( ) ( )] ( )NaiveBayesO O m c j m c j O m c j= × × + × × = × ×

 
(7)

 

4.3.3 Complexity of local model using Decision Tree  
Complexity of decision tree appraisal is a function of the depth of decision tree. Equation 9 
presents this time complexity: 

 頚岫健剣潔欠健	欠喧喧堅剣欠潔ℎ岻 = 頚岫経結潔件嫌件剣券	建堅結結	欠喧喧堅欠件嫌欠健岻 (8) 

 頚岫詣剣潔欠健	欠喧喧堅剣欠潔ℎ岻 = 頚岫兼岻頚岫詣剣潔欠健	欠喧喧堅剣欠潔ℎ岻 = 頚岫兼岻 (9) 

where 兼 is depth of the decision tree 

4.3.4 Complexity of fusion-based model using decision tree and reputation theory 
Time complexity of the fusion-based model using decision tree as classifier and reputation 
theory as fuser is a function of three parameters: (i) complexity of making the decision tree 
on each node, (ii) complexity of performing local classification on each node, and (iii) 
complexity of performing fusion and reaching consensus between classification results. 
Equation 12 presents the final complexity. 

 
( )

( ) ( ) ( )

           
max[               ]

O Fusion based decision tree with reputation

O Decision tree appraisal O process on the node O reputation voting= + +
 (10) 

 
( )

( ) ( )( ) ( )( )( )

         

[     1 1  ]

O Fusionbaseddecisiontreewithreputation

Max O m O n n O n n n c

=

+ − + − + +
 (11) 

 頚岫繋憲嫌件剣券	決欠嫌結穴	穴結潔件嫌件剣券	建堅結結	拳件建ℎ	堅結喧憲建欠建件剣券岻 = 頚岫券態岻 (12) 

where 券 is the number of nodes 

4.3.5 Complexity of fusion-based model using decision tree and majority voting  
Complexity of classification process of fusion-based model using decision trees is 頚岫兼怠 +兼態 +⋯+兼津岻 = 頚岫兼岻; where 券 is the number of nodes involved in the classification and 兼 
is depth of the decision tree. Since the voting is independent from the classification, its time 
complexity is added to the classification time as shown in Equation 13. Equation 16 presents 
the final complexity of fusion-based model using decision trees and majority voting. 

 
( )

[ ]( ) ( )

         

[    1] )   [   ,    ]

OO Distributedapproachusingmajority voting

O m O Majority voting Max m Majority voting

=

+ =
 (13) 
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( )

( )

       
  O(m)

O Distributedapproachusingmajority voting

O Max finding

=

+
 (14) 

 

 頚岫max 血件券穴件券訣岻 = 頚岫c岻 (15) 

 頚岫頚岫経件嫌建堅件決憲建結穴	欠喧喧堅剣欠潔ℎ	憲嫌件券訣	兼欠倹剣堅件建検	懸剣建件券訣	岻 = 頚岫潔岻 + O岫m岻岻 = 頚岫兼岻 (16) 

where 兼 is depth of the decision tree, and 券 is number of nodes in the network. 

4.4 Computational comparison  
The time complexities of local and fusion-based models using different classifiers and fusers 

are summarized in Table 1. 

 

Model Time complexity 

Fusion based model using 
FFNN 

( )O O m z p= × ×  

Fusion based model using 
Naïve Bayes 

( )O O m c j= × ×  

Fusion based model using 
Decision Tree and 
Reputation-based voting 

頚岫券態岻 
Fusion based model using 
Decision Tree with majority 
voting 

頚岫兼岻 
Table 1. Complexity comparison of local and fusion-based classification models with 
different classifiers 

where 券 is the number of sensor nodes in the network, 潔 is number of classes, m  is number 

of features, and j  is number of partitions for distribution estimation. 

5. Data description and empirical results  

5.1 Activity dataset and feature reduction process 
To investigate applicability of the aforementioned classifiers for the activity recognition task 

in the medical domain, we used an activity dataset provided by Enschede Hospital 

(Medisch Spectrum Twente). The dataset consists of data from sensors attached to a 25 year 

old person, while he had been walking, sitting and standing still. The dataset contains 30 

features from 5 tri-axial accelerometers and 5 tri-axial gyroscope sensors located on feet, 

shank, thigh and trunk. To find the most important features of the dataset, we first 

developed a feature reduction technique using genetic algorithm and decision tree. Feature 

reduction is the technique of selecting a subset of relevant features for making robust 

learning models. By removing redundant features from the dataset, feature selection helps 

improve the performance of learning models by (i) alleviating the effect of the curse of 
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dimensionality, (ii) enhancing generalization capability, and (iii) speeding up learning 

process (Isabelle Guyon 2006). Genetic algorithms (GAs) belong to the larger classes of 

evolutionary algorithms (EAs) that generate solutions to optimization problems using 

techniques inspired by natural evolution, e.g., inheritance, mutation, selection, and 

crossover  (Goldberg 1989). GA optimizes the features in order to find those most 

contributing to the classification process. Using GA for feature reduction, we first selected 

four most contributing features from the dataset. A decision tree was then created using 

these four features and its classification accuracy was considered as the fitness value for the 

four features. After the feature reduction process, our activity dataset contained four 

features, 8330 instances of data and three classes namely walking, sitting, and standing still. 

Figure 4 shows data distribution for these three classes and Table 2 presents statistical 

information of dataset, while the four features of the dataset are: ‘Z’ vector of gyroscope 

installed on the right foot, ‘Y’ vector of accelerometer installed on trunk, ‘Z’ vector of 

accelerometer installed on trunk, and ‘X’ vector of accelerometer installed on left foot. As it 

can be seen from Figure 4, data representing three classes have a high degree of overlap, 

which makes the dataset very complex for the classification process.  

 

Feature Min Max Mean STD Info 

1 9.233 10.7756 -0.040 1.4355 
right foot gyroscope Z 

vector 

2 78.7644 50.0057 -3.9921 6.942 
trunk accelerometer Y 

vector 

3 -24.5415 20.3732 -2.8579 2.2486 
trunk accelerometer Z 

vector 

4 29.8074 1.8017 -4.4615 2.753 
left foot gyroscope X 

vector 

Table 2. Activity data set information (8360 instances, 3 classes: stand still, walking, sitting) 

To simulate the classification process, we use Matlab® to train and test every individual 

node separately. In the training phase, first the classifiers (local model) running on the 

sensor nodes are trained. Then, according to the trained classifiers on sensor nodes, the 

fuser (fusion-based model) is trained. In the test phase, an instance of data is given to all 

sensor nodes and then their outputs are fused using either another classifier or a voting 

technique. Training phase is conducted with 2/3 of data and testing is performed with 

1/3 of data. 

5.2 Empirical results 
We perform each activity classification experiment ten times and accuracy ratios are 

reported in Table 3.  

According to Table 3, fusion based models using decision trees and reputation-based voting 

(technique 1 and 2) and using majority voting provides more accurate activity recognition. 

Additionally, in this specific dataset (activity dataset) reputation based voting technique 1 

and 2 provides the same accuracy ratio.  
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(a) 

 

(b) 
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(c) 

 

 

 
(d) 

 

Fig. 4. Data distribution of three classes per each feature: (a) ‘Z’ vector of gyroscope installed 
on the right foot, (b) ‘Y’ vector of accelerometer installed on trunk, (c) ‘Z’ vector of 
accelerometer installed on trunk,  (d) ‘X’ vector of accelerometer installed on left foot 
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Model Classification Accuracy 

(Mean) 

Standard Deviation 

Fusion based model using FFNN 73.6022 1.4858 

Fusion based model using Naïve 
Bayes 

73.4624 1.2771 

Fusion based model using 
Decision Tree and Reputation-
based voting (technique 1) 

78.9881 0.7820 

Fusion based model using 
Decision Tree and Reputation-
based voting (technique 2) 

78.9881 0.7820 

Fusion based model using 
Decision Tree with majority 
voting 

78.6712 0.9836 

Table 3. Accuracy and standard deviation of activity classification and recognition 

5.3 Parameter study  
There are some parameters in our classification process, which can affect classification 

accuracy. These parameters include (i) type of the classifiers, (ii) internal parameters of the 

classifiers (e.g. number neurons in hidden layer for FFNN), (iii) number of sensors, and (iv) 

type of sensors. In (Bahrepour, Meratnia et al. 2010), we have shown that the most effective 

parameter in fusion-based classification is the sensor types. This means that it is important 

to identify the most contributing sensors and ensure their presence in the classification 

process. As mentioned in Subsection 5.1, using a genetic algorithm and decision tree in the 

feature reduction process, we have identified the most contributing features of the dataset. 

In this section we study internals parameters of classifiers and their effects on classification 

accuracy. 

5.3.1 Effects of internal parameters of feed forward neural network (FFNN) on 
classification 
Internal parameters for FFNN are number of hidden layers and number of neurons in 
each hidden layer. The hidden layer in FFNN can grow vertically, horizontally and bi-
directional (in both horizontal and vertical). The vertical growth means keeping number 
of hidden layers as low as possible and increasing the number of neurons in hidden 
layers. Number of neurons can also be kept as low as possible while number of hidden 
layers is increased. This process is called horizontal growth. A combination of both 
vertical and horizontal growth is also possible (bi-directional growth). To see the effects of 
growth in different directions, we performed several experiences, whose results are 
reported in Table 4.   
Generally speaking, vertical growth of neural network leads to more accurate results 

comparing to horizontal growth. Moreover, by increasing number of hidden layers and/or 

neurons in the hidden layers, the accuracy enhances; however, at a certain point increasing 

hidden layer elements decreases the accuracy.  Therefore, number of hidden layers as well 
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as their neurons in each layer should be increased to the point which generates the highest 

accuracy. This is obtained experimentally. 

 
 

 
 

Fig. 5. Accuracy and standard deviation of activity classification and recognition. 

 
 
 

 Hidden Layers Neurons Accuracy STD 

Horizontal growth 1 1 45.52 0.92 

10 1 46.33 0.61 

100 1 46.59 1.01 

1000 1 64.27 13.07 

Vertical growth 1 10 55.77 1.37 

1 100 58.53 1.22 

1 1000 44.57 18.49 

Bi-directional growth 10 10 51.44 0.92 

 

Table 4. Effect of neural network’s internal parameters on classification accuracy 

5.3.2 Effects of internal parameters of naïve bayes (NB) classifier on classification 
The only parameter for Naïve Bayes classifier is number of partitions for making a 
histogram. Table 5 shows how this parameter affects classification accuracy.  

www.intechopen.com



 
Sensor Fusion-Based Activity Recognition for Parkinson Patients 185 

Partitions Accuracy STD 

10 55.81 1.61 

100 66.34 2.00 

1,000 67.81 1.01 

10,000 66.51 0.76 

100,000 57.99 1.2 

Table 5. Effect of Naïve Bayes’ internal parameters on classification accuracy 

As it can be seen in Table 5, generally speaking increasing number of partitions leads to 
increase of the classification accuracy. However, at a certain point either the accuracy stays 
roughly the same or drops.  

5.3.3 Effects of internal parameters of decision tree (DT) on classification 
Decision trees have almost no internal parameter because the whole tree is made during the 
training phase. However, after the training phase, the obtained tree can be pruned and some 
less-contributing branches can be removed. We performed a number of experiments, in 
which we prune the decision tree created for the activity dataset to a degree that tree has 
only one node. Figure 6 illustrates the effect of this pruning on classification accuracy. As it 
can be seen, pruning causes degradation of classification accuracy, in general. One also 
notices that for our activity dataset, pruning first increases the accuracy to some extent and 
then decreases it. The reason for this behavior is that the tree is over branched (i.e., almost 
240 level tree is sophisticated enough to create some ambiguity and inaccuracy in the 
classification). Reducing some branches helps tree be simpler and perform classification 
slightly more accurate. However, at a certain point the accuracy drops. A general conclusion 
is, pruning causes reduction in accuracy ratio because the decision tree has to perform 
classification with fewer nodes.  
 

Fig. 6. Pruning and its effect on classification accuracy 
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6. Conclusion 

Fall detection is a common problem in PD patients. Accurate activity classification and 
recognition is one of the first steps towards on time fall detection. Body senor networks 
are an emerging technology enabling online and distributed monitoring of both physical 
and physiological conditions of patients. Integrating this monitoring capability with 
(near) real-time activity recognition and classification can speed up the fall detection 
process and enable provision of timely feedback and assistance. To this end, having a 
thorough understanding of capabilities and performance of classification techniques is 
essential.  
In this paper we investigated applicability of three classification techniques, i.e., Naïve 
Bayes, Feed Forward Neural Network, and Decision Tree for activity recognition in medical 
domain and showed how fusion-based classification can improve classification accuracy. In 
addition to considering classification accuracy, we studied effects of internal parameters of 
the classifiers on the classification performance and compared various techniques in terms 
of their complexity.  
Activity recognition in medical domains requires inexpensive and easy wearing hardware 
components and computationally-light algorithms. To this end, our fusion-based 
classification technique offers three main advantages: (i) distributed processing and 
reasoning which decreases the data processing time and provides fast activity detection, 
(ii) robustness against sensors failure, and (iii) accurate detection through use of sensor 
fusion.  
We performed a number of experiments using an activity dataset collected from a 25 year 
old person walking, sitting, and standing still. Performing an offline analysis shows high 
complexity of the dataset, as data representing three classes have a high degree of overlap. 
The evaluation results show that, considering this high complexity of the dataset, our 
fusion-based technique can reach reasonable classification accuracy.  
Our future plans include design of temporal learning techniques to increase detection 
accuracy over time. 
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