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1. Introduction  

In target tracking, the primary algorithm for estimating the target state has been the 

Kalman filter(Blackman, 1986) and (Blackman and Popoli, 1999).  This workhorse 

algorithm and its nonlinear implementation, the extended Kalman filter (EKF), provide 

both an estimate of the target kinematic state, e.g. position and velocity, and an estimate 

of the error covariance associated with the target state (Brown, 1983).  The linear Kalman 

filter is given as 
 

 1
| 1 | 1( )T T

k k k k k k
−
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where x is the track estimate, H is the output-coupling matrix that maps the track space to 

the measurement space, F is the state-coupling matrix that models the target motion, z is the 

measurement from the sensor, P is the error covariance, K is the Kalman gain that weights 

the residual or innovation, R is the measurement error covariance, and Q is the process 

noise. The subscript k is the scan, k|k indicates the update from the new measurement, and 

k+1|k denotes prediction.  The basic premise of the Kalman filter is that the measurements 

are Gaussian random variables and the target motion’s error or process noise is also 

Gaussian.  For this reason, the Mahalanobis distance (Blackman, 1986) and (Mahalanobis, 

1936) 

 ( ) ( )1

1 2 1 2 1 2
( ) ( ) ( )

T T −− + −h x z HPH R h x z  (2) 
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has been used as a measure to determine how “close”  a measurement is to a given track.  

The inner product measure of Eq. (2) weights the residual in measurement space by the 

error covariance: 

 
1 2

T +HPH R  (3) 

Thus, a large covariance error reduced the effect of large differences.  This chi-squared 

random variable has provided the primary scoring algorithm for the data association step in 

the tracking problem as seen in the Bowman model (Steinberg, Bowman, and White, 1999) 

in Fig. 1.   

 

 

Fig. 1. Target Tracking Functional Flow. 

While the Kalman filter has its strengths, the Gaussian assumption is not always accurate.  

As seen in Figure 2, a simplified model of a passive acoustic measurement is not well 

approximated by a Gaussian model.  Near-field measurements of such a sensor have greater 

errors as shown in Figure 3.  With terrain and mapping information, target limitations and 

sensor blockage (Figure 4) cannot be mapped without changing the underlying Gaussian 

assumption of the Kalman filter as done in (Yang and Blasch, 2009).   
 

 
(a)                                                                         (b) 

Fig. 2. a) Measurement Distributions – One with Uniform Distribution and One with 

Gaussian b) Measurement Distributions – With Gaussian Distribution Used to Approximate 

a Uniform Distribution 

A number of techniques have been derived to handle these issues.  Some of the basic 

techniques include the use of Gaussian sums (Alspach, 1970) and (Alspach and Sorenson, 

1972) to approximate the non-Gaussian sensor measurements.  The so-called unscented 

Kalman filer (UKF) (Haykin, 2002) and the particle filter (Arulampalam et al, 2002) use 

samples of the probability density functions to combine the random variables of the track 
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and measurement.  In (Stubberud, 2003) and (Stubberud, 2000), a sequential estimator that 

can incorporate constraints on the target state without a Gaussian assumption was 

developed.  The single Mahalanobis distance of Eq. (2) is not valid for the Gaussian sum and 

completely invalid for the other techniques. 

 

 

Fig. 3. Near field measurement error 

 

        

Fig. 4. Uncertainty error ellipses are affected by sensor blockage. a) Gaussian ellipses and 

blockage indicated; b) resulting alteration of ellipse. 

Also, target tracking has grown beyond simple kinematic tracking.  The use of classification 

information has also been incorporated into target track states.  Usually, a Bayesian 

taxonomy (Pearl, 1988) or a Dempster-Shafer algorithm (Dempster, 1967) and (Shafer, 1976) 

has been employed to provide the scoring for the classification association of the 

measurement to the target state.  The kinematic score is then combined with the 

classification score using a technique defined by the implementer.   

Besides the improvement in the tracking algorithms, data fusion has grown well beyond the 

target tracking application.  As defined in (Steinberg, Bowman, and White, 1999), fusion 

now covers a number of interpretations of information from a wide variety of sources.  

Applications are more varied than the military surveillance and targeting that founded the 

research.  However, as discussed in (Stubberud, Shea, and Klamer, 2003) and (Llinas et al, 
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2004), the association step is still important.  Techniques that do not rely on a Gaussian 

random variable are necessary. 

In this chapter, an association technique that maps data into image representation is 

presented.  The images are compared using a phase-only filter (POF) technique to provide a 

correlation score.  The data can be from any source.  Each source may contain an uncertainty 

measure or not.  A single association score results. 

The development of this effort begins with a previously developed fuzzy logic kinematic 

association scoring technique that did not rely on the Gaussian assumption.  This approach 

provides the foundation for incorporation of uncertainty into the image representation.  The 

fuzzy approach discussion is followed by the original image correlation technique without 

uncertainty.  The uncertainty incorporation is then developed and example of tracking with 

kinematics and classification is provided 

2. Data association using fuzzy logic 

With the desire for more accurate target tracking (Smith and Singh, 2006) and the 

incorporation of terrain information into tracking systems (Shea et al, 2000) the use of 

Gaussian models for target tracks and their associated uncertainties became less desirable.  

While new methods for incorporating non-Gaussian measurements into track states were 

being developed, different metrics and association routines were being developed for 

measurements and tracks that were modeled as generic probability density functions.  One 

such method used in some tracking system is the Dempster-Shafer method.  This technique 

does not require any specific probability density function.  It is a powerful tool but complex 

to implement. Other approaches that have been researched use fuzzy logic. 

One fuzzy logic approach for association was developed to emulate the chi-squared metric 

(Stubberud and Lugo, 1999).  The fuzzy logic approach used a linguistic model of two 

interpretations of the chi-squared metric for Gaussian tracks and measurements. Using this 

basic concept of fuzzy logic (Kosko, 1992), two interpretations of the chi-squared metric 

were used.  The first, a mathematical description, was that the distance between the means 

was relative based on the size of the covariances. A layered fuzzy logic approach (see Figure 

5) was developed where the size of the error covariances of the target and the measurement 

were used to generate the parameters of the membership functions of the antecedent with 

regards to the size of the residual. 

 

 

Fig. 5. Layered fuzzy logic is used to reduce computational explosions by making the 

parameters of membership functions dependent on inputs as opposed to adding to the 

inference engine.  
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The second interpretation, a graphical interpretation, determined amount of overlap that the 

2-sigma ellipses for the measurements created relative to the maximum amount of overlap 

possible.  Then the three inputs, residual size and the two percentages of overlap, are 

operated on by the inference engine, as shown in Figure 6, and that results in the association 

score.  This approach was shown to have comparable behavior to the chi-squared metric in 

two standard challenge problems, crossing targets and closely spaced parallel targets.   

The development of the fuzzy association scheme was then extended to handle the two 

cases where measurements and/ or tracks that had uniform probability density functions, 

(Stubberud and  Kramer, 2006) and (Stubberud and Kramer, 2007).  The first case considered 

two uniformly distributed representation. The association is performed using the graphical 

interpretation of overlapping areas.  As seen in Figure 7, when the uniform distributions are 

being associated, the scoring can be looked at as the graphical interpretation.  A percentage 

of overlap between the two density functions can be interpreted to give a score between 0 

and 1.  The fuzzy system operates on the overlapping region.   

 

 

Fig. 6. Association score is generated using three inputs:  overlap of the measurement 

uncertainty, overlap of the track uncertainty, and the residual size. 
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Fig. 7. Two uniform distributions show that overlap is the primary interpretation of their 

association. 

The area of the overlapping region is compared to the possible percentage of overlap and a 
score is determined.  The antecedent functions for each percentage is defined as shown in 
Figure 8. 

 

 

Fig. 8. Example antecedent functions 

The consequence functions shown in Figure 9 are used to provide the association score. 

 

 

Fig. 9. Example consequence functions 

In the second case, a Gaussian track and uniform measurement (or vice versa) was 

considered. The layered fuzzy logic approach with regards to the residual distance is again 

used to create the membership functions used to input information to the inference engine.  

The distance measure is the average distance from the Gaussian mean to the vertices of the 

uniform distribution and the mean of the uniform distribution.  Figure 10 shows the 

distances used to form the measure for one example.   

www.intechopen.com



 
Data Association Techniques for Non-Gaussian Measurements 83 

 

Fig. 10. Association of a Gaussian to a uniform distribution is dependent on both overlap 

and a modified residual. 

The kinematic solution for fuzzy association was applied to other classes of probability 

density functions for research purposes.  These efforts led to the concept of generating rule 

bases for different applications of association such as target classification and threat 

assessment.  In these applications, the values can be discrete, continuous, or both.  The 

associated uncertainties which are represented by the covariance matrix in the Gaussian 

representations often are not even measured values.   For such applications, the use of fuzzy 

logic is quite effective.  For the Level 1 target tracking application, classification is an 

important component of sensor reports and track description.  

For classification information to be incorporated into the target track, the measurements 

can exist in two forms:  target class and attribute information.  For the target classification 

type measurements, two typical formats include a class and an associated quality score or 

a set of possible classes with associated probabilities (Pearl, 1988) or levels of evidence 

accrual  (Stubberud, Kramer, and Geremia, 2007).  For the former format, reports are 

provided similar to those exemplars listed in Table 1.   The report is a pre-defined 

classification of the target.  This is considered the measurement.  The quality score can be 

a covariance as with Report 1, a probability as with Report 2, or generalized quality level 

as given with Report 3.  The second reporting scheme provides a number of potential 

classes that the target may be, as seen in Table 2.  Each possible class has an associated 

probability or degree of evidence.  The reports look as a discrete probability density 

function.  The probabilities should incorporate the quality in their generation.   The 

evidence accrual results each have an associated quality score with them as shown in the 

table.  In application, different classification algorithms have different methods of 

reporting results.  Therefore, a centralize fusion system must be able to associate and 

combine the different reporting schemes.  For target classification association, when the 

measurement reports are provided as a target class the fuzzy association scheme is 

implemented as seen in Figure 11. 

 

 

Fig. 11. Classification Association Process Flow 
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Target Class Uncertainty/ Quality 

1 2 (APC) 2.5 

2 Tank 0.62 

3 Truck Good 

Table 1. Exemplars of Classification Reporting Schemes and Their Uncertainties 

 

Target 

Track # 

Class 1 

(Tank) 

Class 2 

(APC1) 

Class 3 

(APC2) 

Class 4 

(APC3) 

Class 5 

(Truck) 

1 .1 .4 .3 .1 0 

1 (Unc) NA NA NA NA NA 

2 .8 .5 .5 0 0 

2 (Unc) .01 .2 .01 0 0 

Table 2. Exemplars of Probability and Evidence Accrual Based Reporting Schemes 

The actual class is mapped through a fuzzy logic system to map the various classes into 

related values.  For example, tank can be mapped into several values.  Three such values are 

armored vehicle,  large vehicle, and tread vehicle.  An armored personnel carrier (APC) could 

map into armored vehicle, medium vehicle or large vehicle, and tread vehicle or wheeled vehicle.  

The fuzzy mapping would therefore a set of consequence membership functions for each 

value.  These values then create a vector similar to the position and velocity vector for 

kinematics: 

 

1

2

3

4

class

Tank

APC

APC
x

APC

APC

Truck

 
 
 
 

=  
 
 
 
  

 (4) 

The vector can be from one element to over a hundred elements that measure each attribute 

that various sensors can provide.  The vector of the measurement and its counterpart for the 

target track then can create a residual vector 

 Meas Track
class class classz x x= −  (5) 

Based on the different classification schemes six different reporting schemes exist as defined in 

Table 3.  In each case, the following fuzzy logic association scheme is used as the basis with 

minor modifications in its implementation.  Figure 12 shows the functional flow of this basis.  

As with the kinematic fuzzy association technique, the foundation is to use the Mahalanobis 

distance to build the algorithm.  A residual of each classification vector exists from above.  The 

next step is to generate a comparable uncertainty score.  Unlike the Gaussian generation of the 

covariance, the score here will be a weighting, w-1, for the inner product 

 _ T
class classassoc score z z−= 1w  (6) 

www.intechopen.com



 
Data Association Techniques for Non-Gaussian Measurements 85 

 

Fig. 12. Classification Uncertainty Association Incorporation 

If the measurement or track is defined by a level of quality, the consequence membership 

function of Figure 13 is used.  As with all previous defuzzification steps, the authors have 

used a center of gravity method.  This is not a requirement but simply a preference.  For 

evidence accrual technique, the associated covariance for the given class mapped to the 

consequence function using the antecedent membership function and the associated 

inference engine in Figure 14.  The probability reports have a covariance set as a good 

covariance.  The weighting score is generated using the fuzzy process defined in Figure 12. 

 

Association  Report 1 Report 2 

Type 1 Class/ Quality Class/ Quality 

Type 2 Class/ Quality Probability 

Type 3 Class/ Quality Evidence 

Type 4 Probability Probability 

Type 5 Probability Evidence 

Type 6 Evidence Evidence 

Table 3. Possible Association Combinations 

For association Type 1 defined in Table 3, this is the process to compute the weight for 

Eq. (6)  which is then the association score.  For Type 2, the association score is generated for 

each potential class and multiplied by the probability of each class 

 
_

1

_
num class

i i
i

p assoc score
=

⋅  (7) 

 

 

Fig. 13. Consequence Membership Function for Quality Mapping 
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Fig. 14. Antecedent Function and Inference Engine for Numeric Quality Mapping 

Type 3 is similar to Type 2 except that the probabilities used in Eq. (7) are replaced by a 

normalized evidence score for each class 

 
_

1

i
i num class

i
i

e
p

e
=

=


 (8) 

Type 4 is generated by performing the association scores for each permutation and 

weighting them appropriately with the two sets of probabilities 

 
_ _

1 1

_
num classnum class

j i i
i i

p p assoc score
= =

⋅ ⋅   (9) 

Type 5 replaces one set of probability scores from the Type 4 technique with one set of 

normalized evidence scores from Eq. (8). Type 6 association is the same as Type 4 

association with the exception that the probabilities are replaced normalized evidence 

scores. 

3. Optically inspired correlation 

Optical computation is the process of using the physics of light, lenses, and filters to provide 

specific computations at the fastest speeds possible, the speed of light.  By modeling light’s 

behavior with mathematical functions, these functions can be performed on dedicated 

hardware platforms.  One such function is that of optical correlation (Kumar, Mahalanobis, 

and Juday, 2005).  The process is shown in Figure 15.   

Coherent light is passed through a thin film Red-Green-Blue (RGB) screen called a spatial 

light modulator (SLM).  On one of the set of pixels (assume Red) or channel, an image is 

placed.  The coherent light projects this image through lens onto a second SLM.  The new 

image is the two-dimensional (2D) Fourier transform or fast Fourier transform (FFT) of the 

image on the first SLM.  On the second channel, the 2D-FFT of a comparison image is placed 

and the pixels are individually multiplied.  The resulting multiplied image is placed in the 

third channel and projected by the coherent light through a second lens onto a third lens.  

This provides the inverse 2D-FFT of the combined image which is actually the correlation 
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Fig. 15. Optical correlation functional flow using an optical correlation device. 

function.  (This will be mathematically described below.)  For clarity, the input image at the 

first SLM will be the measured or test image.  The image whose 2D-FFT is placed at the 

second SLM is the reference image.  As seen in Figure 16, if the reference image is centered 

when transformed so that the correlation peak will be centered about the location of the 

reference image in the test image.  In the case of Figure 16, two copies of the reference image 

exist in the test image and, thus, two correlation peaks exist.  Both are centered about their 

locations in the test image.  This implies that optical correlation can be used for both fast 

processing and parallel processing (multiple correlation comparisons simultaneously). 

One problem with the optical correlator is that the SLMs limit the range of values that the 
image amplitude can attain.  The pixels are integer values between 0 and 255.  The image at 
the last SLM is only the real part of the final transform.  Also, in some optical correlators, the 
amplitude of the test image’s 2D-FFT is normalized to 1, (Kumar, Mahalanobis, and Juday, 
2005).  This is a physical limitation in optical correlators, especially early versions.  The 
normalization of amplitude implied that only the phase information was used.  Despite this 
apparent limitation, this so-called phase-only filter has actually provided improved 
correlation results. 

 

 

Fig. 16. Two correlation peaks are created aligned with the location of the reference image in 

the input image. 
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The mathematics of the optical physics is straightforward.  The standard correlation 

function between two images F and G, is defined as 

 

( ) ( )

( ) ( ) ( )

( )

*

*

2
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         , ,

           ,
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x y x y
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 



  (3) 

As in basic signal processing (Oppenheim, Willsky, and Hamid, 1996), the spatial or time 

domain can be computed using frequency domain techniques.  The frequency domain 

version of the correlation function is defined as 
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where F is the Fourier transform.  With amplitude information normalized, the POF form of 

the correlation function based on the optics is 
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 (5) 

With the advent of faster computers and the desire to avoid using specialized hardware, the 

optical correlator is rarely used but the mathematics of the optical physics provides a 

powerful tool for the correlation problem which can be applied to the data fusion 

association problem. 

3.1 Amplitude tile 
For the Level 1 fusion problem, the image used for correlation is referred as a tile.  The tile is 

a two-dimensional image that maps data about the target track and the measurement 

reports into an amplitude plot.  Figure 17 presents an example of a amplitude tile.  In this 

case, the tile is 50 x 200 pixel image. The attributes of the target track vector or the 

measurement vector are the vertical components.  The horizontal components are the time 

reports. Each 10 x 10 block represents a given attribute at a given time.  The rows or 

attributes are defined as: 

• target latitude 

• target longitude 

• target altitude 

• target speed 
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• target course heading 

• target classification 

 

 

Fig. 17. The amplitude tile creates blocks valued between 0 and 255. 

The columns are these attributes at different times. For amplitude tile, the intensity of each 

10x10 block is a value between 0 and 255.  The range of values for position is limited by the 

region of interest.  This implies that, if the region of interest is for air targets between 

latitude 32°N and 40°N and 25°E and 33°E, each degree change for latitude the intensity 

would change by 31.875 in amplitude as would each change in intensity for longitude. 

Similar ranges could be created for the other attributes. 

3.2 Phase tile 
The image tiles can be created in a different format.  This second 10x10 block format is that 
each pixel of the (m,n)th block is generated by 

( ) ( )sin sinm mn mn m mn mni jω φ ω φ+ ⋅ +  

where m is the number of attributes and n is the number of time steps.  The values of i and j 

represent the individual pixel within the 10x10 block. An example of a tile from this phase 

generation is shown in Figure 18. 

The phase variations range between 0 and 180 degrees depending on the attribute value.  

The selection of the phase would be made similar to the amplitude change above.  Each  

attribute has its own frequency as well.  This is done to separate each attribute more clearly 

in the frequency domain.  

4. Image-based association with uncertainty and classification information 

The image correlation technique, described in Section 3, has been demonstrated to work 

comparably to the techniques that use the chi-squared metric based on the Mahalanobis 

distance (Stubberud and Kramer, 2010a) and (Stubberud and Kramer, 2009). The 

incorporation of uncertainty into the algorithm began with the use of a sample set of points 

in the uncertainty ellipse (Stubberud and Kramer, 2010b). An iterative process of association 

scores were generated and weighted similar to the technique that was developed in this 

chapter for the fuzzy logic association applied to the classification problems where evidence 

or probabilities described the measurement. The technique is easily extended to uniform 
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distributions  as well as other distributions.   In this section, an uncertainty model is 

introduced that remaps the phase distribution for the uncertainty model using fuzzy logic 

techniques derived from the methods of Section 2.  The section concludes with the 

incorporation of classification information where the Gaussian assumption is not valid. 

 

 

Fig. 18 The phase tile maps sinusoids with phases between 0 and 180 degrees. 

4.1 Fuzzy logic applied to phase variation for tile generation 
In (Stubberud and Kramer, 2009) a fuzzy logic approach to the data association problem was 

developed.  There, the technique used multi-layered fuzzy logic to create a score by 

implementing a linguistic interpretation of the chi-squared metric.  Closeness was based on 

the weighted distance between the two track elements.  It also considered the overlap of the 

error ellipses.  In this approach, a similar view of the error ellipses is used. Instead of using 

complex mathematical distances which would be adverse to the simplicity of the image 

correlation technique, a basic fuzzy logic approach is developed to adjust the tile creation 

based on the uncertainty ellipse size and orientation. 

The first variable to be mapped is that of the orientation of the error ellipses.  The fuzzy 

memberships are defined as five potential angles of the error ellipse relative to the longitude 

(x-axis). As seen in Figure 19, the memberships are 0o, 45o, 90o, 135o, 180o.  The alignments 

provide two inputs to the fuzzy decision process described in Figure 20.  The first is a 

weighting factor that is generated using the crisp value of the antecedent functions.  These 

weights are used in the defuzzification process of the second defuzzification step in Figure 

20. The second input is the different rules that are activated from the inference engines in 
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Tables 4 and 5 which relate to longitude component of the target track (or the x-axis) or the 

latitude component of the track (x-axis).    These rules from the first stage determine vary the 

inputs to the inference engine the second stage (Table 6).  The variations in the inputs are 

defined in Table 7.  The input A indicates the average size of the minor or major axes of the 

uncertainty ellipse of Track 1 and B indicates the average of minor or major axes of Track 2.  

The table also indicates that multiple instantiations of the fuzzy inference engine are used in 

several cases. 

 

 

Fig. 19. The antecedent triangular membership functions used to determine the alignment of 

the uncertainty ellipses. 

 

Degrees 

Longitude 
0 45 90 135 180 

Effect 1 2 3 2 1 

Table 4. Inference Engine Major Axis Alignment of Covariance Effect on Longitude (x-axis) 

 

Degrees

Latitutde
0 45 90 135 180 

Effect 3 2 1 2 3 

Table 5. Inference Engine Major Axis Alignment of Covariance Effect on Latitude (y-axis) 

 

 

Fig. 20. The fuzzy logic process to vary the tile generation used in image correlation track 

association process. 
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   B 

  Small Medium1 Medium2 Large 

A

Small 1 2 3 4 

Medium1 2 3 4 5 

Medium2 3 4 5 6 

Large 4 5 6 7 

Table 6. Inference Engine of Averaged Aligned Error Covariance Axis Sizes  

The second process is based on the size of the axis of interest of the uncertainty ellipse.   The 

actual uncertainty in the directions of latitude and longitude are mapped to membership 

functions in Figure 21.  The elements of the membership functions are small, medium_one, 

medium_two, and large.  Since the uncertainty measure is global, i.e., averaged over the 

entire time window, the results will affect all of the time subtiles of the entire attribute 

similarly.  The proposed inference engine, defined in Table 4, vary depending on the 

alignment rule from the first step.  If multiple instantiations are desired, then the output of 

each instantiation is weighted by the noted factor in Table 5. An NA indicates that those 

rules are not used and result in a zero value for that component.   

 

 

Fig. 21. The antecedent triangular membership functions used to determine the size of the 

uncertainty ellipses axis. 

 

Alignment Component 

T1 T2 Wt. A1 B1 A2 B2 A3 B3 A4 B4 

1 1 1 Maj Maj NA NA NA NA NA NA 

1 2 0.5 Maj Min Maj Min NA NA NA NA 

1 3 1 Maj Min NA NA NA NA NA NA 

2 1 0.5 Maj Maj Maj Maj NA NA NA NA 

2 2 0.25 Maj Maj Maj Min Min Maj Min Min 

2 3 0.5 Maj Min Min Min NA NA NA NA 

3 1 1 Min Maj NA NA NA NA NA NA 

3 2 0.5 Min Maj Min Min NA NA NA NA 

3 3 1 Min Min NA NA NA NA NA NA 

Table 7. Alignment Effects on the Covariance Inference Engine and Process 
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To simplify the development in this paper, the association score is generated on only the 

position data.  The extension to include velocity is simply to repeat the process on the 

velocity measures and uncertainties.   

The consequence function is the same as that seen in Figure 22.  The defuzzified value is 

used to reduce the phase range. 

 

 

Fig. 22. An Example of the Change in Range of the Phase Variation Based on Track 

Uncertainty.  

4.1.1 Incorporating uncertainty as a quantization of the phase separation 
To vary the phase difference in generating the subtiles using uncertainty, at each time 

instance, an estimate of the effects of both track’s uncertainty on the association score is 

made.  For each attribute, a modification score using the fuzzy logic process described in 

Section 4 is made.  This modification score is computed for each attribute at each report time 

or scan for both tracks.   

The modification score changes the range of phase values used to adjust the phase of each 

attributes value. As seen in Figure 22, the linear range of values is reduced as the 

uncertainty becomes larger.  The nominal range is from 0o to 180o. As the range shrinks the 

variation in the phase for changes becomes less.  As would be the case with the chi-squared 

metric, larger differences can be tolerated. 

4.1.2 Example and results 
To analyze the performance of the new image-correlation association that incorporates 

uncertainty, a scenario with two targets and four sensor systems was generated to compare 
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the incorporation of uncertainty in a global manner to image-correlation data association 

routine.  The two targets’ trajectories are depicted in Figure 23.  

The target on top is considered Target 2.  The three sensors platforms, which are stationary 

throughout the scenario, are also shown.  The sensors are identical range-bearing sensors, 

i.e., a radar or active sonar, each with Kalman filter kinetic target tracking systems on 

them.  The association scores are generated to compare the position-only data form each 

track from the first three sensor systems.  

Figure 24 depicts the difference between the track of Target 2 from both Sensor 1 and Sensor 

3 and the track for Target 1 from Sensor 1.  In Figure 25, the association scores between the 

two tracks of Target 2 are shown for the original image-correlation technique without 

uncertainty and the new uncertainty-incorporation method.  

  

 

Fig. 23. Two target example scenario. 

The incorporation of uncertainty reduces the variation in the scores.  This is a benefit of the 

use of uncertainty similar to the chi-squared metric.  Also, the uncertainty method reduces 

the loss of association score as the target gets further from the sensors.  A similar 

comparison of the association scores for both techniques between Sensor 1’s Target 1 track 

and Sensor 3’s Target 2 track is shown in Figure 26.  In this comparison, the uncertainty 

association does better in that it produces lower scores for the differences between the 

positions of the target tracks.  
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Fig. 24. Track results for Target 1 and Target 2 for Sensor 1 compared to track results for 

Target 2 for Sensor 3.  

 

 

Fig. 25. Association score comparison of results with and without incorporation of 

uncertainty.  

Figure 27 provides a more detailed analysis of uncertainty association scores of the tracks 

for Target 2 from Sensor 1 and Sensor 3.  The reports of Scan 10 and Scan 195 are marked.  

By comparing the results to the actual tracks seen in Figure 26, it is apparent that the scores 

follow the differences in the tracks.  At Scan 10, a full tile is generated for the first.  (Prior to 

this, ten scans of data for each attribute were not available.)  At the tenth scan, the target 

tracks were separated in position in the y-coordinate of the first leg of the trajectory. Since 

the sensors were fairly close to the targets, the uncertain ty was “small”  and, therefore, the 

association score became poor.  For the most part after that, the association score settled near 
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or above 0.9 until the end.  By this time, around Scan 195, the uncertainty from both tracks 

started to become more aligned.  This means that the small range error would bring the x-

coordinate uncertainty in the track down.  The x-coordinate lag Sensor 1’s track seen in the 

last two legs of the Target 2 trajectory now have a greater impact on the score.  This drives 

the association score downwards. 

 

 

Fig. 26. Association score comparison of results with and without incorporation of 

uncertainty. 

4.2 Incorporating classification into image-based association 
The incorporation of classification is a two-step process.  The first step is the definition of the 

new attributes for the tile.  The second is the incorporation of uncertainty. 

In Section 2, the classification of a target was mapped into a set of subclasses and those were 

mapped into numeric values using fuzzy logic.  In this development, a similar approach is 

used.  The use of the subclasses creates more attributes for the tile generation.  As with the 

exemplar above, three attributes are used for each class armor_type, wheel/tread , and 

vehicle_size.  Each attribute would have a 20x20 pixel subtile for each scan or report of data.  

Each class would be set to its own phase predetermined by the nearness of the relationship.  

Thus, as seen in Table 8, a number phase differences vary based on their relationships to 

each other. 

To incorporate uncertainty, two techniques are used.  The first is the probability of an 

attribute.  In the example, and a generic APC can be either a wheeled or tread vehicle.  If the 

specific type of APC is not know then a probability of either type would exist.  For example, 

assume there is a 0,6 probability that an APC would have a tread.  The subtile would then 

have 12 pixels of its horizontal set to tread while 8 pixels would be set as wheeled (see 

Figure 28).  Every change as the classification information becomes better would change the 

composition of the subtile for the given scan as further shown in Figure 28  The quality 

uncertainty of each report would then be generated using the redistribution of the phases by 

shrinking or expanding the range of values in Table 8 using the technique described in 

Section 4.1.  For example,  a large uncertainty (or poor quality) measurement/ track pair 

would have phase ranges similar to those in Table 9. 
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Fig. 27. Association scores using the uncertainty method for the tracks for Target 2 from 

Sensor 1 and Sensor3 

 

Class Attribute Phase Value (degrees) 

 Val. l Val. 2 Val. 3 Val.4 

Armor_Type 0 45 170 NA 

Wheel/  

Tread 
0 180 NA NA 

Vehicle_Size 0 10 45 90 

Table 8. Classification Attribute Mapping To Phase Differences 

 

 

Fig. 28.  Subtile separation based on probability score of different attributes. 
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Class Attribute Phase Value (degrees) 

 Val. l Val. 2 Val. 3 Val.4 

Armor_Type 0 12 90 NA 

Wheel/  

Tread 
0 45 NA NA 

Vehicle_Size 0 5 20 45 

Table 9. Classification Attribute Mapping To Phase Differences With Large Uncertainties 

4.2.1 Example and results 
The aforementioned example from Section 4.1.2 is again used.  In this problem, the target 

classification is given as in Table 10 for the measurement and the track.  The table details 

probability for each of the element of the attribute.  The results of the classification 

algorithm for Target 2 from Sensor 1 and Sensor 3 are shown in Table 11.  The classification 

differences have significant impact on the association scores as expected. 

 

Class  

(Target #) 
Report (Uncertainty) 

Armor_Type (1) 
1  

(.3) 

1 

(.2) 

1 

(.2) 

1 

(.2) 

1 

(.2) 

1 

(.2) 

1 

(.2) 

1 

(.2) 

1 

(.2) 

1 

(.2) 

1 

(.2) 

Wheel/  Tread 

(1) 

1 

(7) 

2 

(7) 

2 

(6.5)

2 

(6.8)

1 

(6.9)

1 

(6.4)

1 

(6.2)

1 

(6.1)

2 

(6.4)

2 

(6.5) 

1 

(6.6) 

Vehicle_Size (1) 
1 

(2.3)

1 

(2.2)

1 

(2.2)

1 

(2.1)

1 

(2) 

1 

(1.9)

1 

(1.9)

1 

(2) 

1 

(1.8)

1 

(1.8) 

1 

(1.7) 

Armor_Type (2) 
2 

(.3) 

2 

(.2) 

2 

(.2) 

2 

(.2) 

2 

(.2) 

2 

(.2) 

2 

(.2) 

2 

(.2) 

2 

(.2) 

2 

(.2) 

2 

(.2) 

Wheel/  Tread 

(2) 

2 

(7) 

2 

(6.4)

2 

(6.4)

2 

(6.4)

2 

(6.4)

1 

(6.4)

2 

(6.4)

1 

(6.4)

2 

(6.4)

2 

(6.4) 

2 

(6.4) 

Vehicle_Size (2) 
2 

(2.3)

2 

(2.3)

2 

(2.4)

3 

(2.7)

3 

(2.8)

3 

(2.9)

2 

(2.7)

2 

(2.6)

2 

(2.5)

1 

(2.8) 

2 

(2.9) 

Table 10. Classification Reports For Target 2/ Sensor 1 And Target 2/ Sensor 3 

 

Association Score 

Scan 8 Scan 9 Scan 10 Scan 11 

0.59 0.56 0.56 0.52 

Table 11. Association Score Between Target 2/ Sensor 1 and Target 2/ Sensor2 
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5. Conclusion 

The use of Gaussian distribution in target tracking is becoming less prevalent that in the 

past.  New association techniques are needed for the fusion process.  The approaches need 

to look at previously unused technologies or techniques used for other applications in the 

past.  In this chapter, new techniques for data association were addressed and applied to 

current fusion problems that combine kinematics and classification as well as address 

nonGaussian uncertainty measures.   
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