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1. Introduction

During emergency situations of the patient in home-based care, a Pervasive Healthcare
Monitoring System (PHMS) (Lee et al., 2008) is significantly overloaded with pieces of
information of different known reliability or unknown reliability. The pieces of the
information should be processed, interpreted, and combined to recognize the situation of the
patient as accurate as possible. In such a context, the information obtained from different
sources such as multi-sensors and Radio Frequency Identification (RFID) devices can be
imperfect due to the imperfection of the information itself or unreliability of the sources.
In order to deal with different aspects of the imperfection of contextual information, we
proposed an evidential fusion network based on Dezert-Smarandache Theory (DSmT) (Dezert
& Smarandache, 2009) as a mathematical tool in (Lee et al., 2009). However, context reasoning
over time is a difficult in an emergency context, because unpredictable temporal changes in
sensory information may happen (Rogova & Nimier, 2004). The (Lee et al., 2009) did not
consider dynamic metrics of the context. In addition, some types of contextual information
are more important than others. A high respiratory rate may be a strong indication of the
emergency of the patient others may not be so important to estimate that specific situation
(Padovitz et al., 2005; Wu et al., 2003). The weight of this information may change, due to
the aggregation of the evidence and the variation of the value of the evidence over time.
For instance, a respiratory rate (e.g., 50 Hz) at current time-indexed state (St) should have
more weight compared to a respiratory rate (e.g., 21 Hz) at previous time-indexed state (St−1),
because 50 Hz indicates the emergency situation of the patient strongly (Campos et al., 2009;
Danninger & Stierelhagen, 2008).
Thus, we propose a Dynamic Evidential Network (DEN) as a context reasoning method
to estimate or infer future contextual information autonomously. The DEN deals with the
relations between two consecutive time-indexed states of the information by considering
dynamic metrics: temporal consistency and relation-dependency of the information using
the Temporal Belief Filtering (TBF) algorithm. In particular, we deal with both relative
and individual importance of evidence to obtain optimal weights of evidence. By using
the proposed dynamic normalized weighting technique (Valiris et al., 2005), we fuse both
intrinsic and optional context attributes. We then apply dynamic weights into the DEN in
order to infer the situation of the patient based on temporal and relation dependency. Finally,
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we compare the proposed fusion process with a fusion process based on Dempster-Shafer
Theory (DST) (Wu et al., 2003) and Dynamic Bayesian Networks (DBNs) (Murphy, 2002)
that has the same assumption of the environments, so as to show the improvement of our
proposed method in an emergency situation of the patient. The main contributions of the
proposed context reasoning method under uncertainty based on evidential fusion networks
are: 1) Reducing the conflicting mass in uncertainty level and improving the confidence
level by adapting the DSmT, 2) Distinguishing the sensor reading error from new sensor
activations or deactivations by considering the TBF algorithm, and 3) Representing optimal
weights of the evidence by applying the normalized weighting technique into related context
attributes. These advantages help to make correct decisions about the situation of the patient
in home-based care.
The rest of the chapter is organized as follows. Basics of context reasoning are introduced in
section 2. In section 3, we introduce a dynamic context reasoning method based on evidential
fusion network. In section 4, we perform a case study so as to distinguish the proposed fusion
process with traditional fusion processes. We compare and analyze the results of our approach
with those of DST and DBNs to show the improvement of our approach in section 5. We
introduce some related works in section 6. We then conclude this work in section 7.

2. Basics of context reasoning

2.1 Characteristics of the evidence

Multi-sensors such as medical body sensors, Radio Frequency Identification (RFID) devices,
environmental sensors and actuators, location sensors, and time stamps are utilized in a
PHMS (Lee et al., 2008). These sensors are operated by pre-defined rules or learning processes
of the expert systems. They often have thresholds to represent the emergency status of the
patient or to operate actuators. Each sensor can be represented by an evidential form such
as 1 (active) and 0 (inactive) based on the threshold. Whenever the state of a certain context
associated with a sensor is changed, the value of a sensor can change from 0 to 1 or from
1 to 0. For instance, a medical body sensor activates the emergency signal if the sensor
value is over the pre-defined threshold. An environmental sensor operates the actuator based
on the fuzzy systems. A location detecting sensor operates if a patient is within the range
of the detection area. Thus, we can simply express the status of each sensor as a frame:
Θ = {Thresholdover, Thresholdnot−over} = {1, 0}.
Sensor data are inherently unreliable or uncertain due to technical factors and environmental
noise. Different types of a sensor may have various discounting factors (D) (0 ≤ D ≤ 1).
Hence we can express the degree of reliability, which is related in an inverse way to the
discounting factor. The smaller reliability (R) corresponds to a larger discounting factor (D):

R = 1 − D (1)

For inferring the activity of the patient based on evidential theory, reliability discounting
methods that transform beliefs of each source are used to reflect the sensor’s credibility, in
terms of discount factor (D) (0 ≤ D ≤ 1). The discount mass function is defined as:

mD(X) =

{

(1 − D)m(X) X ⊂ Θ

D + (1 − D)m(Θ) X = Θ
(2)

where the source is absolutely reliable (D = 0), the source is reliable with a discounting factor
(D) (0 < D < 1), and the source is completely unreliable (D = 1).

2 Sensor Fusion - Foundation and Applications
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Fig. 1. A Relation-dependency approach

2.2 Context classification

The quality of a given piece of contextual information of a patient should be presented
by some generalized forms of context classification (Razzaque et al., 2007) to determine
reliable contextual information of a patient. However, it is an impossible task to build a
general context classification to capture all aspects of the patient’s contextual information
in smart spaces. The numbers of ways to describe an event or an object are unlimited
and there are no standards or guidelines regarding granularity of contextual information.
In particular, the quality of a given piece of contextual information is not guaranteed by
uncertainty. Thus, we defined the relation-dependency approach as a context classification
based on spatial-temporal limitations which has three categories: 1) discrete environmental
facts; 2) continuous environmental facts; and 3) occupant-interaction events as shown in
Figure 1. These relation-dependency components consist of "Context state (S(t))", defined
as the collection and aggregation of activated or deactivated context attributes (Lee et al.,
2009), "Sensor’s static threshold (T(t))", "Location of the patient (R(t))", "Primary context (P)",
"Secondary context (S)" and "Preference (Pref )".

2.3 Context modeling

We defined a state-space based context modeling with an evidential form as a generalized
context modeling to represent the situation of the patient using context concepts that are
similarly used in (Padovitz et al., 2005) and to improve the quality of a given piece of
contextual information by reducing uncertainty. Within the proposed modeling, all possible
values and their ambiguous combinations are considered to improve the quality of data in the
given time (t) and location (R). We assign a probability value to each related set to achieve
an efficient uncertainty representation. This can transfer a qualitative context information
to a quantitative representation. Static weighting factors of the selected data are applied
to represent the quality of data initially within the given t and R. This context modeling
consists of a hierarchical interrelationship among multi-sensors, related contexts, and relevant
activities within a selected region as shown in Figure 2. Each context concept is defined as
follow.
A context attribute, denoted by αi , is defined as any type of data that is utilized in the process
of inferring situations. It is often associated with sensors, virtual or physical, where the value
of a sensor reading denotes the value of a context attribute at a given t, denoted by αt

i .

3A Dynamic Context Reasoning based on Evidential Fusion Networks in Home-based Care
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Fig. 2. An inter-relationship based on state-space context modeling

A context state, denoted by a vector Si, describes the current state of the applied application
in relation to a chosen context. It is a collection of N context attribute values to represent a
specific state of the system at the given t. A context state is denoted as St

i = (αt
1, αt

2, . . . , αt
N),

where each value αt
i corresponds to the value of an attribute αi at the given t. Whenever

contextual information is recognized by certain selected sensors that can be used to make
context attributes, a context state changes its current state depending on the aggregation of
these context attributes.
A situation space, denoted by a vector space Ri = (αR

1 , αR
2 , . . . , αR

K), describes a collection of
regions corresponding to some pre-defined situations. It consists of K acceptable regions for
these attributes. An acceptable region αR

i is defined as a set of elements V that satisfies a

predicate P, (i.e., αR
i = V \ P(V)). A particular contextual information can be performed or

associated with a certain selected region.
Given a context attribute i, a quality of data ψi associates weights ω1, ω2, . . . , ωM with combined
attributes of values αt

1 + αR
1 , αt

2 + αR
2 , . . . , αt

N + αR
K of i, respectively, where ∑

M
j=1 ωj = 1. The

weight ωj ∈ (0, 1] represents the relative importance of a context attribute αj compared to
other context attributes in the given t and R. For instance, a higher respiratory rate may be
a strong indication of the fainting situation of a patient while other context attributes such
as the blood pressure and the body temperature may not be so important to estimate that
specific situation of the patient. In addition, a context attribute (αt

i ) within a context state

(St
i = (αt

1, αt
2, . . . , αt

N)) has various individual weights for αt
i per different time intervals in the

same situation space (αR
i ). For example, a respiratory rate (50Hz) at the current time-indexed

state (St) is a strong indication of the fainting situation of the patient compared to a respiratory
rate (21Hz) at previous time-indexed state (St−1). The same context attribute can have
different degrees of importance in different contexts. We only consider the quality of data with
the pre-defined context attributes, a selected region, and relevant activities initially. We then
apply dynamic weights into both relative and individual importance of evidence to obtain an
optimal weight of evidence.

2.4 Dezert-Smarandache Theory (DSmT)

The basic idea of DSmT (Dezert & Smarandache, 2004; 2006; 2009) is to consider all elements
of Θ as not precisely defined and separated. No refinement of Θ into a new finer set Θre f of
disjoint hypotheses is possible in general, unless some integrity constraints are known, and in
such case they will be included in the DSm model of the frame. Shafer’s model (Shafer, 1976)
assumes Θ to be truly exclusive and appears only as a special case of the DSm hybrid model

in DSmT. The hyper-power set, denoted by DΘ, is defined by the rules 1, 2 and 3 without
additional assumption on Θ but the exhaustivity of its elements in DSmT.

4 Sensor Fusion - Foundation and Applications
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1. ∅, θ1, · · · , θn ∈ DΘ

2. If θ1, θ2 ∈ DΘ, then θ1 ∩ θ2 and θ1 ∪ θ2 belong to DΘ

3. No other elements belong to DΘ, except those obtained by rules 1) or 2)

When Shafer’s model M0(Θ) holds, DΘ reduces to 2Θ. Without loss of generality, GΘ is equal

to DΘ if the DSm model is used, depending on the nature of the problem.

2.5 Combination rules (conjunctive and disjunctive)

As a conjunctive combination rule, the proportional conflict redistribution no. 5 (PCR5)
(Smarandache & Dezert, 2005) are defined based on the conjunctive consensus operator for
two sources cases by:

m12(X) = ∑
X1,X2∈GΘ

X1∩X2=X

m1(X1)m2(X2) (3)

The total conflicting mass drawn from two sources, denoted by k12, is defined as:

k12 = ∑
X1,X2∈GΘ

X1∩X2=∅

m1(X1)m2(X2) = ∑
X1,X2∈GΘ

X1∩X2=∅

m(X1 ∩ X2) (4)

The total conflicting mass is the sum of partial conflicting masses based on Equations (3) and
(4). If the total conflicting mass k12 is close to 1, the two sources are almost in total conflict.
Whereas if the total conflicting mass k12 is close to 0, the two sources are not in conflict.
Within the DSmT framework, the PCR5 combination rule redistributes the partial conflicting
mass only to the elements involved in that partial conflict. For this approach, first, the PCR5
combination rule calculates the conjunctive rule of the belief masses of sources. Second, it
calculates the total or partial conflicting masses. And last, it proportionally redistributes
the conflicting masses to nonempty sets involved in the model according to all integrity
constraints. The PCR5 combination rule is defined for two sources (Dezert & Smarandache,
2009): mPCR5(∅) = 0 and ∀(X �= ∅) ∈ GΘ,

mPCR5(X) = m12(X)+

∑
Y∈GΘ\{X}

X∩Y=∅

[
m1(X)2m2(Y)

m1(X) + m2(Y)
+

m2(X)2m1(Y)

m2(X) + m1(Y)
] (5)

where m12 and all denominators such as m1(X) + m2(Y) and m2(X) + m1(Y) differ from
zero(0). If a denominator is zero, that fraction is discarded. All sets in formulas are in canonical
forms. For example, the canonical form of X = (A ∩ B) ∩ (A ∪ B ∪ C) is A ∩ B.
In addition, a disjunctive combination rule is used for Temporal Belief Filtering (TBF)
(Ramasso et al., 2006). For instance, the TBF, which reflects that only one hypothesis
concerning activity is true at each time-indexed state, ensures a temporal consistency with an
exclusivity. Within a TBF, the disjunctive rule of combination (m∪(.)) is used so as to compute
prediction from previous mass distributions and model of evolution. m∪(.) is defined for two
sources: m∪(∅) = 0 and ∀(C) ⊂ Θ,

m∪(C) = ∑
i,j

C=Xi∪Yj

m1(Xi)m2(Yj), ∀(C �= ∅) ∈ Θ (6)

5A Dynamic Context Reasoning based on Evidential Fusion Networks in Home-based Care
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Fig. 3. An Evidential Fusion Network (EFN)

The core of a belief function given by m∪(C) equals the union of the cores of Bel(X) and
Bel(Y). This rule reflects the disjunctive consensus and is usually preferred when one knows
that one of the source X or Y is mistaken but without knowing which one between X and Y.

2.6 Pignistic transformations (CPT and GPT)

When a decision must be taken, the expected utility theory, which requires a classical pignistic
transformation (CPT) from a basic belief assignment m(.) to a probability function P{.}, is
defined in (Dezert et al., 2004) as follows:

P{A} = ∑
X∈2Θ

|X ∩ A|

|X|
m(X) (7)

where |A| denotes the number of worlds in the set A (with convention |0|/|0| = 1, to define
P{0}). P{A} corresponds to BetP(A) in Smets’ notation (Smets, 2000). Decisions are achieved
by computing the expected utilities. In particular, the maximum of the pignistic probability is
used as a decision criterion.
Within the DSmT framework, it is necessary to generalize the CPT to take a rational decision.
This generalized pignistic transformation (GPT) is defined by (Dezert et al., 2004): ∀(A) ∈ DΘ,

P{A} = ∑
X∈DΘ

CM(X ∩ A)

CM(X)
m(X) (8)

where CM(X) denotes the DSm cardinal of a proposition X for the DSm model M of the
problem under consideration. In this case, if we adopt Shafer’s model M0(Θ), Equation (8)
reduces to Equation (7) when DΘ reduces to 2Θ. For instance, we gets a basic belief assignment
with non null masses only on X1, X2 and X1 ∪ X2. After applying GPT, we get:

P{∅} = 0, P{X1 ∩ X2} = 0

P{X1} = m(X1) +
1
2 m(X1 ∪ X2)

P{X2} = m(X2) +
1
2 m(X1 ∪ X2)

P{X1 ∪ X2} = m(X1) + m(X2) + m(X1 ∪ X2) = 1

6 Sensor Fusion - Foundation and Applications
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2.7 Evidential Fusion Network (EFN)

Based on the proposed state-space context modeling, the Evidential Fusion Network (EFN) is
constructed as shown in Figure 3. Within a EFN, context reasoning is performed to make a
high confidence level of the situation of the patient. The fusion process is performed to infer
the activity of the patient along the EFN as follows.

1. (Define the Frame of Discernment): the evidential form represents all possible values of
the sensors and their combination values.

2. (Sensor’s Credibility): reliability discounting mass functions defined as Equations (1) and
(2) transform beliefs of individual evidence to reflect the credibility of the sensor. A
discounting factor (D) is applied to each context attribute within an EFN.

3. (Multi-valued Mapping): a multi-valued mapping represents the evidence to the same
problem with different views. In particular, it can be applied to the context attributes so as
to represent the relationships between sensors and associated objects by translating mass
functions. A multi-valued mapping also can be applied to the related context state so
as to represent the relationships among context attributes. Each context state consists of
different pre-defined static weight of the evidence (Relative importance).

4. (Consensus): several independent sources of the evidence combine the belief mass
distributions on the same frame to achieve the conjunctive consensus with the conflict
mass. The PCR5 combination rule (Smarandache & Dezert, 2005) is applied to context
states to obtain a consensus that helps to recognize the activity of the patient.

5. (Degree of Belief): Lower (Belief (Bel)) and upper bounds (Plausibility (Pl)) on probability
is calculated to represent the degree of belief. Then the uncertainty levels (Pl - Bel) of the
evidence in evidential framework is measured by using belief functions such as Belief (Bel)
and Plausibility (Pl) after applying the PCR5 combination rule.

6. (Decision Making): The expected utility and the maximum of the pignistic probability
such as Generalized Pignistic Transformations (GPT) is used as a decision criterion. The
situation of the patient is inferred by calculating the belief, uncertainty, and confidence
(i.e., GPT) levels of contextual information within an EFN.

3. Dynamic context reasoning

As shown in Figure 4, contextual information of a patient has the association or correlation
between two consecutive time-indexed states. The EFN should include a temporal dimension
for dealing with this context reasoning over time. Therefore, we introduce a dynamic context
reasoning method in this section.

3.1 Temporal Belief Filtering (TBF) for relation-dependency

Depending on temporal changes, the values of the sensor at the current time-indexed state
(St) are evolved by the measured values at the previous time-indexed state (St−1), because the
belief mass distribution can not vary abruptly between two consecutive time-indexed states.
In order to deal with this evolution, we utilize the Autonomous Learning Process (ALP)
principle that has three states: 1) Initial State, 2) Reward State, and 3) Final Decision State
as shown in Figure 5. This ALP principle is performed based on the Q-learning technology
represented by (Roy et al., 2005). In Equation (9), Xt is the current state, m(.) is the belief mass
distribution, D is the discounting factor, and Re is the reward state to help decision making in

7A Dynamic Context Reasoning based on Evidential Fusion Networks in Home-based Care
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final decision state. We can support dynamic metrics (e.g., the evolution of the upper bounds
or lower bounds of the pre-defined criteria).

Q(Xt, mt(.)) ← (1 − mt(.))Q(Xt, mt(.))+

mt(.)(Re + D max mt−1(.)Q(Xt−1, mt−1(.)) (9)

In particular, TBF operations: prediction, fusion, learning and update are performed in reward
state of the ALP principle to obtain the relation-dependency. The TBF ensures temporal
consistency with the exclusivity between two consecutive time-indexed states when only one
hypothesis concerning activity is true at each time. The TBF assumes that the general basic
belief assignment (GBBA) at the current time stamp t is close to the GBBA at the previous
time stamp t − 1. Based on this assumption, the evolution process predicts a current GBBA
taking the GBBA at t − 1 into account. The TBF that operates at each time stamp t consists in
four steps: 1) Prediction, 2) Fusion, 3) Learning and 4) Updated rule if required. For instance,
if the activity of the patient was fainting (F) at t − 1 then it would be partially fainting (F) at
t. This is an implication rule for fainting (F) which can be weighted by a confidence value of
mF{.} ∈ [0, 1]. In this case, the vector notation of a GBBA defined on the frame of discernment
(Θ) is used:

mΘ = [ mΘ(∅) mΘ(¬F) mΘ(F) mΘ(¬F ∪ F) ]

8 Sensor Fusion - Foundation and Applications
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The evolution process can be interpreted as a GBBA defined as:

mΘ
F = [ 0 1 − PlF BelF PlF − BelF ]T (10)

3.1.1 Prediction

Depending on current model M with only two focal sets, the disjunctive rule of combination
is used to compute prediction from the previous GBBA at t − 1 and model of evolution using
Equation (6). The disjunctive rule of combination does not allow to assign more belief to
a hypothesis than does the previous GBBA. It is well suited for the autonomous evolution
process under uncertainty:

m̂Θ
t,M = mΘ

t−1 (M∪) mΘ
M (11)

where mΘ
t−1 is the previous GBBA and mΘ

M is model of evolution.
For instance, the prediction for fainting (F) situation of the patient at time stamp t is defined
as:

m̂
Θ

t,F =

⎡

⎢

⎢

⎣

0

(1 − PlF)× mΘ
t−1(¬F)

BelF × mΘ
t−1(F)

1 − [((1 − PlF)× mΘ
t−1(¬F)) + BelF × mΘ

t−1(F)]

⎤

⎥

⎥

⎦

(12)

when mF = 1 or when mF = 0, the prediction reflects a total confidence or a total ignorance
with the current time-indexed state, respectively.

3.1.2 Fusion, learning and updated rule

Prediction (m̂Θ
t,M) and measurement (mΘ

t ) represent two distinct pieces of the information. Fusion
of the two distinct pieces of the information leads to a new GBBA whose conflict value (CF) is
relevant for belief learning and update requirement. In this case, conflict value (CF), which is
similar to k12 of Equation (4), is calculated by the conjunctive rule of combination of m̂Θ

t,M and

mΘ
t :

CF = m̂Θ
t,M (M∩) mΘ

t (∅) (13)

In addition, policy is required so as to analyze whether the current model M is valid or not.
If CF is not greater than the pre-defined threshold (T), the model at t − 1 is kept as valid at
t. However, if CF exceeds the T, the model is evolved based on the result of the conjunctive
rule of combination of m̂Θ

t,M and mΘ
t . Depending on the applied policy, the evolution process

(mΘ
t,M) (i.e., learning) is performed as below:

mΘ
t,M =

{

m̂Θ
t,M (M∩) mΘ

t , i f CF ≥ T

mΘ
t−1,M , i f CF < T

(14)

After a learning, a fading memory process (Fa) has been embedded so as to reduce the
relation-dependency of the pieces of long past information even though the cumulative sum
of conflict value (CF) between m̂Θ

t,M and mΘ
t is lower than the pre-defined threshold (T) during

long time intervals. A fading memory process (Fa) resets the cumulative sum of CF as a zero
(0) and m̂Θ

t+w,M is equal to mΘ
t+w based on time window size (W), which is chosen as a constant

value (C). Then, updated rule is applied to the model of evolution repeatedly after Fa is applied
to mΘ

t,M.

mΘ
t+w,M =

⎧

⎨



(1) Fa ←

{

∑ CF = 0 , i f W = C

m̂Θ
t+w,M = mΘ

t+w

(2) mΘ
t,M × (Fa)

(15)

9A Dynamic Context Reasoning based on Evidential Fusion Networks in Home-based Care
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3.1.3 Decision rule

A decision is taken by the maximum of GPT (i.e., Equation (8)) within the DSmT framework
after the evolution process is performed. We adopt Shafer’s model (Shafer, 1976) in order to
compare our approach with DBNs, which can get a BBA with non null masses only on θ1 and
θ2 (i.e., P{θ1 ∪ θ2} = m(θ1) + m(θ2) = 1) where θ1 and θ2 are hypotheses of the frame of
discernment (Θ) (i.e., focal elements of the state within the frame of the set).
It is required to assess the recognition performance of a time-indexed state to decide whether
a temporal sequence of the state has a false alarm or a new sensor activation/deactivation
within the defined time window size (W). It is necessary to find a quality criterion without
references to assess this performance. We defined DF as the differentiation of GPTs of two

consecutive time-indexed states. The D̄F is defined as the mean of DF (i.e., ∑ DF

W ) within the
defined W as the chosen criterion (i.e., Equation (16)) in order to distinguish a sensor reading
error from new sensor activations or deactivations). As shown in Equation (17), if D̄F is less
than δ, there is no error within W. If D̄F is located between δ and γ, a false alarm happens.
And if D̄F is greater than γ, the emergency situation of the patient progress.

D̄F �
1

W ∑
i=1,W

Di
F (16)

Decision(De) =

⎧

⎨



No errors within the W , i f D̄F < δ
False alarm , i f δ ≤ D̄F < γ
Emergency Progress , i f γ ≤ D̄F

(17)

where δ is the defined false alarm threshold and γ is the defined emergency progress threshold
for the chosen criterion. In this case, the value of δ is always lower than that of γ, because
we assume that the false alarm does not often happen when the new sensor activation or
deactivation is detected by the expert system in emergency situation of the patient. Based on
the defined threshold (T) for conflict value (CF) and time window size (W), we can distinguish
a sensor reading error from new sensor operations. Then, we perform evolution operations
with dynamic evidential network (DEN) in order to improve the confidence (i.e., GPT) level
of contextual information.

3.2 Evolution operations with DEN

The DEN is constructed based on the EFN with a temporal dimension as shown in Figure 6.
Within a DEN, context reasoning is performed to find a false alarm in captured contexts and
to make a high confidence level of the situation of the patient. First, we define the threshold
(Te) of the GPT level for the emergency situation of the patient. Second, we calculate the GPT
level at each time-indexed state using a TBF with defined T and W. And last, if the GPT level
is over the defined Te for four continuous time-indexed states, we make a decision about the
situation of the patient as an emergency. We assume that the initial prediction is equal to the 1st

measurement at 1st time-indexed state (S1). The consecutive processing of two combination
rules (i.e, disjunctive rule and conjunctive rule) is well adapted to EFN to update the belief
mass distribution of EFN at time-indexed states. In Figure 6, we define n time intervals and
time window sizes W to reflect a fading memory process (Fa) to the pervasive healthcare
system. The Fa reduces long past contextual information of the patient. Depending on DF and
D̄F , we trace the emergency progress which can check a false alarm. We then make an optimal
time window size (W) that is applied to the evolution process.
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Context Sensor Non-Activated

Type Type Regular (1) Warning (2) Warning (3)

Respiratory Rate 15∼20 Hz 13∼14 or 21∼30 Hz 11∼12 or 31∼40 Hz
Intrinsic Blood Pressure 120∼90 mmHg 121∼130 or 81∼89 mmHg 131∼140 or 71∼80 mmHg

Body Temperature 36.6∼37 ◦C 36.1∼36.5 or 37.1∼38 ◦C 35.6∼36 or 38.1∼39 ◦C

Location The motion detector installed in the ceiling catches the RF signa
Optional Motion The motion detector installed in the door catches the RF signal

Pressure The pressure sensor attached on the sofa catches the wei

Table 1. Pre-defined Rules of a Context Attribute
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Fig. 6. The Proposed DEN for n time intervals

3.3 An optimal weight for evidence

3.3.1 Pre-defined rule of a context attribute

We define rules of a context attribute to represent dynamic weights of a context attribute as
shown in Table 1. We assume that the ratio of total weights of optional context attributes
O(∑ ωi) is equal to that of intrinsic context attributes I(∑ ωi) in order to apply the rule of
combination. Within a EFN, each context state has the same weight (e.g., the weight is equal
to 0.5). We apply more C(ak

t ), which reflects the increase or decrease degree of a particular
context attribute, to the activated case (i.e., Emergency (4)) compared to the non-activated case
(i.e., Warning (2 and 3) and Regular (1)), because the activated case is more important than the
non-activated case in an emergency situation of the patient. In addition, we apply more C(ak

t )

to the level increased case (i.e., L(ak
t+1) > L(ak

t+1)) compared to the level decreased case (i.e.,

L(ak
t+1) < L(ak

t+1)), where L(ak
t+1) reflects the level of a particular context attribute. The level

increased case is more important than the level decreased case in an emergency situation of
the patient. Thus, we calculate the weight of an intrinsic context attribute as below.

1. initial O(∑ ωi) = I(∑ ωi) = 0.5

2. if all L(ak
t ) = L(ak

t+1), then C(ak
t+1) = 0

3. else if L(ak
t+1) > L(ak

t ) and L(ak
t+1) �= 4, then C(ak

t+1) = 2α

4. else if L(ak
t+1) < L(ak

t ) and L(ak
t ) �= 4, then C(ak

t+1) = -α

5. else if L(ak
t+1) > L(ak

t ) and L(ak
t+1) = 4, then C(ak

t+1) = 3β

6. else if L(ak
t+1) < L(ak

t ) and L(ak
t ) = 4, then C(ak

t+1) = -2β

with two % values α and β (i.e., β ≥ α).

3.3.2 A normalized weighting technique

We calculate the relative weight of a context attribute based on Multi-Attribute Utility
Theory (MAUT) (Valiris et al., 2005; Winterfeld & Edwards, 1986) to setup the initial weight
of a context attribute within a given context state. The weights are determined by their
importance in regarding to a specific situation of the patient. In particular, we construct a scale
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A Dynamic Context Reasoning based on Evidential Fusion Networks in Home-based Care 13

Sensor Type Regular Emergency Relative Weight ω̃u

Respiratory Rate Scale-R (5) Scale-E (55) 0.6
Blood Pressure Scale-R (5) Scale-E (15) 0.2
Body Temperature Scale-R (5) Scale-E (15) 0.2

Location Scale-R (5) Scale-E (10) 0.25
Motion Scale-R (5) Scale-E (10) 0.25
Pressure Scale-R (5) Scale-E (25) 0.50

Table 2. An example of Relative Weight of a Context Attribute

representing the properties of the levels of a context attribute to evaluate context attributes.
For instance, we assume that the scale from 0 (e.g., the least affection) to 55 (e.g., the most
affection) for the situation serves as measure of the evaluation as shown in Table 2. We
pre-define the scale of a context attribute then calculate the relative importance of a context
attribute using Equation (18).

ω̃u = ωv/
N

∑
w=1

(ωw) (18)

where ω̃u defines the relative weight of a context attribute, ωv is the sum of the value of
Scale-R and Scale-E for one sensor type, and ∑

N
w=1(ωw) is the total sum of the value of Scale-R

and Scale-E. After calculating the relative weight of a context attribute, we redistribute the
weight of a context attribute over time based on the pre-defined rule of a context attribute.
Let ω1, ω2, · · · , ωk, · · · , ωk+m, · · · , ωN denote an initial relative weight associated with a
given context state Si

t for fusion process. Within the same location, a normalized weighting
technique for individual difference between two time-indexed states is applied to each context
attribute as below.

1. Repeat for each optional context attribute k:
ωk = ωi, where i defines an initial weight

2. Repeat for each intrinsic context attribute k:
if all L(ak

t ) = L(ak
t+1) or all C(ak

t+1) are equal,
then all ωk = ωi

else if any L(ak
t ) �= L(ak

t+1) or any C(ak
t+1) is different,

then ω̂k = ωi/ ∑
N
j=1(ωj ± C(a

j
t+1)),

where ω̂k defines a new weight for a context attribute

3.4 Dynamic context reasoning

Based on the proposed DEN, the dynamic weighting is applied to each evidence to make
a high GPT level of the situation of the patient compared to the others. First, we calculate
the GBBA of SEN initially using evidential operations at 1st time-indexed state. Second, we
apply the updated weight into each context attribute from 2nd time-indexed state using the
proposed normalized weighting technique. Finally, we calculate the confidence level (i.e.,
GPT) of contextual information. The procedures of dynamic context reasoning consist of seven
steps.

1. (Measure a GBBA of SEN): Initially, we measure a GBBA of SEN using evidential
operations at time stamp t. The first prediction (m̂Θ

t1,M) is equal to measurement (mΘ
t1

) at
time-indexed state S1.
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Sofa

Pressure

Sensor

Lighting

Location

Sensor

Heater

Motion

Sensor

Blood

Pressure

Sensor

Body

Temperature

Sensor

Respiratory

Rate

Sensor

Sofa, Lighting, Heater

Environmental

Sensors

Location

Sensors
Medical Body Sensors

Situation

(Activity)

Context

State

Situation Space

Context

Attribute

Blood, Body, Respiratory

Object

Discounting

Factor

Weighting

Factor

Multi-valued

Mapping

Patient

Belief or GPT

Combination Rule

Sleeping Fainting

0.20.1 0.05

0.5 0.25 0.25 0.2 0.2 0.6

0.5 0.5

Fig. 7. An example of a patient’s situation based on the EFN

2. (Update the Weight of a Context Attribute): First, we calculate the relative importance of a
context attribute. Second, we redistribute the weight of a context attribute over time based
on the pre-defined rule of a context attribute. Third, we calculate individual difference
between two time-indexed states using the proposed normalized weighting technique (i.e.,
Equation (18)). And last, we apply the updated weight into each context attribute from 2nd

time-indexed state so as to obtain the GPT of contextual information.

3. (Prediction and Evolution): We calculate prediction from the previous GBBA and model
of evolution using the disjunctive rule of combination (i.e., Equation (6)). The disjunctive
rule of combination is well suited for the model evolution under uncertainty because it
does not allow to assign more belief to an hypothesis than does the previous GBBA. The
GBBA of SEN at time stamp t + 1 will be affected by prediction (m̂Θ

t+1,M).

4. (Learning): We fuse m̂Θ
t+1,M and mΘ

t+1 using the conjunctive rule of combination so as to
make a new GBBA. As a learning, if a conflict value (CF) is greater than the pre-defined
threshold (T), a new GBBA is adapted. Whereas, the previous learned GBBA is adapted as
a new GBBA (i.e., Equation (14)).

5. (Fading Memory Process): We apply a fading memory process (Fa) with the defined
time window size (W) so as to reduce the affection of long past information. After Fa is
performed, the GBBA of m̂Θ

t+w,M is equal to the GBBA of mΘ
t+w (i.e., Equation (15)). The

previous GBBA of m̂Θ
t+w−1,M is ignored at time stamp t+w.

6. (Update and Decision Making): We calculate each GPT of the frame of discernment
per time-indexed state (i.e., Equation (8)) by applying the updated rule then calculate
differentiation (DF) of two consecutive time-indexed states. Based on the mean of DF (i.e.,
D̄F) and the pre-defined value for δ and γ, we can make a decision: No errors, False alarm,
or Emergency progress (i.e., Equation (17)).

7. (Comparison the GPT level): Finally, we compare the GPT level of consecutive
time-indexed states. If the GPT level is over the pre-defined threshold (Te), which
represents the emergency situation, for four continuous time-indexed states, we make a
decision about the situation of the patient as an emergency.
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Fig. 8. An example of emergency level changes based on time intervals

% value Case 1 Case 2 Case 3 Case 4 Case 5 Case 6

β 5 % 10 % 15 % 20 % 25 % 30 %
α 5 % 5 % 10 % 10 % 15 % 30 %

Table 3. An example of the % values of α and β

4. A case study

As shown in Figure 7, many ambiguous situations of the patient can happen in home-based
care. We suppose that the situation (i.e., "sleeping" (Sl) or "fainting" (F)) of the patient can
happen in smart home applications. In order to check dynamic emergency level changes based
on time intervals, six types of a sensor are randomly activated during 20 time intervals as
shown in Figure 8. Among six types of a sensor, three types of a sensor: blood pressure, body
temperature and respiratory rate are involved in an intrinsic context attribute type. Whereas
three types of a sensor: pressure, location and motion are involved in an optional context
attribute type. Within Figure 8, we apply the level increased case and the activated case based
on the data of Table 1. Initially, a discounting factor and a relative weight of each sensor are
fixed so as to calculate the initial GBBA of EFN. In particular, we assume that a discounting
factor of the environmental sensors, the location sensor, and the medical body sensors are 20%,
10% and 5%, respectively. We can obtain an initial relative weight of each sensor using a scale
representing method as shown in Table 2. We apply different % values of α and β (i.e., β ≥ α)
as shown in Table 3 to check the variations of the weight depending on the selected degree of
a level change (C(ak

t+1)). For making a simulation, we perform an evidential fusion process
with a 95% confidence interval for 500 iterations. Moreover, we use paired observations (Jain,
1991) that construct a confidence interval for the difference in order to compare our method
with other methods such as DST and DBNs. The analysis of paired observations deals with
two processes as one process of n pairs. For each pair, the difference in performance can
be computed. Then, if the confidence interval includes zero, two fusion processes are not
significantly different.

5. Comparison and analysis

We compare the uncertainty levels of two cases: 1) DST and 2) DSmT and the GPT levels of
two cases: 1) DSmT and 2) DBNs. For calculating the "fainting (F)" situation of the patient
within the applied scenario, we apply three methods: 1) defined static weighting factors, 2)
different weighting factors and 3) different discounting factors into the two fusion processes,
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Fig. 9. Comparison Uncertainty Levels of DSmT and DST with static weighting factors

respectively. In particular, we utilize the paired observation method with different error rates
(r) (i.e., 0%, 1%, 5%, 10%, 20% and 50%) so as to compare the two fusion processes.

5.1 Uncertainty levels of DSmT and DST

5.1.1 Comparison with static weighting factors

After we apply a static weights into each context attribute, the evidential fusion process
based on DST has more various conflicting mass in the uncertainty level compared to
the DSmT approach as shown in Figure 9(a). The reason is that the PCR5 combination
rule of DSmT redistributes the total conflicting mass as equal to zero within the DSmT
framework. However, Dempster’s combination rule of DST takes the total conflicting mass
and redistributes it to all non-empty sets within the DST framework, even those not involved
in the conflict. In addition, the uncertainty level of DST is higher than that of DSmT when we
use the paired observation method as shown in Figure 9(b). Thus, the DSmT approach with
static weights reduces the degree of uncertainty (i.e., conflicting mass in uncertainty level)
compared to the DST approach.

5.1.2 Comparison with different weighting factors

We apply different static weights into each context attribute based on Table 4 so as to compare
the uncertainty levels of the two cases based on different weighting factors. We compare four
situations: a) "Bts", and "Rs" are not activated, b) "Ls" and "Bps" are not activated, c) only "Bts"
is not activated, and d) all sensors are activated to see the variation of the uncertainty level of
contextual information. We apply 0% and 50% error rates into the fusion process with a 95%
confidence interval.
As shown in Figure 10, the uncertainty levels of DSmT have the same degrees for all cases
even though those of DST have different degrees depending on the four situations and the
used error rates (r) (i.e., 0% and 50%). The degrees of uncertainty of DSmT are lower than
those of DST. Only when all sensors are activated will the degrees of uncertainty of DSmT
be equal to those of DST. The evidential fusion based on DSmT shows a constant uncertainty
level, whether a sensor reading error may happen or whether an emergency situation may
progress, by redistributing the total conflicting mass only into the sets involved in the conflict
and proportionally to their masses. In this case, the DSmT approach shows the better

16 Sensor Fusion - Foundation and Applications

www.intechopen.com



A Dynamic Context Reasoning based on Evidential Fusion Networks in Home-based Care 17

No. Ps Ls Ms Bps Bts Rs
Case 1 0.9 0.05 0.05 0.05 0.05 0.9
Case 2 0.8 0.1 0.1 0.1 0.1 0.8
Case 3 0.7 0.1 0.2 0.1 0.2 0.7
Case 4 0.6 0.2 0.2 0.2 0.2 0.6
Case 5 0.5 0.2 0.3 0.2 0.3 0.5
Case 6 0.4 0.3 0.3 0.3 0.3 0.4
Case 7 0.3 0.4 0.3 0.3 0.4 0.3
Case 8 0.2 0.4 0.4 0.4 0.4 0.2
Case 9 0.1 0.45 0.45 0.45 0.45 0.1

Table 4. An example of different static weighting factors
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Fig. 10. Uncertainty levels of DSmT and DST with different weights

performance than the DST approach in order to reduce the conflicting mass in uncertainty
level of contextual information.

5.1.3 Comparison with different discounting factors (D)

We apply different discounting factors (D), which are related to sensor’s credibility, into "Ps"
and "Rs" to calculate the uncertainty levels of the two cases based on Table 5. In this case,
we calculate four situations: a) "Bts", and "Bps" are not activated, b) "Ps" and "Bts" are not
activated, c) only "Bps" is not activated, and d) all sensors are activated to see the variation of
the uncertainty level of contextual information. Depending on different D on "Ps" and "Rs",
the two cases show different degrees of uncertainty as shown in Figure 11. The degrees of
uncertainty of the two cases are increased based on the increase of the D as expected. The
uncertainty levels of DSmT have the same degrees for all cases even though those of DST
have different degrees for the four situations. The degrees of uncertainty of DSmT are lower
than those of DST. This result shows that the DSmT approach is better than the DST approach
in order to reduce the conflicting mass in uncertainty level of contextual information.
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No. Ps Ls Ms Bps Bts Rs
Case 1 0% 20% 20% 5% 5% 0%
Case 2 1% 20% 20% 5% 5% 1%
Case 3 2% 20% 20% 5% 5% 2%
Case 4 5% 20% 20% 5% 5% 5%
Case 5 10% 20% 20% 5% 5% 10%
Case 6 20% 20% 20% 5% 5% 20%
Case 7 50% 20% 20% 5% 5% 50%

Table 5. An example of different discounting factors
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Fig. 11. Uncertainty levels of DSmT and DST with different discounting factors D
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Fig. 12. Comparison GPT levels of DSmT and DBNs with static weighting factors

5.2 GPT levels of DSmT and DBNs

5.2.1 Comparison with static weighting factors

We compare the GPT level of DSmT with that of DBNs by calculating the GPT difference with
a 95% confidence interval. We consider the same static weighting factors with T = 0 and
W = 5. We use paired observations depending on the GPT level of DSmT when the degree of
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Case Ps Ls Ms Bps Bts Rs
1 (DEN) 0.9 0.05 0.05 0.05 0.05 0.9
2 (DEN) 0.5 0.25 0.25 0.2 0.2 0.6
3 (DEN) 0.3 0.4 0.3 0.3 0.3 0.4
4 (DEN) 0.1 0.4 0.5 0.4 0.4 0.2
5 (DBN) 0.9 0.05 0.05 0.05 0.05 0.9
6 (DBN) 0.5 0.25 0.25 0.2 0.2 0.6
7 (DBN) 0.3 0.4 0.3 0.3 0.3 0.4
8 (DBN) 0.1 0.4 0.5 0.4 0.4 0.2

Table 6. An example of different weights for DSmT and DBNs
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Fig. 13. Comparison GPT levels of the two cases with different weighting factors using paird
observations

GPT level is over 0.5 case, because the aggregation of the degree of GPT is not over 0.5 reduces
the total GPT level. The GPT level of DSmT with static weighting factor is higher than that of
DBNs as shown in Figure 12. This result shows that the GPT level of the DSmT is higher than
that of DBNs when the degree of GPT is over 0.5.

5.2.2 Comparison with different weighting factors

In order to compare the GPT level of DSmT with that of DBNs with different weighting factors,
first, we apply different static weights to each context attribute based on "Ps" and "Rs" as
shown in Table 6. As shown in Figure 13(a), the GPT levels of eight cases have different
paired observation results. When we compare the case 1 and case 5, the confidence interval
includes zero so it is impossible to distinguish which one is better than the other. The reason
is that the degree of GPT is lower than 0.5 sometimes. Whereas the confidence intervals of the
case 2 and 4, the case 3 and 7, and the case 4 and 8 do not have zero so we can prove that the
GPT levels of DSmT with static weights are better than those of DBNs.
Second, we apply dynamic weights to each context attribute based on different % values of
α and β (i.e., from Case 1 to Case 6 in Table 3) in order to compare the GPT levels of the two
cases: 1) DSmT with dynamic weights (DWEFP) and 2) DSmT with static weights (DEFP).
When we utilize the paired observation method, the confidence intervals do not include zero
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No. Ps Ls Ms Bps Bts Rs

Case 1 - error rate 0% 0% 0% 0% 0% 0% 0%

Case 2 - error rate 0% 5% 5% 5% 5% 5% 5%

Case 3 - error rate 5% 5% 5% 5% 5% 5% 5%

Case 4 - error rate 5% 10% 10% 10% 10% 10% 10%

Case 5 - error rate 10% 10% 10% 10% 10% 10% 10%

Case 6 - error rate 10% 20% 20% 20% 20% 20% 20%

Case 7 - error rate 20% 20% 20% 20% 20% 20% 20%

Case 8 - error rate 20% 50% 50% 50% 50% 50% 50%

Case 9 - error rate 50% 50% 50% 50% 50% 50% 50%

Table 7. Different discounting factors (D) with selected error rates (r)

except for the error rate is 50% case as shown in Figure 13(b). With a 50% error rate, it is
impossible to prove anything, because an error rate make the wrong simulation operation
then it is nothing. The GPT level of DSmT with dynamic weights is higher than that of DSmT
with static weights. We can improve the GPT level of DSmT using dynamic weights compared
to the DEFP approach that applies static weights into each context attribute.

5.2.3 Comparison with different discounting factors (D)

In order to compare the GPT level of DSmT with that of DBNs with different discounting
factors, first, we apply different discounting factors into each context attribute. Depending on
different D on "Ps" and "Rs", the two cases show different degrees of GPT levels. In addition,
the GPT levels of DBNs are lower than those of the DSmT except for the 50% error rate case
when we compare the two fusion processes using the paired observation method for all cases
in Table 5. Based on the result of Figure 14(a), we know that the DSmT approach with different
discounting factors gets the better performance than the DBNs for improving the confidence
level of contextual information.
Second, we apply different discounting factors (D) with selected error rates (r) (i.e., 0%, 5%,
10%, 20% or 50%) into context attributes as shown in Table 7 in order to compare the GPT
levels of DSmT with dynamic weights with those of DSmT with static weights. We apply
updated weights into each sensor by calculating the % values of α and β as shown in Case 1
and Case 6 of Table 3, because the % value of α and β is the smallest and the biggest in Table
3, respectively. According to Figure 14(b), the confidence intervals do not include zero except
for the error rate is 50% case. Thus, the GPT level of DSmT with dynamic weights (DWEFP)
is higher than that of DSmT with static weights (DEFP) in this scenario. As a result, we can
improve the degree of GPT using DSmT with dynamic weights compared to DSmT without
dynamic weights.
Finally, we can infer the situation of the patient by using the mean of the DF (i.e., D̄F) and
pre-defined rule of a decision. For example, we assume that the pre-defined threshold (Te) for
an emergency situation is equal to 0.7. If the degree of GPT is over 0.7 for four continuous
time-indexed states, we estimate that the patient is an emergency. For instance, we catch
a false alarm between 10th and 12th time intervals in Figure 8. Then, we estimate that the
emergency situation starts from 8th time interval. This is helpful to make a decision about the
situation of a patient in home-based care.
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Fig. 14. Comparison GPT levels of the two cases with different discounting factors (D) using
paird observations

6. Related work

In context-aware applications, situations (Dey, 2001; Gellersen et al., 2002) are external
semantic interpretations of low-level sensor data by permitting a higher-level specification
of human behavior and the corresponding system services and the way of changing situation
is called context reasoning and interpretation (Loke, 2006). It means that we need reasoning
context models that can adapt the situation definitions based on discovered changes with
changing environments and changing user needs (Jayaraman et al., 2009). However, both the
physical world itself and our measurements of it are prone to uncertainty. Thus, different
types of entities in the pervasive environment must be able to reason about uncertainty. In
order to solve this problem, a number of mechanisms have been proposed in the literature
for reasoning on uncertainty and there are two main purposes for reasoning on uncertainty:
1) improving the quality of contextual information and 2) inferring new kinds of contextual
information. Reasoning to improve the quality of contextual information typically takes the
form of multi-sensor fusion where data from different sensors are used so as to increase
confidence, resolution or any other context quality metrics. Reasoning to infer new contextual
information typically takes the form of deducing higher-level contexts (e.g., activity of a user)
or situations from lower-level contexts (e.g., location information of a user), because we can
not directly sense the higher-level contexts. These contexts may be associated with a certain
level of uncertainty depending on both the accuracy of the sensed information and precision
of the deduction process (Bettini et al., 2010; Lee et al., 2010a). Therefore, we introduce some
context reasoning approaches such as Fuzzy logic, Probabilistic logic, Bayesian Networks
(BNs), Hidden Markov Models (HMMs), Kalman Filtering Models (KFMs), Dynamic Bayesian
Networks (DBNs) and Dempster-Shafer Theory (DST) of the evidence in order to compare
them with our context reasoning approach.

6.1 Puzzy logic, probabilistic logic and BNs

In fuzzy logic, a degree of membership represented by a pair (A:m) where A is a set and m is a
possibility distribution in real unit interval [0,1] is used to show an imprecise notion such as
confidence values (Lemmi & Betti, 2006; Zadeh, 1999). The elements of two or more fuzzy sets
can be combined in order to create a new fuzzy set with its own membership function then it
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is used for reasoning models which need more than the probabilistic theory with uncertainty.
For instance, the fuzzy logic is used so as to capture a clinical uncertainty in medical data of
pervasive computing applications in (Agarwal et al., 2010). In addition, fuzzy logic is well
suited for describing subject contexts by resolving conflicts between different contexts (e.g.,
Actuator’s operation in (Lee et al., 2008a)). In this work, we assume that the environmental
sensors are operated based on the fuzzy logic of the selected sensors.
Probabilistic logic and Bayesian networks (BNs) can be used for improving the quality of
contextual information through multi-sensor fusion as well as for deriving the higher-level
probabilistic contexts. They also can be used for resolving conflicts between contextual
information obtained from different sources. According to (Ranganathan et al., 2004), the
probabilistic logic is used for encoding access control policies and the BNs is used for
combining uncertain information from a large number of sources and deducing higher-level
contexts. However, these rules can not represent the ignorance (Maskell, 2008), which
manages the degree of uncertainty, caused by the lack of information.

6.2 HMMs, KFMs and DBNs

In order to deal with unpredictable temporal changes in sensory information, Hidden Markov
Models (HMMs) (Dargie, 2007; Soyer et al., 2003), Kalman Filtering Models (KFMs) (Welch
& Bishop, 2006) or Dynamic Bayesian Networks (DBNs) (Dezert et al., 2004; Murphy, 2002;
Zhang & Ji, 2006) are utilized as fusion techniques. In terms of probabilistic networks, HMMs
represent stochastic sequences as Markov chains; the states are not directly observed, but
are associated with observable evidences, and their occurrence probabilities depend on the
hidden states. This model can be used for location prediction by using a hierarchical Markov
model that can learn and infer a user’s daily movements (Liao et al., 2007). KFMs represent the
state of the system refers to a set of variables that describe the inherent properties of the system
at a specific instant of time. This is a useful technique for estimating, or updating the previous
estimate of, a system’s state by using indirect measurements of the state variables and using
the covariance information of both state variables and indirect measurements (Olfati-Saber,
2007). However, DBNs, which were proposed as a generalization of HMMs and KFMs, have
some distinct features. DBNs allow much more general graph structures compared with
HMMs or KFMs. DBNs represent the hidden state in terms of a set of random variable
compared with HMMs, which represent the state space with a single random variable. DBNs
allow general hybrid and nonlinear conditional probability densities (CPDs) compared with
KFMs, which require all CPDs to be linear-Gaussian. This is a useful feature to manage the
causality between random variables as well as time series data. For instance, a high level
user behavior is inferred from low level sensor data by adding knowledge of real-world
constraints to user location data in (Patterson et al., 2003). A variant of DBNs is used in
an unsupervised way in order to predict transport routes based on GPS data. By adding
constraints on the routes that could be learned by the training algorithm, the prediction
accuracy was significantly improved.
DBNs are made up of the interconnected two time-indexed states of a static Bayesian Network
(BN) and the transition of a static BN between two consecutive time t and t + 1 satisfies
the Markov property (Padhraic, 1997) as shown in Figure 15. DBNs can be implemented
by keeping in memory two states at any one time-indexed state, representing a previous
time-indexed state and current time-indexed state, respectively. In Figure 15, the two
time-indexed states, which have an associated conditional probability, are such rotated that
old states are dropped and new states are used as time progress. The arcs between two
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Fig. 15. An example of Dynamic Bayesian Networks (DBNs)

time-indexed states reflect temporal causality and they are parameterized by transitional
probabilities. The joint distribution from the initial moment of time (t = 1) until the time
boundary (t = T) is then given by

P(S1:T) =
T

∏
t=1

n

∏
i=1

P(St
i |k(S

t
i)) (19)

where St
i is the ith node at time t and k(St

i) stands for the parents of a node St
i at time t. They

can either be in the same time-indexed state or in the previous time-indexed state. In this
work, we use the Markov property, which is similar to DBNs, in order to represent temporal
and state links between two consecutive time-indexed states of a Static Evidential Network
(SEN) (i.e., Dynamic Evidential Network (DEN)) then compare it with the original process of
DBNs.

6.3 Dempster-Shafer Theory (DST)

DST is a mathematical theory of the evidence based on belief and plausible reasoning, which
is used to combine separate pieces of information in order to calculate the probability of the
event. It is often used method of sensor fusion to deal with uncertainty associated with
context reasoning by combining the independent observations of multiple sensors (e.g., the
user’s activity monitoring in smart home) (Hong et al., 2009; Wu et al., 2003). However, the
DST has limitations and weaknesses. In particular, the Dempster’s combination rule has
limitations. The results of the combination has low confidences when a conflict becomes
important between sources. Thus, we use the Dezert-Smarandache Theory (DSmT), which
is an extended DST, as a context reasoning method. No one applies the DSmT into the
ubiquitous or pervasive computing area.

7. Conclusion

Until now, we proposed context reasoning under uncertainty based on evidential fusion
networks in home-based care in order to support both consistency verification of the model
and context reasoning techniques. The proposed reasoning technique improved the quality of
contextual information and inferred new kinds of contextual information.
Based on the defined pragmatic context classification, generalized context modeling, and
proposed evidential fusion network (EFN), we proposed a dynamic context reasoning
method. A dynamic context reasoning method deals with dynamic metrics such as preference,
temporal consistency and relation-dependency of the context using the autonomous learning
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process (ALP) and the temporal belief filtering (TBF). In addition, A dynamic context
reasoning method improve the confidence level of contextual information using the proposed
normalized weighting technique compared to previous fusion networks such as DST and
DBNs.
To show the improvement of our approach, we compared the uncertainty levels of two fusion
processes such as DSmT and DST and the confidence (i.e., GPT) levels of two fusion processes
such as DSmT and DBNs using paired observations. Finally, we got the better performance
compared to DST and DBNs.
In the future, we will continuous work on user experience in order to adapt the user’s
feelings stemming both from pragmatic and hedonic aspects of the system into the pervasive
healthcare monitoring system (PHMS).
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