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1. Introduction 

Nanocrystals are considered as isolated, nanoscale particles in modern science or as grains 

of nanocrystalline material. The latter material is comprised of nanocrystals that form a 3-

dimensional polycrystal made of nanocrystals and grain-boundaries. Historically, however, 

nanocrystals are firmly rooted in colloid science and for a long time nanocrystals were used 

unknowingly as components of composite materials. For example, the coloring of glasses 

with colloidal gold nanocrystals dates back to the Romans (Freestone et al., 2007).  In light of 

the historical use of nanocrystals as components of macroscopic composite materials it is not 

surprising that modern materials science continues and expands the use of nanocrystals for 

composite materials. The ever increasing array of nanoscale objects, for example, nanowires, 

nanofibers, nanobelts, nanopillars, or nanotubes, along with improving synthesis and 

characterization options offers a broad range of possible macroscopic composites with nano-

particle components.  The range of applications is no longer limited to functional properties, 

but includes structural applications. While the nanocrystals are per definition crystalline 

and thus reveal a periodic arrangement of atoms, the surrounding matrix can be crystalline 

or amorphous. For metals-based nanocrystals, the modern era of composite research 

dawned with the discovery of Guinier-Preston zones and remained focused on nanocrystals 

embedded in crystalline matrices. For ceramic materials, an important application emerged 

with the dispersion of nanocrystals in amorphous or glassy ceramic matrices. For example, 

cook tops are widely available today that are made of ceramic glasses containing dispersions 

of oxide nanocrystals. On the metals side, bulk composite materials comprised of 

nanocrystals embedded in amorphous metallic matrices are still relatively novel materials 

by comparison with their ceramic counterparts.  

The interest in nanocrystals for metallic glasses has had two related motivations. From a 
viewpoint of fundamental material science, metallic glasses offer a very convenient approach 
for studying crystallization reactions.  For conventional metals or alloys, solidification occurs 
almost instantaneously and it is usually only possible to study the completely crystallized 
phase experimentally but not the process of crystallization. Crystallization of a metallic glass, 
by comparison, can be induced as a “slow-motion” process that enables detailed experimental 
studies of the crystallization process. The formation of nanocrystals from metallic glasses thus 
represents an ideal vehicle to test and validate crystallization theories. The second motivation 
for studying nanocrystals in metallic glasses is much more practical and concerns 
improvements in properties. Iron-based metallic glasses were among the earliest metals-based 
glasses and it was soon discovered that the crystallization of transition-metal nanocrystals 
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improved the soft-magnetic properties. A number of commercial products based on Fe-
nanocrystals dispersed in melt-spun amorphous ribbons emerged from the early 
crystallization studies. With the emergence of bulk metallic glasses starting about 1992 the 
interest in the synthesis of nanocrystal/metallic glass composite materials shifted toward a 
much broader range of applications and in particular toward structural applications. The role 
of nanocrystals for fundamental crystallization studies and for applications is related, since 
only an understanding of the nanocrystal formation enables a controlled synthesis and thus 
controlled improvements in properties. 
This chapter addresses mainly the role of nanocrystals for properties of metallic glasses and 
the synthesis of nanocrystals in metallic glasses. Although differences exist between metallic 
glasses and amorphous alloys, in this chapter both terms are used synonymously.  For a 
discussion of the differentiation between amorphous alloys and metallic glasses the reader is 
referred to an overview article on metallic glasses (Greer, 1995). 

2. Synthesis of nanocrystals in amorphous matrices 

2.1 Thermal synthesis  
The research program from which the first non-thin film metallic glass emerged focused on 
the formation of Cu-Ag non-equilibrium solid solutions (Duwez, 1981). The solid solutions 
were obtained from rapid quenching experiments, leaving the solidified products in a 
highly non-equilibrium condition. The key idea behind Duwez’ ground-breaking 
experiments was to prevent atoms from re-arranging from nearly homogeneous liquid 
solutions into solid clusters with different compositions. The rapid quenching limited the 
time at which atoms had sufficient mobility for re-arrangements to such a short period that 
re-arrangements were effectively inhibited. While the re-arrangements into equilibrium 
configurations were inhibited, the quenched alloys retained a thermodynamic driving force 
for transitioning into the phases that would have formed at lower cooling rates. This driving 
force is fundamental for the synthesis of nanocrystals in metallic glasses, since the 
nanocrystals represent phases with lower free energies. The different modes of 
crystallization and thus of reducing the metastability of metallic glasses are shown in Fig. 1. 
Both diagrams show the free energy—usually Gibbs free energy, but other energy functions 
such as the Helmholtz free energy could be used as well—as a function of composition.  In 
polymorphous crystallization the product phase has the same composition as the parent 
phase. In Fig. 1 a the amorphous parent phase transforms into a terminal solid solution with 
the same composition, cpoly. The crystallization product does not have to be a solid solution, 
however, and Fig. 1 b shows a polymorphous transition from the amorphous phase into a 
compound phase (“Compound I”). A second crystallization mode is primary crystallization. 
In this mode the amorphous phase transforms into a terminal solid solution and an 
amorphous phase with a higher solute content than the initial amorphous phase. The 
compositions of the terminal solid solution, cp,s.s, and the new amorphous phase, cp,a., are 
obtained from a common tangent construction.  Several important nanocrystal/metallic 
glass composite materials are obtained from primary crystallization reactions, for example, 
Al-based metallic glasses, or Fe-based metallic glasses. In both systems the crystallization 
products are nearly pure Al and Fe phases, respectively.  A third crystallization mode—
eutectic crystallization--is highlighted in Fig. 1 b. In this mode the parent amorphous phase 
crystallizes into two crystalline products with compositions that are again obtained from the 
common tangent construction.  
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Fig. 1. Free energy curves for hypothetical liquid and solid solution phases vs. composition 

Figure 1 shows the different modes of crystallization, but it does not indicate if nanocrystals 
can be obtained from all crystallization modes. To examine the relation between 
crystallization mode and the microstructure of the crystallization products, it is necessary to 
consider the mechanisms of crystallization. Two fundamentally different mechanisms exist: 
phase separation and nucleation and growth. Both mechanisms are different, but can occur 
in sequence. For phase separation to occur, the free energy has to reveal a specific 
composition dependence that is shown schematically in Fig. 2. In composition region II the 
free energy curve is concave, i.e., d2G/dc2 < 0. If the initial alloy composition lies within 
region II any variation in composition lowers the free energy. This scenario is indicated with 
arrows in Fig. 2. If the initial alloy with composition cinitial separates, maybe due to local 
fluctuations, into two regions with composition ca and cb, the mixture of regions with 
composition ca and cb has a lower free energy than the initial region with composition cinitial. 
This transition is referred to as spinodal decomposition (Cahn, 1961). If the initial alloy 
composition lies within regions I and I’, however, a small fluctuation in composition will 
raise the overall free energy. To lower the overall free energy in region I and I’, 
compositional fluctuations have to be finite to lower the free energy.  
 

 

Fig. 2. Free energy vs. composition for a system that reveals spinodal decomposition 

In spinodal decomposition transformations an initially single phase separates into two 
phases with different compositions but the same phase. The composition differences 
between the compositionally different regions can be minimal, in contrast to nucleation-
based phase transformations. In the latter case, thermally induced fluctuations in a parent 
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phase lead to clusters that are thermodynamically stable once their size exceeds a critical 
size. Unlike for spinodal decomposition reactions, however, the composition of the new 
phase is different by a finite amount from the parent phase. 
The nucleation and spinodal decomposition theories have been applied successfully for 
nanocrystal crystallization reactions in metallic glasses. However, several experimental 
observations suggest that there are open issues related to nucleation or spinodal 
decomposition reactions that call for continued studies for metallic glasses. For example, 
several studies on Al-based metallic glasses demonstrated that the addition of minor 
amounts of some solute atoms—typically on the order of 1 %--can oftentimes dramatically 
impact the nanocrystal number density, size distribution, and the glass forming ability. The 
addition of small amounts of V and Ti to Al88Y7Fe5 metallic glasses induced a tendency for 
local ordering in the vicinity of the V and Ti atoms, leading to clusters with about 1 nm in 
size that have a distorted fcc arrangement (Sadoc et al., 2007). These clusters are now 
recognized as medium-range ordered regions in the metallic glasses (Stratton et al., 2005) 
that can decisively influence not only the size distribution and particle number density of 
the nanocrystals (Perepezko et al., 2010) but furthermore the phase formation (Sadoc, 
Heckmann et al., 2007).  The current understanding of microalloying in metallic glasses is 
very encouraging for designing metallic glasses with specific nanocrystal dispersions. 
Further work is necessary to understand the formation of inhomogeneities and their effect 
on the nucleation or phase separation reactions. The classical nucleation theory is based on 
the notion of random fluctuations in atomic configurations. This notion might have to be 
modified for atomic configurations that are locally neither fully amorphous nor crystalline.   

2.1.1 Growth of crystallites in metallic glasses 
Depending on whether partial processes act in a parallel or sequential manner, the fastest 
(growth mechanism acting parallel) or slowest (sequential) process controls the growth-rate 
(Kingery et al., 1976). For polymorphic phase transformations the composition of the parent 
and new phase is identical and long-range diffusion is not necessary. The growth rate of the 
new phase is limited by the speed at which atoms at the interface between the old and new 
phase can rearrange from the old to the new phase. This growth mode is referred to as 
interface-controlled. If the growing particle has a composition different from the matrix, 
solute diffusion in the matrix is necessary to accommodate the composition change across 
the phase boundary. In this latter case, one can distinguish between interface and diffusion-
controlled growth. Aside from polymorphous transformations where long-range diffusion is 
not required, interface control is mainly observed for highly anisotropic interfaces and in 
discontinuous precipitation reactions. Due to the importance of this growth mode it has 
been treated in several publications (Hillert, 1968; Christian, 1975; Purdy, 1981; Ratke and 
Vorhees, 2001). For the formation of nanocrystals in metallic glasses, diffusional growth is of 
particular interest, since the the nanocrystals that have been synthesized in metallic glasses 
based on thermal processing are often primary nanocrystals and thus require a solute 
redistribution or diffusion during growth. Among the first and most influential 
investigations of diffusion-controlled growth is the work by Zener (Zener, 1949) who 
considered the growth of a spherical particle in a supersaturated matrix of infinite size and a 
stationary particle/matrix boundary. This growth problem has been treated in detail in two 
textbooks (Glicksman, 2000; Ratke and Vorhees, 2001).  
A more recent example for growth in ternary systems with greatly differing values of the 
diffusion coefficients is the growth of primary Al in Al-RE-TM systems (RE: rare-earth, TM: 
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transition metal). For amorphous metallic metal-metal alloys it has been found that the 
diffusivity correlates with the atomic size of the diffusing species but not necessarily for 
metal-metalloid amorphous alloys (Sharma and Banerjee, 1989). With respect to the 
amorphous Al-RE-TM alloys, this observation suggests that the diffusivities of the rare-earth 
metals in the amorphous matrix should be low compared with the diffusion of the 
transition-metal atoms. Atom-probe field-ion microscopy (APFIM) experiments were 
conducted with partially crystalline amorphous Al-Ni-Ce, Al-Ni-Y and Al-Ni-Sm alloys and 
the concentration profiles of the individual elements were measured. For the amorphous 
Al87Ni10Ce3 sample the analysis showed that Ce was enriched in a layer surrounding the 
primary Al nanocrystallites. The thickness of the layer was approximately 3nm (Hono et al., 
1995). The Ni atoms did not show any segregation at the nanocrystal/amorphous matrix 
interface. A similar investigation with amorphous Al88Ni8Sm4 (Zhang et al., 2002) and 
Al88Ni4Sm8 (Gloriant et al., 2001) showed, however, that the Sm concentration at the 
interface was not enhanced although the size difference between Sm and Ce atoms is 
practically zero and a similar diffusion behavior in the amorphous matrix would therefore 
be expected. It must be noted, however, that the ribbons in (Hono, Zhang et al., 1995) were 
not annealed but were taken from a portion of the ribbons that partially crystalline already 
after the melt-spinning. The Al-Ni-Sm samples, by contrast, were annealed to induce the 
nanocrystallization and it was argued that in this latter case metastable equilibrium was 
established. Aside from the Al-based amorphous alloys, Fe-based systems and their 
crystallization behavior have also been investigated in detail. Solute accumulation at the 
interface between bcc-Fe nanocrystals and the amorphous matrix was observed by APFIM 
for an amorphous Fe90Zr7B3 alloy after annealing at 723K for 60min (Zhang et al., 1996). In 
this case Zr atoms piled-up at the interfaces. The blocking effect of the solute rich layer on 
the growth of the nanocrystals is discussed in (Koester, 1993). 
Similar to the situation for nucleation, recent experimental observations suggest that the 
classical growth theories might not capture the growth scenario for some metallic glasses 
accurately. The observation of new growth mechanisms seem to be related to the presence of 
local clusters with semi-crystalline atomic configurations. Liu and coworkers examined the 
growth process of nanocrystals in a deeply undercooled Zr65Ni25Ti10 bulk metallic glass that 
contained nanoscale clusters with imperfect ordering in the as-cast state. A step-wise growth 
process was discovered that started with a transition of the clusters into one-dimensional, 
then two-dimensional, and eventually three-dimensional fcc Zr2Ni nanocrystals (Liu et al., 
2007).  The initial semi-crystalline nanoscale clusters developed directly into nanocrystals, 
but it is not clear if a different growth mechanism would have unfolded at reduced 
undercooling levels. It is clear, however, that the key to the design of nanocrystal 
dispersions in metallic glasses is a better understanding of the nanoscale clusters with 
distorted crystalline atomic arrangements or icosahedral structure, their formation and role 
for nucleation and growth.  

2.2 Mechanical processing – deformation-induced crystallization 
The transformation mechanisms for crystallization that are highlighted in 2.1 require thermal 
motion of atoms to initiate the transformations. Other modes of crystallization have been 
observed, however, that are not initiated with externally applied heating of metallic glasses. 
These externally induced crystallization modes include irradiation and deformation of metallic 
glasses. Recently, evidence was found that nanocrystals developed on surfaces of Zr-based 
metallic glasses in corrosion (Paillier et. al., 2010) pits as a direct response to corrosion (Paillier 
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et. al., 2010). Electrochemical interactions with metallic glasses can therefore be added to the 
list of external driving modes for crystallization. In the following, the experimental evidence 
for deformation-induced crystallization is surveyed. Mechanisms for external, driven 
crystallization are then summarized. This section is concluded with a summary of 
deformation-affected crystallization. In contrast to deformation-induced crystallization, 
deformation can impact crystallization during heat treatments that follow deformation. From a 
historical perspective, the impact of rolling or tensile loading on annealing-induced 
crystallization was studied early on, i.e., starting in the early 1970s. Deformation-induced 
crystallization was not observed until the early 1990s (Schulz et al., 1990).  

2.2.1 Experimental findings for deformation-induced crystallization 
The majority of deformation processes to induce crystallization are based on mechanical 
alloying. In this approach amorphous powder or amorphous ribbon pieces are deformed in 
ball mills. Containers filled with amorphous powder or pieces are shaken and contain steel 
or ceramic balls that collide, trapping powder particles or ribbon pieces in between. 
Examples of crystallization reactions that were induced with milling are highlighted in 
Table 1. In the examples highlighted in Table 1 the samples were sealed in containers that 
were filled with argon. Some ball milling experiments were conducted with the container 
being immersed in liquid nitrogen or other cooling media to maintain the samples at 
ambient temperatures. It was demonstrated that without cooling the temperature of the 
milled samples can increase by 60 to 120 K (Koch, 1989). The size of the crystallites was in all 
cases limited to less than about 20 nm. Indeed, Schulz and coworkers stated in what has 
been the first report on milling-induced crystallization of metallic glasses that the size of the 
nanocrystals in their milled Fe78Si9B13 amorphous ribbons was less than 3 nm and that in 
order to thermally induce nanocrystals at this size the samples would have had to be 
annealed for months (Schulz et al., 1990).  To achieve a high particle number density and a 
small size of crystallites that develop from a nucleation and growth process it is necessary to 
limit the growth process but to achieve a high nucleation frequency. With annealing this can 
only be achieved if the annealing temperature remains low compared to the glass transition 
range. Under these annealing conditions the time for nanocrystals to develop could be on 
the order of months as Schulz and coauthors stated. Ball milling, therefore, provides a faster 
processing route for nanocrystal formation at nanocrystal sizes of less than about 10 nm 
than standard heat treatments.  
The formation of nanocrystals is not limited to ball milling as a deformation technique, but 
has furthermore been observed during bending of metallic glass samples. The bending 
experiments have been conducted mostly with melt-spun ribbons, although in one example 
micrometer-sized simple beams were machined and subsequently deformed in a simple 
bending mode (Ogura et al., 2001). During bending, large compressive and tensile stresses 
develop on the surfaces of the bent samples. Nanocrystals were observed to form on the 
compressive side of bent melt-spun ribbons, but not on the tensile side for bending 
experiments with Al-based amorphous alloys (Jiang and Atzmon, 2003). Atzmon’s and 
coworker’s observation of an asymmetric nanocrystallization process contrasts with bending 
experiments of Ni-P micro-beams; nanocrystals developed on the tensile side of the bent 
beam (Ogura, Tarumi et al., 2001). While the ball milling-induced experiments were 
conducted mostly with Fe-based metallic glasses, the majority of the bending experiments 
that started with Chen and coworkers’ report in Nature (Chen et al., 1994) were conducted 
with Al-based amorphous melt-spun ribbons. The common thread between the  
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Table 1. Examples of ball-milling induced crystallization reactions 

bending-induced nanocrystallization reactions is the crystallization process only taking 
place on one side of the bent samples and the tendency of the nanocrystallites to have at 
least a partial degree of orientation. Table 2 provides a survey of reports for bending-
induced crystallization. 
 

 

Table 2. Examples of bending-induced crystallization reactions 

In addition to ball-milling and bending, cold-rolling and instrumented indentation have 

been used to induce nanocrystals in metallic glasses. Nanoindentation-induced 

crystallization was reported for bulk metallic Zr52.5Cu17.9Ni14.6Al10Ti5 glass (Kim et al., 2002). 

The Zr2Ni nanocrystallites had a size between 10 and 40 nm. Moreover, the crystallographic 

orientation of the nanocrystals was not perfectly random. Instrumented indentation studies 

on a Al90Fe5Gd5 metallic glass revealed an isotropic arrangement of Al nanocrystals that 

developed during indentation at 100 nm/s and 10 nm/s (Jiang et. Al., 2003). The average 

size of the nanocrystals was 6.4 nm for the 100 nm/s indentation rate and 3.8 nm for the 
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lower rate. The density of the nanocrystals increased toward the bottom of the indent where 

the strain is the highest. Furthermore the nanocrystal density is higher for the lower 

indentation rate.  

Crystallization reactions were furthermore induced with intense cold rolling and folding of 

melt-spun amorphous ribbons (Hebert and Perepezko, 2004; Hebert et al., 2004; Hebert et 

al., 2005; Park et al., 2005; Louzguine-Luzgin and Inoue, 2006; Hebert and Perepezko, 2007). 

Similarly to the milling- and bending-induced crystallization reactions the size of the 

nanocrystals was limited to about 15-20 nm. Nanocrystals developed in some metallic 

glasses during rolling and folding, but for some metallic glass compositions, notably the 

Al85Ni10Ce5 metallic glass nanocrystals did not develop until the highest strains that could 

be imparted on the melt-spun ribbons with the rolling and folding approach.  

2.2.2 Mechanisms for deformation-induced crystallization 
The main challenge in understanding the mechanism of deformation-induced nanocrystal 
formation in metallic glasses is to discern between thermal and athermal effects. Under the 
intense deformation modes that have been used to induce nanocrystals it is inevitable that 
shear bands develop during the deformation process. Proposed mechanisms for 
deformation-induced crystallization either follow the argument of adiabatic heating in shear 
bands as source for crystallization or they follow the argument of enhanced kinetics in shear 
bands due to the dilatation of the metallic glass in shear bands. Several studies focused on 
estimates or experimental analyses of the transient temperatures that develop during the 
shear band formation and propagation (Lewandowski and Greer, 2006; Hongwen et al., 
2007; Battezzati and Baldissin, 2008; Jiang et al., 2008). The shear strains within shear bands 
are estimated to be on the order of 100 % (Jiang et al., 2007). Reported temperature rises vary 
widely between tenths of a degree to on the order of 1,000 K. Indirect evidence for adiabatic 
heating as a source for deformation-induced crystallization was provided, for example, in 
Csontos’ and Shiflet’s work (Csontos and Shiflet, 1997). Composition profiles were 
measured around Al nanocrystals of a Al90Fe5Gd5 metallic glass that was deformed at room 
temperature and annealed in a separate experiment. The composition profiles for both 
processing routes were practically identical, suggesting a heating effect as the same source 
for crystallization in both cases. Further indirect evidence for shear band-related heating as 
the mechanism for deformation-induced crystallization was obtained in Kim and coworkers’ 
study (Kim et al., 2006). The high-temperature Laves phase that formed in the shear bands 
during room temperature cold rolling was identical with the Laves phase that formed in the 
same Ti40Zr29Cu9Ni8Be14 metallic glass upon annealing. On the other hand, evidence was put 
forth that the deformation-induced crystallization could not be the result of only adiabatic 
heating. Shear bands formed on the compressive and the tensile sides of bent Al-based 
metallic glasses, but nanocrystals developed only on one side. With adiabatic heating as the 
source and mechanism for crystallization, nanocrystals should develop on both sides bar 
any major differences in the shear bands between the tensile and compressive sides. 
Observations of a partial to complete ordering of the deformation-induced nanocrystals 
(Ogura, Tarumi et al., 2001) are difficult to rationalize based only on a heating argument.  
With arguments for both sides it seems that the deformation-induced crystallization 
reactions have both a thermal and a deformation component. Deformation-induced 
crystallization was more recently observed during uniaxial compression of bulk Cu50Zr43Al7 
metallic glass at room temperature (Lee et al., 2006). Lee and coworkers suggested that the 
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hydrostatic stress component lowered the energy barrier for nucleation while the shear 
stress component lowered the energy barrier for diffusion (Lee, Huh et al., 2006). 

2.3 Mechanical processing – deformation prior and during thermally induced 
crystallization 
Crystallization reactions can occur during deformation at room temperature as described in 
2.2, but historically the first relation between deformation and crystallization was 
established for cold-rolling of melt-spun glassy ribbons followed by annealing. Since then 
the sequence of deformation and annealing has been studied not only for cold-rolling but 
furthermore for uniaxial compression. A third group of experiments included deformation 
during annealing. In this set of experiments the stress state can be selected; hydrostatic and 
uniaxial stress states were examined for their effect on thermally induced crystallization. 

2.3.1 Deformation followed by thermally induced crystallization 
The effect of cold-rolling on the crystallization behavior was studied starting in the 1970s, 
but initially the rolling experiments were coupled with annealing treatments after the cold-
rolling (Masumoto and Maddin, 1975; Luborsky et al., 1976; Calvayrac et al., 1980; Noskova 
et al., 1989; Jin et al., 2001). These studies examined the effects that the cold-rolling had on 
the thermally induced crystallization process. Masumoto and Maddin determined that 
during the cold-rolling the atomic arrangement in the Pd80Si20 glass became more 
disordered with the formation of additional irregularities. The crystallization temperature 
increased with rolling deformation (Masumoto and Maddin, 1975). Luborsky and coworkers 
cold-rolled Fe40Ni40P14 metallic glass ribbons at the same reduction levels than Masumoto of 
40 % thickness reduction. Small-angle X-ray scattering experiments indicated the 
disappearance of scattering centers and thus an increase in randomness with rolling 
(Luborsky, Walter et al., 1976). Kulik and Matyja compressed stacks of Pd100-xSix metallic 
glass ribbons and observed that the crystallization temperature decreased for the 
compressed ribbons. The amount of compression was comparable to the roll reduction in 
Masumoto’s and Luborsky’s work. Moreover, the decrease in crystallization temperature 
with compression was a function of composition and with a higher Si content the difference 
between the crystallization temperatures of deformed and undeformed samples increased 
(Kulik and Matyja, 1980). Calvayrac and coworkers cold-rolled Cu60Zr40 metallic glass 
ribbons and found a less topologically defined atomic arrangement after cold-rolling. 
Changes in the crystallization behavior were not found, however (Calvayrac, Harmelin et 
al., 1980). Noskova and coworkers examined the effect of cold-rolling on the phase 
formation of Fe81Si7B12 metallic glass ribbons. The main finding was an increase in the 
number density and a reduction in size of the nanocrystals during the initial primary 
crystallization reactions following cold-rolling (Noskova, Vil'danova et al., 1989). These 
results can be compared to the more recent findings of cold-rolling induced nanocrystal 
formation at room temperature. At rolling reductions of about 40 % a more disordered state 
seems to be achieved according to Masumoto’s, Luborsky’s, and Kulik’s work. With further 
cold-rolling, however, nanocrystals develop in shear bands and thus at least locally the level 
of ordering increases at higher deformation levels. Several questions remain open, however: 
without doubt, shear bands develop at rolling reductions of 40 %. The Pd-based and Fe-
based alloys with about 80 at % metal content and about 20 % metalloid content seem to be 
“inert” to crystallization during deformation while the primary-crystallizing Al-based 
metallic glasses reveal deformation-induced crystallization. The crystallization behavior of 
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metallic glasses following deformation is thus strongly composition dependent.  Further 
work is necessary to identify what aspects of the compositional differences are ultimately 
responsible for the differences in the response to deformation.  

2.3.2 Deformation superposed on thermally induced annealing 
Hydrostatic and uniaxial tensile stresses were superposed on thermally induced annealing. 

The impact of hydrostatic stress conditions on crystallization has been considered in several 

studies for melt-spun amorphous ribbons and bulk metallic glasses. Emmens and coworkers 

examined the crystallization behavior of Pd75Ag5Si20 metallic glass under a hydrostatic stress 

of 600 MPa and observed a shift of the crystallization onset temperatures to higher 

temperatures (Emmens et al., 1975). They argued that an increase in hydrostatic pressure 

enhanced the nucleation rate due to a higher density of the crystallizing phase. At the same 

time, the growth rate was inhibited due to a reduced mobility under hydrostatic pressure 

(Emmens, Vrijen et al., 1975). Iwasaki and Masumoto examined the crystallization behavior 

of melt-spun Pd80Si20 metallic glass at a hydrostatic pressure of 10,000 MPa (Iwasaki and 

Masumoto, 1978).  Their results indicated that the hydrostatic pressure retarded 

crystallization over the entire temperature range of crystallization. Iwasaki and Masumoto 

pointed out that the hydrostatic stress limited the mobility of atoms and thus reduced 

diffusion-controlled growth.  Ye and Lu examined the primary crystallization of Al89La6Ni5 

metallic glass under hydrostatic pressure and found a lowering of the crystallization onset 

temperature under hydrostatic pressure (Ye and Lu, 1999).  The thermodynamic argument 

based on a higher driving force for crystallization under hydrostatic pressure was tested 

with nanoindentation-based crystallization at different loading rates (Jiang et al., 2003). The 

indentation-induced nanocrystals were larger for the higher loading rate than for the lower 

rate. Jiang and coworkers argued that with the same hydrostatic stress surrounding the 

indent for both loading rates the slower rate exposes the metallic glass for a longer time to 

the hydrostatic pressure. Since the slower rate and therefore longer pressure exposure 

resulted in smaller nanocrystals than for the higher loading rate, the thermodynamic driving 

force argument could not hold to explain the effect of hydrostatic pressure on 

crystallization. It was suggested that pressure effect was predominantly kinetic in nature. 

The effects of hydrostatic pressure on crystallization were summarized in Suryanarayana’s 

and Inoue’s book (Suryanarayana and Inoue, 2011): 

 The density increase with crystallization of metallic glasses promotes crystallization 
under hydrostatic pressure. For polymorphous transformation reactions, diffusion is 
not required and thus hydrostatic pressure should promote crystallization. 

 Hydrostatic pressure reduces atomic mobility due to a decrease in the specific volume.  
For primary and eutectic crystallization reactions the kinetics of the crystallization 
process should be impeded.  

 Hydrostatic pressure can change the crystallization pathway or the crystallization 
products. 

A similar effort included the application of tensile stresses during thermal crystallization 
(Maddin and Masumoto, 1972; Patterson and Jones, 1979; Tiwari et al., 1982; Claus and von 
Heimendahl, 1983). The results of the tensile test experiments suggest that the tensile stress 
improves the volume diffusion capability and thus promotes crystallization for diffusion-
controlled growth cases. For crystallization reactions that are interface controlled the tensile 
stress does not impact the crystallization behavior (Claus and von Heimendahl, 1983).  
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2.4 Mechanical processing of metallic glass/crystal composites 
The synthesis approaches for metallic glass composites containing crystalline second phases 

fall in one of two general categories. Crystallites can develop “in-situ”, i.e., during annealing 

of metallic glass precursors or during the quenching of the liquid alloys into glassy metals. 

This approach is very useful and efficient for the synthesis of metallic glasses containing 

nanocrystals. In addition to the annealing of metallic glasses and the formation of 

crystallites directly during quenching, metallic glass/crystal composites can be synthesized 

“ex-situ”. The most important example of ex-situ processing is melt-infiltration (Dandliker 

et al., 1998). In this approach metallic glass is heated up to the supercooled liquid state and 

subsequently pushed into a form containing the second phase. The form containing the 

metallic glass and the second phase is then quenched. The second phases that have been 

used so far include metals, alloys, and nonmetallic materials. Different shapes have been 

used including fibers, rods, or particles. A major advantage of the melt-infiltration process is 

that the volume fraction of the second phase can be raised beyond the thermodynamic limits 

inherent to thermal processing. On the downside it is very difficult to achieve dispersions of 

nano-sized second phases without agglomeration of the second phase particles.  

3. Properties of nanocrystals in amorphous matrices 

Most studies of nanocrystal/metallic glass composites focus on the overall composite 

properties and the impact of the nanocrystals on the composite properties. From particle-

matrix composite studies with crystalline materials it is known that not only the size 

distribution and particle number densities determine the composite properties, but 

furthermore the morphology of the particles, the defects that might exist in the particles, and 

the particle composition.  This chapter highlights the current knowledge of defects in 

nanocrystals that are embedded in metallic glasses, their morphology and composition. 

3.1 Defects in nanocrystals 
Thermally induced nanocrystals in metallic glasses were initially considered to be defect 

free. This notion appears to be true for the vast majority of nanocrystals that develop during 

annealing of amorphous precursor alloys. Most investigations focused on Al-based 

amorphous alloys (Inoue, 1998; Abrosimova and Aronin, 2002) and revealed a defect free 

nature of the Al nanocrystals that grow to about 20 nm in size during controlled heat 

treatment (Abrosimova and Aronin, 2007). Aronin, however, reported in 2001 the presence 

of twins and dislocations in Al nanocrystals of annealed Al86Ni11Yb3 melt-spun ribbons for a 

nanocrystal with a size of about 25 nm (Aronin, 2001). Louzguine-Luzgin and Inoue found 

evidence for dislocations in Al nanocrystals with sizes of less than 7 nm in as-spun 

Al85Y4Ni5Co2Pd4 amorphous ribbons (Louzguine-Luzgin and Inoue, 2006; Louzguine-

Luzgin and Inoue, 2007). The dislocations in Louzguine-Luzgin’s work were observed for 

nanocrystals that impinged on each other due to extremely high particle number densities of 

1024 m-3. It was suggested that the dislocations developed due to microstrains in the 

nanocrystals and due to the formation of nanocrystals directly during quenching. The 

quenching, it was argued, inhibited the annihilation of dislocations due to the limited time 

at elevated temperatures during the quench process. From the reports of Al nanocrystals 

that were defect free after annealing and the reports of dislocations in nanocrystals that 

developed directly during quenching a conclusion could be drawn that defects could only 
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develop in quenched-in nanocrystals. The situation is more complex, though. For a 

(Ni70Mo30)90B10 amorphous alloy, stacking faults were observed for thermally induced 

nanocrystals and for nanocrystal sizes exceeding about 5 nm (Abrosimova and Aronin, 

2007). At smaller sizes, the nanocrystals that were comprised of fcc Ni-Mo solid solutions 

were defect free. The defect character was observed with high-resolution transmission 

electron microscopy and inferred from X-ray analysis (Abrosimova and Aronin, 2007). The 

same authors did not observe defects in fcc Al nanocrystals that developed in Al-Ni-RE (rare 

earth) melt-spun ribbons.  The argument to rationalize the differences between the 

nanocrystal defect existence in the Ni-based and Al-based amorphous alloys was based on 

defect energies. Unlike the Al nanocrystals that are nearly pure Al, the Ni nanocrystals 

contain significant solute content. The alloying changes the electron concentration and thus 

the stacking fault energy. While the stacking fault energy is higher for Ni than for Al, the Ni-

Mo solid solution has a much reduced stacking fault energy that is below the stacking fault 

energy of Al (Abrosimova and Aronin, 2007). The low stacking fault energy enables the 

formation of stacking faults. Microstrains due to, for example, differences in the thermal 

expansion coefficient, provide the necessary impetus for the formation of the stacking faults 

(Abrosimova and Aronin, 2007). The existence of defects in isolated nanoparticles or 

nanocrystals that are embedded in a matrix was considered by Gryaznov in light of 

dislocation concepts such as image forces and annihilation at interfaces (Gryaznov et al., 

1991). The predictions obtained from Gryaznov’s work did not, however, agree with the 

experimental observations in Abrosimova’s work (Abrosimova and Aronin, 2002).   

Nanocrystals that develop during intense deformation reactions at ambient deformation 
temperatures might be expected to contain defects due to the mechanical deformation 
underlying their genesis. A very limited number of studies focused on the defect content of 
deformation-induced nanocrystals. Studies on intensely cold-rolled and folded Al88Y7Fe5 
metallic glasses demonstrated that for nanocrystal sizes of less than about 5-10 nm the 
primary Al nanocrystals were defect free (Hebert et al., 2006). Some Al nanocrystals, 
however, clearly revealed the presence of defects as shown in Fig. 3.  
 

 

Fig. 3. High-resolution transmission electron microscopy image of an Al nanocrystal in a 
rolled and folded Al88Y7Fe5 metallic glass ribbon (left). The Fourier transform (right) reveals 
the presence of a defect that appears to be a dislocation (Reprinted from (Hebert, Perepezko 
et al., 2006), with permission from Elsevier) 
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3.2 Morphology of nanocrystals 
Transmission electron microscopy studies have repeatedly shown that nanocrystals 
developing in amorphous matrices have a spherical shape in the early growth stages, i.e., at 
a size of about 5-10 nm. An example of a spherical nanocrystal is shown in Fig.4 a.  
 

 

Fig. 4. Bright-field TEM images of Al88Y7Fe5 melt-spun metallic glass ribbon. (a) after 
annealing at 245 °C for 10 min. (b) after annealing at 245 °C for 30 min. (c) at 245 °C for 100 
min (adapted from (Perepezko and Hebert, 2002)). 

The spherical shape of nanocrystals breaks down during further growth. For Al 

nanocrystals in amorphous Al-based alloys, a dendritic morphology started to develop at 

sizes of about 10-50 nm as shown in Fig. 4b.  While the spherical shape of the nanocrystals 

during their early growth stage might be expected based on the largely isotropic nature of 

the metallic glass precursor, recent studies based on molecular-dynamics simulations and 

high-resolution electron microscopy suggest a morphology of the nanocrystals during the 

nucleation stage that deviates from the spherical symmetry. The step-wise growth process 

from one-dimensional ordered arrays into two- and three-dimensional nanocrystals for Zr-

Ni-Fi metallic glasses is one example (Liu, Chen et al., 2007).  

The transition of the nanocrystals from spherical to dendritic shape might be explained as 

interface instability. Mullins and Sekerka (Mullins and Sekerka, 1963) investigated the 

stability of infinitesimal undulations at the interface between a growing particle and the 

surrounding matrix under the condition that the concentration field can be calculated from 

the solution of the Laplace-equation. The velocity of each interface element can then be 

obtained from the mass-conservation equation: 

 
s

D c
v

C c n




 
 (1)                    

where C is the concentration inside the particle, cs is the concentration in the matrix at the 

interface and /c n  is the concentration gradient at the interface normal to the interface. In 

order to “generate” undulations, the following ansatz was used for the description of the 
particle interface: 

    , ,
m

l
r R Y       (2) 

where R is not a function of the angular variables, m

l
Y are the orthonormal set of 

eigenfunctions for the solution of the Laplace equation for spherical coordinates (spherical 
harmonics) and δ is the amplitude of the spherical harmonics that is sufficiently small for 
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higher order terms in δ ( 2 3
, ,...  ) to be negligible. Mullins and Sekerka also included the 

capillarity effect on the concentration outside the particle at the interface. As a result, an 

expression for
l

 was obtained, i.e. the change in time of the amplitudes of all spherical 

harmonic functions. Since this expression is a difference between a concentration gradient 
term (> 0) and a capillarity term (< 0), the amplitudes can grow (interface becoming 
unstable) or decay, depending on the relative magnitude of both terms. A key result in 
(Mullins and Sekerka, 1963) is that the critical size that marks the onset of instability for any 
of the spherical harmonics is 7R*, with R* the critical size for nucleation. The result for the 
stability analysis are illustrated schematically in Fig. 5 which is taken from Mullins and 
Sekerka’s seminal paper on interface instability (Mullins and Sekerka, 1963). The solid line 

denotes the critical size as a function of the parameter - 0

0

c c

c

  , where c0 is the concentration 

of the matrix at the interface for a planar interface (no capillarity effect) and c∞ the 
concentration of the matrix at infinity. In the hatched area, the particle is stable, but above 
the solid line the morphology of the growing particle becomes unstable. The dashed line 
corresponds to the critical nucleus size. Two trajectories are highlighted that illustrate 

different growth paths. For an isolated particle in an infinite matrix, the ratio - 0

0

c c

c

   is 

constant therefore the trajectory is vertical. Once the morphology becomes unstable, it 
continues to be unstable. In case of diffusion-field impingement, c∞ is time-dependent, 
therefore the trajectory can be curved. This can lead to the situation depicted in path 2. After 
an intermediate stage where the particle is unstable it reaches the stable region again.  
 

 

Fig. 5. Critical radius for a spherical particle to become unstable with respect to the spherical 

shape as a function of the parameter 0

0

c c

c

  (adapted from (Mullins and Sekerka, 1963). 

The morphology of deformation-induced nanocrystals is not necessarily spherical or 

dendritic. High-resolution transmission electron microscopy images of Al nanocrystals that 

developed during intense cold-rolling and folding of metallic glass Al88Y7Fe5 ribbon 

revealed prolate shapes of the nanocrystals as shown in Fig. 6. A high-resolution 
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transmission electron image of an Al nanocrystal in the bent region of a Al90Fe5Gd5 metallic 

glass ribbon, however, revealed a nearly spherical shape (Jiang and Atzmon, 2003). 

Additional insight can be gained from molecular-dynamic simulations. An orientation 

relationship was observed for the shear- and crystallographic direction of deformation-

induced Ni nanocrystals (Tarumi et al., 2000).  

 

 

Fig. 6. High resolution transmission electron microscopy image of a Al nanocrystals that 
developed during repeated cold-rolling and folding of an array of melt-spun Al88Y7Fe5 
metallic glass ribbons (Reprinted from (Hebert, Perepezko et al., 2006), with permission 
from Elsevier). 

4. Effect of nanocrystals on properties of nanocrystal/amorphous 
composites 

4.1 Mechanical properties 
Metallic glasses in general offer high strength, elastic resilience (Schuh et al., 2007), and in 
many cases additional advantageous properties such as high wear resistance (Greer et al., 
2002). The substantial differences in the mechanical behavior between crystalline and glassy 
metals derive from the vastly different deformation mechanisms. Dislocations and stacking 
faults along with twins are defects that are responsible for the plastic deformation of 
crystalline materials. At room temperature most metallic glasses deform above a critical 
stress with the formation and propagation of shear bands. These shear bands are thin—
about 20-50 nm—planar regions that deform heavily while the surrounding regions are not 
or very little affected. During deformation of monolithic metallic glasses a single shear band 
can propagate throughout the sample and in the process weaken the metallic glass along the 
shear band to the point of fracture if the deformation is unrestricted (Hays et al., 2000). The 
Achilles heel of most monolithic metallic glasses for structural applications is thus their 
limited ductility in tension due to the unrestricted shear band propagation. Many attempts 
have been made to improve plastic deformation in metallic glasses, including but not 
limited to specific selections of alloying elements for improved ductility (Gu et al., 2008) or 
the identification of bulk-glass forming systems that reveal modest plasticity even in the as-
cast condition (Schroers and Johnson, 2004). Among the most successful strategies, though, 
is the dispersion of crystalline particles in amorphous matrices. For micrometer-sized 
crystalline particles, ductility can be gained but at the expense of a decrease in the overall 
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composite strength (Bae et al., 2003).  Figure 7 a, for example, highlights the dispersion of 
micrometer-sized brass particles in a warm-extruded Ni59Zr20Ti16Si 2Sn3 metallic glass. While 
the monolithic glass did not reveal plasticity, a 5 % plastic strain was achieved at 40 vol % 
brass, but the strength decreased by about 40 %.  
 

 
(a) (b) 

Fig. 7. (a) The stress vs strain curves of the monolithic sample and MGMCs containing 20 vol 
% brass and 40 vol % brass tested under the uniaxial compressive condition at room 
temperature. The load is applied along the extrusion direction (Reprinted with permission 
from (Bae, Lee et al., 2003). Copyright 2003, American Institute of Physics). (b) Fracture 

strength f and strain at fracture, ef, for Al88Y2Ni9Fe1 metallic glass as a function of volume 
fraction of fcc Al nanocrystals (adapted from (Yeong-Hwan et al., 1991)). 

Unlike for micrometer-sized crystals in metallic glasses the dispersion of nanocrystals can 
not only improve the strain to fracture, but can furthermore improve the fracture strength as 
shown in Fig. 7 b. The dispersion of Al nanocrystals in Al88Y2Ni9Fe1 metallic glass raised the 
fracture stress from about 950 MPa to over 1300 MPa while the strain to fracture increased 
slightly rather than decreased for a volume fraction of the nanocrystals between 0 and 10 % 
but decreased at higher volume fractions (Yeong-Hwan, Inoue et al., 1991). The decrease in 
strain to fracture or ductility with increasing volume fraction of nanocrystals appears to be a 
general trend (Bian et al., 2002).  
Since the deformation behavior of metallic glasses at room temperature and stresses above 

the elastic limit is tied to the formation and propagation of shear bands, a key topic in 

understanding the role of nanocrystals and micrometer-sized crystals for the mechanical 

behavior of metallic glasses is the interaction between shear bands and nano-/micro 

crystals. This interaction involves not only the role of crystals for interacting with existing 

and propagating shear bands, but also the role of crystals for the formation of shear bands. It 

was indeed suggested early on in the development of crystal/metallic glass composites that 

the role of the crystalline second phase in the amorphous matrices was twofold: first, to 

serve as initiation or nucleation sites for shear bands and secondly to attract or pin shear 

bands (Hays, Kim et al., 2000). A parallel between shear bands and their interaction with 

second phase crystals and dislocations in crystalline materials and their interaction with 

crystalline second phases is the importance of elastic stress fields. Several studies focused on 
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the nature of stress fields in the vicinity of crystals and shear bands. Donovan noted 

(Donovan and Stobbs, 1983) that interactions between shear bands and other sources for 

elastic stresses in the metallic glasses such as second phase crystals depend on the dilation of 

the specific volume in shear bands during shear band propagation (Spaepen and Turnbull, 

1974; Argon et al., 1985). The dilation of the volume within shear bands induces 

compressive stresses in the surrounding matrix. The compressive stress field surrounding 

shear bands would indicate a repulsive interaction with crystals that are surrounded by 

compressive elastic stress fields and an attraction in case of tensile stress fields. Different 

sources contribute to elastic stress fields in the vicinity of crystals in metallic glasses. For in-

situ formed crystals—either micrometer-sized dendrites or nanocrystals—the annealing 

induced crystallization reduces the specific volume of the crystalline phase for most metallic 

glass systems relative to the metallic glass matrix. The stress fields that could develop 

during the crystallization process, however, are considered to be alleviated due to the 

elevated temperatures of the metallic glasses during thermally induced crystallization. The 

elevated temperatures allow the atoms in the surrounding of the crystallites to relax during 

the crystallization process and therefore potential elastic stresses are relieved. Elastic 

stresses surrounding crystals furthermore develop during the cooling process from the 

crystallization process due to the thermal expansion mismatch between crystallites and 

metallic glasses.  
 

 

Fig. 8. Thermal expansion coefficient of crystallized and glassy (Ce0.72Cu0.28)78.5Al10Fe10Si1.5 
bulk metallic glass 

Figure 8 highlights differences in the true thermal expansion coefficient between a 
crystallized (Ce0.72Cu0.28)78.5Al10Fe10Si1.5 metallic glass and the same composition in a glassy 
state. The temperature range depicted in Fig. 8 includes the glass transition region; the steep 
drop in the thermal expansion coefficient for the metallic glass sample represents the onset 
and evolution of crystallization of the metallic glass (Mubarok and Hebert). Upon loading of 
metallic glasses containing crystals, additional stresses develop due to differences in the 
elastic and plastic behavior of crystals and glassy matrices. Ott and coworkers examined the 
stresses in and around micrometer-sized Ta crystals in Zr-Cu-Ni-Ta-Al metallic glasses (Ott 
et al., 2005). The micrometer-sized Ta crystals were softer than the metallic glass. Plastic 
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misfit strains developed when the applied load induced plastic strain in the Ta particles 
while the glassy matrix still deformed elastically. The plastic misfit strains induced localized 
stress fields in the immediate vicinity of the Ta particles. Shear bands could thus develop in 
the vicinity of the particles, but could not propagate into the glassy matrix where the 
stresses remained below the critical stress for yielding. A further important finding in Ott’s 
work (Ott, Sansoz et al., 2005) was that the stress in the glassy matrix was below the applied 
stress at some matrix locations.  The stress fields surrounding the Ta particles were thus 
highly inhomogeneous and enabled shear band formation and propagation in some areas, 
but not in other regions until the applied stress increased the stress even in low-stress 
regions to the point of yielding. As a result, the shear band propagation could not be 
straight but would be expected to the wavy and possibly deviating from the planes of 
maximum shear stress. Ott’s work was conducted for micro-meter sized crystals and the 
situation of a soft crystal embedded in a stronger glassy matrix could change for the 
situation of nanocrystals embedded in glassy matrices. One of the explanations for hardness 
increases of nanocrystal/metallic glass composites in fact invokes the idea of a hardness 
increase due to the formation of nanocrystals with hardness levels greater than those of the 
metallic glass matrices (Yeong-Hwan, Inoue et al., 1991). While the effects of elastic and 
plastic misfit stresses for the role of shear band propagation have been clearly recognized, 
further work is necessary to understand in particular the formation of stresses in metallic 
glasses containing nanocrystals and their effect on shear bands.  

4.2 Wear properties 
Wear properties of metallic glasses have been studied since 1979 (Boswell, 1979). Until the 
discovery of bulk metallic glasses, wear studies were conducted on Fe-based and later on 
Al-based metallic glass melt-spun ribbons (Klinger and Feller, 1983; Miyoshi and Buckley, 
1983; Miyoshi and Buckley, 1983; Miyoshi and Buckley, 1984; Kishore et al., 1987; Lim and 
Ashby, 1987; Gloriant, 2003). Reviews on the wear behavior of melt-spun, ribbon-shaped 
metallic glasses were prepared by Lim and Ashby (Lim and Ashby, 1987) and Greer, 
Rutherford, and Hutchings (Greer et al., 2002). The vast majority of studies on the effect of 
crystallites in metallic glasses on wear properties indicate improvements in the wear 
behavior with the formation of crystallites. The wear resistance of Al88Ni4Sm8 metallic glass, 
for example, increased after an initial phase before reaching a plateau (Gloriant and Greer, 
1998).  Improvements with partial devitrification of Al nanocrystals were found furthermore 
for partially crystallized Al-Ni-Y based amorphous alloys (Greer, Rutherford et al., 2002), 
annealed Zr41Ti14Cu12.5Ni10Be22.5 bulk metallic glasses (Li et al., 2002), or partially crystallized 
bulk Cu50Hf41.5Al8.5 metallic glasses (Maddala et al., 2010). The wear improvements at first 
glance seem to be expected, since the hardness increases in many cases during 
devitrification. Archard’s empirical rule relates hardness directly to wear resistance 
(Archard, 1957). The hardness, however, continues to increase with further crystallization 
and often reaches a maximum for the fully crystallized condition (Maddala, Mubarok et al., 
2010). The wear resistance does not continue to improve, but often reaches a maximum at a 
certain degree of crystallization (Boswell, 1979; Vom Wege et al., 1988; Maddala, Mubarok et 
al., 2010). A possible explanation for the wear changes with crystallization was given early 
on in Boswell’s and Zum Gahr’s work (Boswell, 1979; Zum Gahr and Noecker, 1981). With 
increasing crystallization the hardness increases, but the toughness of the material 
decreases, i.e., the brittleness of the metallic glass increases. The increasing brittleness of the 
metallic glass with annealing and crystallization causes a change in the wear mechanism 
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toward micro-fractures and delamination. Maddala and coworkers have recently confirmed 
the wear behavior changes with measurements of notch toughness and hardness at different 
crystallization stages (Maddala and Hebert, 2011).  
Several results on the wear behavior of metallic glasses containing nanocrystals, however, 
seem to contradict the mechanism of a wear improvement with nanocrystal formation and 
eventual deterioration at higher nanocrystal number densities. Abrasive wear tests on a SiC 
paper, for example, showed that the wear resistance of the Co-based glass improved with 
increasing degree of crystallization when fine-grained SiC paper was used  (Vom Wege, 
Skrotzki et al., 1988; Vom Wege et al., 1991). Upon testing with coarse-grained SiC paper, 
however, the wear resistance deteriorated with increasing crystallinity. The crystallization 
products were primary Co and Co3B particles with sizes of 15-20 nm (Vom Wege, Skrotzki 
et al., 1988). Tam and Shek examined the wear behavior of Cu-Zr-Ti metallic glasses and 
observed that the hardness did not scale with the wear behavior (Tam and Shek, 2004). 
Upon closer examination, however, it appears that in Tam’s work and Vom Wege’s work 
the wear mechanism was based on micro-fractures. This clearly shows that for wear studies 
not only the sample need to be considered, but the wear load, condition, atmosphere, 
amongst others. It seems, however, that under conditions that cause micro-ploughing and 
micro-cutting the formation of nanocrystals has a positive impact on the wear behavior. 
Clearly, more work is necessary to identify the relations between the level of crystallization, 
external wear conditions, and wear behavior.  

4.3 Corrosion properties 
Metallic glasses in general compare favorably with their crystalline counterparts in their 

corrosion behavior, although exceptions are known (Hashimoto, 2002; Scully and Lucente, 

2005; Scully et al., 2007). The corrosion behavior of single-phase metallic glasses benefits 

from the lack of structural or chemical inhomogeneities such as grain boundaries or 

inclusions. It was suggested that metallic glasses promote the formation of amorphous 

oxides (Scully, Gebert et al., 2007). Many metallic glasses reveal solute levels that far exceed 

those of their crystalline counterpart systems. The enhanced solute content in the metallic 

glass can increase the solute content in oxide layers and thus improve the corrosion 

behavior. The change in interatomic distances and coordination numbers with transition 

from crystalline to amorphous atomic arrangement furthermore affects electrochemical 

properties and corrosion properties (Scully, Gebert et al., 2007). Among the earliest 

corrosion resistance studies on metallic glasses were Fe-metalloid metallic glasses 

containing chromium. The early studies on Fe-Cr-P-C melt-spun ribbons were continued 

more recently when bulk metallic Fe-glasses were developed. Bulk metallic glasses in the Fe-

Cr-Mo-C-B system revealed corrosion rates as low as 10-3 mm/year in concentrated 

hydrochloric acid.  

While the corrosion advantages of fully amorphous metallic glasses are undisputed, the 

formation of nanocrystals might be expected to negatively impact their corrosion behavior.  

The nanocrystals, after all, represent both structural and chemical inhomogeneities and 

entail interfaces with the surrounding amorphous matrices. The chemical inhomogeneities 

are not limited to the nanocrystal/amorphous matrix interface, but extend into the 

amorphous matrix due to gradients in solute concentrations that exist at least during the 

grow stages of nanocrystals that form non-polymorphically. Studies on the corrosion 

behavior of nanocrystal-containing metallic glasses have been conducted so far for Fe-based, 
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Ni-based, Zr-based, and Al-based systems. An overall trend, however, does not appear to 

exist. Even within the same system the corrosion behavior improves for some compositions, 

but deteriorates for other compositions.  

Lucente and Scully examined the corrosion behavior of Al-based amorphous-
nanocrystalline alloys containing Al nanocrystals in detail. Four melt-spun amorphous 
alloys, Al90Fe5Gd5, Al85Fe7Gd8, Al90Co3Ce7, and Al87Ni7Gd6 were exposed to 0.6 M NaCl 
electrolyte in an electrolytic cell to test the resistance to micrometer-scale pitting (Lucente 
and Scully, 2008). The resistance to pitting can be determined quantitatively from 
measurements of the pitting and repassivation potentials in anodic polarization scans. The 
pitting potential reflects a resistance to pit initiation and stabilization (Lucente and Scully, 
2008).  For all four amorphous alloys the repassivation potential remained unchanged when 
the fully amorphous alloys were partially devitrified. The pitting potential increased 
compared to the fully amorphous alloy, except for the Al90Co3Ce7 amorphous alloy that 
revealed a small decrease in pitting potential with nanocrystal formation. It is noteworthy 
that the pitting potential increased significantly for the Al85Fe7Gd8 amorphous alloy despite 
a nanocrystal size of 100 nm. The increase in pitting potential with nanocrystallization 
relative to the fully amorphous state suggests that the devitrification inhibits pit initiation. 
In a second set of experiments, the growth and repassivation kinetics were determined for 
artificial pits that were induced electrolytically. The growth kinetics of the artificial pits was 
not affected for the amorphous alloys containing nanocrystals. The unchanged repassivation 
potential was interpreted as an overall growth kinetics of pits larger than 10 micrometers 
that were unaffected by the nanocrystal formation.  

5. Conclusion  

Nanocrystals can significantly improve properties of metallic glasses, for example, 
mechanical properties or magnetic properties. Some progress has been made to understand 
the mechanisms behind these improvements, but in many cases a clear understanding has 
not been achieved, yet. Further work is therefore not only necessary, but promises further 
advancements. Progress will have to come from a combination of smart experimentation, 
advanced diagnostics, and computer simulations. Arguably the most interesting aspect of 
nanocrystals in metallic glasses, though, is the longest-standing issue: their synthesis. 
Changes in local atomic configuration or changes in nanocrystal number densities by orders 
of magnitude, or changes in the phase formation with a 1 at % alloying addition offer 
exciting opportunities to design novel composite materials.  
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