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1. Introduction 

Enormous amount of real time robot arm research work is still being carried out in different 
aspects, especially on dynamics of robotic motion and their governing equations.  Taha [5] 
discussed  the dynamics of robot arm problems. Research in this field is still on-going and 
its applications are massive. This is due to its nature of extending accuracy in order to 
determine approximate solutions and its flexibility. Many studies [4-8] have reported 
different aspects of linear and non-linear systems. Robust control of a general class of 
uncertian non-linear systems are investigated by zhihua [10]. 
Most of the initial value problems (lVPs) are solved using Runge-Kutta (RK) methods which 
in turn are employed in order to calculate numerical solutions for different problems, which 
are  modelled in terms of differential equations, as in Alexander and Coyle [11], Evans [12 ], 
Shampine and Watts [14], Shampine and Gordan [18] codes for the Runge-Kutta fourth 
order method. Runge-Kutta formula of fifth order has been developed by Butcher [15-17].  
Numerical solution of robot arm control problem has been described in detail by Gopal et 
al.[19]. The applications of non-linear differential–algebraic control systems to constrained 
robot systems have been discussed by Krishnan and Mcclamroch [22]. Asymptotic observer 
design for constrained robot systems have been analyzed by Huang and Tseng [21]. Using 
fourth order Runge-Kutta method based on Heronian mean (RKHeM) an attempt has been 
made to study the parameters concerning the control of a robot arm modelled along with 
the single term Walsh series (STWS) method [24]. Hung [23] discussed on the dissipitivity of 
Runge-Kutta methods for dynamical systems with delays. Ponalagusamy and Senthilkumar 
[25,26] discussed on the implementations and investigations of higher order techniques and 
algorithms for the robot arm problem. Evans and Sanugi [9] developed parallel integration 
techniques of Runge-Kutta form for the step by step solution of ordinary differential 
equations. 
This paper is organized as follows. Section 2 describes the basics of robot arm model 
problem with variable structure control and controller design. A brief outline on parallel 
Runge-Kutta integration techniques is given in section 3. Finally, the results and conclusion 
on the overall notion of parallel 2-stage 3-order arithmetic mean Runge-Kutta algorithm and 
obtains almost accurate solution for a given robot arm problem are given in section 4.   
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2. Statement of the robot arm model problem and essential variable 
structure 

2.1 Model of a robot arm  

It is well known that both non-linearity and coupled characteristics are involved in 

designing a robot control system and its dynamic behavior.  A set of coupled non-linear 

second order differential equations in the form of gravitational torques, coriolis and 

centrifugal represents  dynamics of the robot. It is inevitable that the significance of the 

above three forces are dependent on the two physical parameters of the robot namely the 

load it carries and the speed at which the robot operates. The design of the control system 

becomes more complex when the end user needs more accuracy based on the variations of 

the parameters mentioned above. Keeping the objective of solving the robot dynamic 

equations in real time calculation in view, an efficient parallel numerical method is needed. 

Taha [5] discussed dynamics of robot arm problem represented by as 

 ( ) ( , ) ( )T A Q Q B Q Q C Q     (1) 

where ( )A Q  represents the coupled inertia matrix, ( , )B Q Q is the matrix of coriolis and 

centrifugal forces. ( )C Q  is the gravity matrix, T denotes the input torques applied at various 

joints. 
For a robot with two degrees of freedom, by considering lumped equivalent massless links, 

i.e. it means point load or in this case the mass is concentrated at the end of the links, the 

dynamics are represented by 

2

1 11 1 12 21 122 2 112 1 2 1( ) ( )T D q D q D q D q q D         , 

(2) 
2

2 21 1 22 2 211 1 2
( )T D q D q D q D      , 

where 

2

11 1 2 2 2 1 2 2
( ) 2 cos( )D M M d M d d q   , 

2

12 21 2 2 2 1 2 2
cos( )D D M d M d d q   , 

2

22 2 2
D M d , 

112 2 1 2 2
2 sin( )D M d d q , 

122 211 2 1 2 2
sin( )D D M d d q   , 

1 1 2 1 1 2 2 1 2
[( ) sin( ) sin( )]D M M d q M d q q g     

and 

2 2 2 1 2
[ sin( )]D M d q q g  . 
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The values of the robot parameters used are M1= 2kg, M2  = 5kg, d1 = d2 = 1. For problem of 
set point regulation, the state vectors are represented as    

 
1 2 3 , 4 1 1 1 2 2 2

( , , ) ( , , , )T T

d d
X X X X X q q q q q q     , (3) 

where  

1
q and 

2
q are the angles at joints 1 and 2 respectively, and 

1d
q  and 

2 d
q  are constants. 

Hence, equation (2)  may be expressed in state space representation as 

1 2
e x  

2 222 12

2 122 2 112 2 4 1 1 211 4 2 2
( ) ( )

D D
x D X D X X D T D X D T

d d
        

(4) 

3 4
e x  

2 212 12

4 122 2 112 2 4 1 1 211 4 2 2
( ) ( )

D D
x D X D X X D T D X D T

d d


       .  

Here, the robot is simply a double inverted pendulum and the Lagrangian approach is used 
to develop the equations.  
In [5] it is found that by selecting suitable parameters, the non-linear equation (3) of the two-
link robot-arm model may be reduced to the following system of linear equations:  
 

1 2
e x , 

 
2 10 1 11 2 10 1

x B T A x A e   , 
(5)

 

3 4
e x , 

2 2 2

4 20 2 21 4 20 3
x B T A x A e   , 

where one can attain the system of second order linear equations: 

1 11 1 10 1 10 1
x A x A x B T    , 

2 2 2

3 21 3 20 1 210 2
x A x A x B T   , 

with the parameters concerning joint-1 are given by 
A10 = 0.1730, A11 = -0.2140, B10 = 0.00265, 
and the parameters of joint-2 are given by 
A20= 0.0438, A21 = 0.3610, B20 = 0.0967 
If we choose T1 = ґ (constant) and T2 = λ (constant), it is now possible to find the 
complementary functions of equation (4) because the nature of the roots of auxiliary 
equations (A. Es) of  (4) is unpredictable. Due to this reason and for the sake of simplicity, 
we take T1 = T2 = 1.  

www.intechopen.com



 
Robot Arms 

 

42

considering 
1

q = 
2

q = 0, 
1d

q = 
2 d

q = 1 and 
1

q = 
2

q = 0, the initial conditions are given by 

e1(0) = e3(0) = -1 and e2(0)= e4(0) = 0 and the corresponding exact solutions are, 

0.107

1
( ) [ 1.15317919cos(0.401934074 )

0.306991074sin(0.401934074 )] 0.15317919

te t e t

t

  


, 

 
0.107

2

0.107

( ) [0.463502009sin(0.401934074 ) 0.123390173cos(0.401934074 )]

[ 1.15317919 cos(0.401934074 ) 0.306991074sin(0.401934074 )]

t

t

e t e t t

e t t

  

 
, (6) 

0.113404416 0.016916839

3
( ) 1.029908976 6.904124484 4.874215508t te t e e    , 

0.11340416 0.016916389

4
( ) 0.116795962 0.116795962t te t e e    . 

3. A brief sketch on parallel Runge-Kutta numerical integration techniques 

The system of second order linear differential equations originates from mathematical 

formulation of problems in mechanics, electronic circuits, chemical process and electrical 

networks, etc. Hence, the concept of solving a second order equation is extended using 

parallel Runge-Kutta numerical integration algorithm to find the numerical solution of the 

system of second order equations as given below. It is important to mention that one has to 

determine the upper limit of the step-size (h) in order to have a stable numerical solution of 

the given ordinary differential equation with IVP. We thus consider the system of second 

order initial value problems, 

 ( , , ), 1,2,.....
j j j j

y f x y y j m    (7) 

with   
0 0

( )
j j

y x y  

 

0 0
( )

j j
y x y     for all j = 1,2,…..m. 

3.1 Parallel Runge-Kutta 2-stage 3-order arithmetic mean algorithm 

A parallel 2-stage 3-order arithmetic mean Runge-Kutta technique is one of the simplest 

technique to solve ordinary differential equations. It is an explicit formula which adapts the 

Taylor’s series expansion in order to calculate the approximation. A parallel Runge-Kutta 2-

stage 3-order arithmetic mean formula is of the form, 

1
( , )

n n
k hf x y  

1

2

1
( , )

2 2
n n

k
k hf x y    = *

2
k  

3 1 1
( , )

n n
k hf x k y k    = *

3
k . 

Hence, the final integration is a weighted sum of three calculated derivatives per time step is 

given by,  
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1 1 2 3
[ 4 ]

6
n n

h
y y k k k     . 

Parallel 2-stage 3-order arithmetic mean Runge-Kutta algorithm to determine yj and 

, 1,2,3,....
j

y j m  is given by, 

 
1 1 2 3

[ 4 ]
6

jn jn j j j

h
y y k k k      (8) 

and  

1 1 2 3
[ 4 ]

6
jn jn j j j

h
y y u u u       

1 j jn
k y  ,  

1

2
2

j

j jn

hu
k y  = *

2 j
k  

 
3 1j jn j

k y hu   = *

3 j
k  (9) 

 
1

( , , )
j n jn jn

u f x y y  , 1,2,3....,j m   (10) 

11 12 1 11 12 1

2 1 2 1 2
( , , ,..., , , ,..., )

2 2 2 2 2 2 2
m m

j n n n mn n n mn

h hk hk hk hu hu hu
u f x y y y y y y           

3 1 11 2 12 1 1 11 2 12 1
( , , ,..., , , ,..., )

j n n n mn m n n mn m
u f x h y hk y hk y hk y hu y hu y hu          . 

The corresponding parallel 2-stage 3-order arithmetic mean Runge-Kutta algorithm array to 
represent equation (9) takes the form 
 

 
0 

 
   

1

2

 

1

2

 
  

1 

 
1 

 
  

 1 4 1

 
Therefore, the final integration is a weighted sum of three calculated derivatives per time 
step given by, 

 
1 1 2 3

[ 4 ]
6

n n

h
y y k k k      (11) 
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3.2 Parallel Runge-Kutta 2-stage 3-order geometric mean algorithm of type-I 

The parallel 2-stage 3-order geometric mean Runge-Kutta formula of type–I is of the form, 

1
( , )

n n
k hf x y ,  

1

2

2 2
( , )

3 3
n n

k
k hf x y    = *

2
k , 

3 1 1
( , )

n n
k hf x k y k    = *

3
k , 

Hence, the final integration is a weighted sum of three calculated derivates per time step 
which is given by,  

31
4 4

1 1 2n n
y y hk k   . 

Parallel 2-stage 3-order geometric mean Runge-Kutta algorithm of type–I to determine yj 

and , 1,2,3,....
j

y j m  is given by, 

 
31

4 4
1 1 2jn jn j j

y y h k k   , (12) 

and  

31
4 4

1 1 2jn jn j j
y y hk k    , 

1 j jn
k y  ,  

1

2

2

3

j

j jn

hu
k y   = *

2 j
k , 

 
3 1j jn j

k y hu  = *

3 j
k , (13) 

 
1

( , , )
j n jn jn

u f x y y  , 1,2,3....,j m   (14) 

    

    

11 12 1

2 1 2

11 12 1

1 2

2 2 2 2
( , , ,..., ,

3 3 3 3
2 2 2

, ,..., ),
3 3 3

m

j n n n mn

m

n n mn

h hk hk hk
u f x y y y

hu hu hu
y y y

 

         
3 1 11 2 12 1 1 11 2 12 1

( , , ,..., , , ,..., ).
j n n n mn m n n mn m

u f x h y hk y hk y hk y hu y hu y hu  

parallel Runge-Kutta 2-stage 3-order geometric mean of type–I array represent equation (13) 
takes the form  
Hence, the final integration is a weighted sum of three calculated derivatives per time step 
and the parallel Runge-Kutta 2-stage 3-order geometric mean of  type–I formula is given by, 

 
31

4 4
1 1 2n n

y y hk k   . (15) 
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0 

 
  

 

2

3

 

 

2

3
 

 

 

1 

 
1 

 
 

 1
41

1
41

3.3 Parallel 2-stage 3-order geometric mean runge-kutta formula of type–II 

The parallel 2-stage 3-order geometric mean Runge-Kutta formula of type–II is of the 
form, 

1
( , )

n n
k hf x y ,  

1 1

3
( , )

6 6
n n

k k
k hf x y   . 

Hence, the final integration is a weighted sum of three calculated derivates per time step 
given by,  

4 3

1 1 3n n
y y hk k 

   . 

Parallel 2-stage 3-order geometric Mean Runge-Kutta algorithm of type–II to determine yj 

and , 1,2,3,....
j

y j m  is given by, 

 4 3

1 1 3
[ ]

jn jn j j
y y h k k

   . (16) 

and  

4 3

1 1 3
[ ]

jn jn j j
y y h u u

     . 

1 j jn
k y  , 

 
3

6

ij

j jn

hu
k y  , (17) 

 
1

( , , )
j n jn jn

u f x y y  , 1,2,3....,j m   (18) 

   

    

11 12 1

3 1 2

11 12 1

1 2

( , , ,..., ,
6 6 6 6

, ,..., ).
6 6 6

m

j n n n mn

m

n n mn

h hk hk hk
u f x y y y

hu hu hu
y y y
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The corresponding parallel Runge-Kutta 2-stage 3-order geometric mean algorithm of type-

II array to represent Equation (17) takes the form: 

 

 
0 

 
  

 
1

6


 

 
1

6


 

 

   

 
 

41

 

31

 
Therefore, the final integration is a weighted sum of three calculated derivatives and the 

parallel Runge-Kutta 2-stage 3-order geometric mean algorithm formula is given by 

 4 3

1 1 3n n
y y hk k 

   . (19) 

4. Results and conclusion  

In this paper, the ultimate idea is focused on making use of parallel integration algorithms 

of Runge-Kutta form for the step by step solution of ordinary differential equations to solve 

system of second order robot arm problem. The discrete and exact solutions of the robot arm 

model problem have been computed for different time intervals using equation (5) and yn+1. 

The values of e1(t), e2(t),e3(t) and e4(t) can be calculated for any time t ranging  from 0.25 to 1 

and so on.  

To obtain better accuracy for e1(t), e2(t), e3(t) and e4(t) by solving the equations (5) and yn+1.  

 
 

Sol. No. Time 
Exact 

Solution 
Parallel RKAM 

Solution 
Parallel RKAM 

Error 

1 0.00 -1.00000 -1.00000 0.00000 

2 0.25 -0.99365 -0.99533 -0.00167 

3 0.50 -0.97424 -0.97864 -0.00440 

4 0.75 -0.94124 -0.94943 -0.00819 

5 1.00 -0.89429 -0.90733 -0.01303 

Table 1. Solutions of equation (5) for e1(t) 
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Sol. Time 
Exact 

Solution 
Parallel RKAM 

Solution 
Parallel RKAM 

Error 

1 0.00 0.00000 0.00000 0.00000 

2 0.25 0.05114 0.04598 0.00515 

3 0.50 0.10452 0.09412 0.01044 

4 0.75 0.15968 0.14389 0.01578 

5 1.00 0.21610 0.19499 0.02110 

Table 2. Solutions of equation (5) for e2(t) 

 

Sol. 
No. 

Time 
Exact 

Solution 
Parallel RKAM 

Solution 
Parallel RKAM 

Error 

1 0.00 -1.00000 -1.00000 0.00000 

2 0.25 -0.99965 -0.99973 -0.00008 

3 0.50 -0.99862 -0.99871 0.00009 

4 0.75 -0.99693 -0.99700 0.00007 

5 1.00 -0.99460 -0.99462 0.00001 

Table 3. Solutions of equation (5) for e3(t) 

 

Sol. 
No. 

Time 
Exact 

Solution 
Parallel RKAM 

Solution 
Parallel RKAM 

Error 

1 0.00 0.00000 0.00000 0.00000 

2 0.25 0.00277 0.00285 -0.00007 

3 0.50 0.00545 0.00560 -0.00015 

4 0.75 0.00805 0.00879 -0.00074 

5 1.00 0.01056 0.01084 -0.00028 

Table 4. Solutions of equations (5) for e4(t) 
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Similarly, by repeating the same computation process for parallel Runge-Kutta 2- stage 3- 

order geometric mean algorithm of type-I and type-II respectively, yield the required 

results. It is pertinent to pinpoint out that the obtained discrete solutions for  robot arm 

model problem using the 2-parallel 2-processor 2-Stage 3-order arithmetic mean Runge-

Kutta algorithm gives better results as compared to 2-parallel 2-procesor 2-stage 3-order 

geometric mean Runge-Kutta algorithm of type-I and 2-parallel 2-procesor 2-stage 3-order 

geometric mean Runge-Kutta algorithm of type-II. The calculated numerical solutions using 

2-parallel 2-procesor 2-stage 3-order arithmetic mean Runge- Kutta algorithm is closer to the 

exact solutions of the robot arm model problem while 2-parallel 2-procesor 2-stage 3-order 

geometric mean Runge-Kutta algorithm of type-I and type-II gives rise to a considerable 

error. Hence, a parallel Runge-Kutta 2-stage 3-order arithmetic mean algorithm is suitable 

for studying the system of second order robot arm model problem in a real time 

environment. This algorithm can be implemented for any length of independent variable on 

a digital computer. 
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