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1. Introduction 

The magnetic microsensor is a small detective device for sensing magnetic effects and 
transferring to measurable signals. Magnetic microsensors are important in various 
application areas that are biomagnetism, geomagnetism, nondestructive testing, automobile, 
field measurement, identification and communication. Eleven technologies have been 
described for magnetic field measurements that are search-coil, flux-gate, optically pumped, 
nuclear precession, SQUID, Hall-effect, magnetoresistive, magnetodiode, magnetotransistor, 
fiber optical, and magneto-optic (Lenz, 1990). Four-type classification of magnetic 
microsensors by principle are also summarised that are galvanic, conductimetric, voltaic, 
and acoustics (Gardner et al., 2001). The trend of sensor development is toward lower cost, 
small dimension, lower power consumption, and higher performance. A new physics 
phenomenon using new fabrication technology and improved materials for new 
applications should be the development trends in magnetic microsensors. Recent progress 
in applications of FBG sensors has reported (Lee, 2003, Rao, 1999). Different researches on 
optical magnetic sensors have been addressed by fiber-optic interferometric (Oh et al., 1997, 
Wang et al., 2008), cantilever bending (Keplinger et al., 2003), Lorentzian force (Okamura, 
1990), or magnetic materials (Meng et al., 2001).  
Operational principles based on electromagnetic systems, magnetic material properties, 
stress-induced magnetic interrelationship, fiber gratings, and superconductivity have been 
widely studied for magnetic detection or measurement (Ciudad et al., 2004; Dimitropoulos 
et al., 2003; Mapps, 1997; Sedlar et al., 2000; Seo et al., 2001). It must be noticed in magnetic 
sensors development to immunity the factors of temperature and humidity and optical fiber 
sensors can be designed to fit the requirement. To develop magnetic microsensor using 
optical fiber sensing method becomes popular due to the advantages of electromagnetic 
immunity, electronic isolation, low cost, light weight, small size, and anti-corrosive. Fiber 
grating sensors has been reviewed based on different grating sensing methods, including 
Bragg gratings, chirped gratings, long period-based gratings, and intragrating concepts 
(Kersey et al, 1997). The permalloy-on-membrane type of magnetic actuators with flexural 
cantilevers and torsion beams are built based on microelectromechanical system (MEMS) 
technology to satisfy large force and displacement requirements (Khoo & Liu, 2001, Liu & 
Yi, 1990). To develop fiber Bragg grating (FBG) sensors unaffected by temperature 
perturbations is important for practical applications. A precision optical fiber-based 
magnetic sensor requires temperature compensation design because of deformation of 
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inherent temperature dependence in fiber material. Several temperature compensation 
techniques in pressure or strain measurements have been established such as bimetal 
cantilevers, non-uniform or dual head FBGs, double shell cylinders and biomaterial effect 
(Hsu et al., 2006; Iadicicco et al., 2006; Khoo & Liu, 2001; Liu & Yi, 1990; Tian et al., 2005). 
These techniques guarantee stable measurements independent of temperature perturbation 
without any additional temperature-isolation or referencing process.  
To develop a magnetic microsensor as a microsystem should contain environment sensing 
mechanism, data processing and storage modules, and automatic calibration and 
compensation functions. Because of very small magnetostriction rate below the order of 10-5, 
the sensing range and reliability of magnetic field strength are limited by coating soft 
magnetic film on optical fibers directly. Accordingly, microelectromechanical system 
compatible FBG magnetic sensor can be designed to supply a wide measurement range with 
solid reliability. A photoelectronic magnetic microsensor with a temperature compensation 
function and a digital readout has been developed and fabricated as a smart sensing system. 
The batch of microfabrication technology used to deposit Ni/Cr permalloy flaps that can be 
driven to push the sensing FBGs by excitation magnetic force to supply capacitive and 
optical outputs. The finite element method (FEM) for equivalent model simulation was 
utilized to understand the coupling effect of magnetic and mechanical behaviors. The 
neodymium-iron-boron (Nd-Fe-B) magnets with residual surface magnetic flux density up 
to 1.26 Tesla (T) were used as excited power to investigate the influence of external magnetic 
fields on the density variation of the transmitting light signal. Measurement system and 
display in real-time mode were setup by connecting the designed microsensors with signal 
processing circuits and a PC display module. 

2. Operation principle 

2.1 Sensing theory 

The operational principle of the FBG-based sensors is to monitor the central wavelength 
shift between input signal and back-reflected signal from the Bragg gratings. The first-order 
Bragg condition is given by the expression (Morey et al., 1989) 

   2B effn                                          (1) 

where neff is the effective index of the core and Λ is the period of gratings. Bragg wavelength, 
ǌB, is the center wavelength of the back-reflected signal from the Bragg gratings. 
Most of FBG sensing works have focused on the device design and fabrication for providing 
quasi-distributed sensing of temperature and strain which can be described as the following 
equation (Liu et al, 2007, Xu et al., 1993).  

 
    



       (1 ) ( )e f f T
B

P T K K T          (2) 

where  is the change of strain; Pe is the effective photoelastic coefficient of the fiber glass; 

f is the thermal expansion coefficient of fiber; f is the thermal optic coefficient of the fiber; 

ΔT is the change of temperature; K is the strain sensitivity; KT is the temperature sensitivity. 
The strain response arises due to both the sensor elongation induced grating pitch variation 
and the photoelastic effect induced fiber index change. For measuring magnetic field 
strength accurately, magnetic force induced strain should be measured effectively with 
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processing of temperature compensation. The relative Bragg wavelength shifts in response 

to axial strain change (/B) in a packaged FBG sensor can be described as the following 
equation (Liu et al., 2000). 

 

 

    (1 )e P
B

P
P K P

E
                        (3) 

where Pe is the effective photoelastic coefficient; Kp is the pressure sensitivity; E is the 

Young’s modulus of the fiber; P is the change of pressure. 
When applying strain and temperature in the fiber, the effective index of the core and the 
uniform distribution of gratings will be affected to induce the shift in Bragg wavelength. It 
simply can be expressed using 

 
 



   1 2
B

B

C C T                                   (4) 

where C1 and C2 present sensing parameters found to be 0.7810-12 and 6.6710-6 
respectively (Kersey et al., 1997). The factors are complicated from strain-optic effect that 
affected by the parameters of Poisson ratio, core effective index, Pockel’s coefficient 
components, grating length variation, and total fiber grating length. It becomes 
comprehensible that the variation in wavelength is the sum of the strain and temperature 
terms. The sensitivities of normalized central wavelength shift to strain and temperature 

have been studied about 1.1710-3 nm/ and 110-2 nm/°C respectively. Therefore, to 
design a photoelectronic magnetic microsensor with minimizing noise perturbation, the 
magnetic-actuated strain variation must be detected effectively, but the influence of 
temperature must be eliminated. 

2.2 Major processes 

Based on planar microfabrication technologies, silicon-based optical-electrical integration 

structures can be fabricated compatibly. The sensing platform contains a sensor-located U-

shaped trench, an etched through sensing window, and an interdigitated magnetic reaction 

mechanism. Thermal oxidation layers as an etching mask for silicon bulk etching and 

electrical isolation are grown. Wet chemical etch and sacrificial technologies of bulk and 

surface micromachining are applied to form location U-shaped trenches and sensing 

windows and interdigitated actuated mechanism. To achieve magnetic measurement with 

high permeability, saturation flux, resistivity and low coercivity, interdigitated thin films of 

NiFe (r = 2000) were deposited as magnetic manipulated mechanism by electroplating 

technology (Flynn, 2007). Each period of sensing grating in FBG devices has 10 mm long 

with the separated space of 4mm. Two different periods of fiber gratings, spectral peaks on 

1550.25 nm and 1553.25 nm, are fabricated in a hydrogen-loaded single-mode fiber (SMF-28) 

by microlithographic writing technology using a phase-shifted mask and a 248 nm KrF 

excimer laser. 

2.3 System operation 

A flowchart to setup the magnetic flux measurement system with temperature 

compensation function is shown as Fig. 1. Main program contains three checking processes: 
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initial compensation value, effective magnetic force and measurement results. Information 

of effective magnetic flux measurement will display on a LCD screen or a universal 

asynchronous receiver transmitter (UART). Temperature compensation configuration on 

FBG magnetic sensing is shown in Fig. 2. Amplified spontaneous emission (ASE) is used as 

a lighting source and two FBG optical fibers are used as a sensor and a reference. The 

reflective spectra of both FBG signals are superposition on the spectrum of a long period 

grating (LPG) structure. Two photodiodes (PD1 and PD2) are used to detect FBG sensing 

signals. The PD1 measures compound signal from magnetic and temperature effects and PD2 

measures temperature effect only. Initial temperature values of PD1 and PD2 and their 

difference value can be obtained for calculating temperature compensation. 

 
 

 

Fig. 1. A flowchart of magnetic flux measurements with temperature compensation 
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Fig. 2. A typical configuration for FBG temperature compensation  

3. Design and fabrication 

A schematic diagram of the developed photoelectronic magnetic microsensor with the 

temperature compensation mechanism is shown in Fig. 3. This magnetic microsensor has an 

optical fiber with two FBGs located on a bulk-etched silicon chip in which one with 

interdigitated cantilevers is for magnetic flux measurement and the other is for temperature 

compensation. These FBGs with the grating length of 10 mm and the separation of 4mm are 

fabricated in a hydrogen-loaded single-mode fiber (SMF-28). When the microsensor is 

applied to measures magnetic field strength, the cantilevers are attracted and deflected to 

push fiber a stretch which changes the grating period to induce peak shift of the Bragg 

wavelength.  

 

  

Fig. 3. Schematic diagram of a photoelectronic magnetic microsensor with temperature 
compensation mechanism 
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The major fabrication processes of the developed photoelectronic magnetic microsensor are 
shown in Fig. 4. (a) Double-sided polished silicon wafers grown a 1 Ǎm thermal oxidation 
layer were used as supporting substrates. (b) Silicon wafer is patterned and etched in both 
sides to form sensing windows. Anisotropic silicon bulk etching was done in KOH at 70 °C 
to etching a 315 Ǎm depth in bottom side and a 113 Ǎm depth in top side. (c) Remove the top 
side SiO2 layer. An adhesion Cr layer and the Ni seed layer were evaporated for increasing 
adhesion. The Ma-P1225 photoresist and a sacrificial photoresist AZ-4620 was spun coated. 
A two-electrode electroplating system was operated at room temperature. The Ni is 
electroplated in aqua solution. A low tensile stress 10 Ǎm Ni layer was approached as 
magnetic actuated cantilevers with maximum permeability and minimum anisotropy field. 
During the process, wafers were removed from the solution for a short time every minute to 
desorption of H2 bubbles to increase current. Then AZ-4620 was spun coated and Ni/Cr 
layer was evaporated. (d) The electroplating area is patterned for etching the Ni/Cr layer. 
(e) Sacrificial layer is released and the silicon base is etched out to release cantilevers.  
 

 

Fig. 4. Major processes of a photoelectronic magnetic microsensor with temperature 
compensation mechanism, longitudinal cross-sectional structures show in the left and 
transverse cross-sectional structures show in the right 

Another developed photoelectronic magnetic microsensor with EM wave shielded 

packaging is shown in Fig. 5 (Chang et al., 2007). Fabrication processes of the 

photoelectronic magnetic microsensor are shown in Fig. 6. (a) A 1 m oxidation layer is 

grown on silicon substrate. (b) SiO2 layer is UV-lithographic patterned and etched to open 

silicon etching windows. (c) Silicon bulk is etched anisotropically in KOH at 60 C to define 

a 30 m thick sensing diaphragm. (d) Polyimide is spun onto the wafer and cured. A Cr 

layer (0.02 m) and a Cu seed layer (0.1 m) are deposited for increasing adhesion. A two-

electrode electroplating system is operated at room temperature with a DC current density 
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of 15 mA/cm2. The Ni/Fe is electroplated in aqua solution of NiSO4/NiCl2/FeSO4/ 

H3BO3/additives. A low tensile stress 5 m Ni0.8Fe0.2 layer was approached as magnetic 

actuated flaps with maximum permeability and minimum anisotropy field. During the 

process, the wafers were removed from the solution for a short time every minute to 

desorption of H2 bubbles to increase current efficiency. Thickness uniformity of permalloy 

layer is about 1.5 times in the corners because of the edge effect. AFM scanned rms 

roughness within 20 m x 20 m area was 90 nm for 5 m Ni0.8Fe0.2 layer. The supporting 

silicon layer is etched out to release the membranes. From (e) to (f), second silicon wafer is 

patterned and etched anisotropically to define the measurement tunnel and a U-shaped 

trench for locating sensing fibers. The NiFe layer is electroplated for reducing interference. 

(g) The wafers are bonded and packaged with an Al-deposited cover as the fixed electrode 

of the capacitor. A soft silicone rubber layer is spun coated around measurement windows 

for increasing stability and safety. The interdigitated cantilevers as the actuated mechanism 

in developed photoelectronic magnetic microsensor are simulated and analyzed by the finite 

element modeling using the ANSYS software. A typical FEM simulation with 

interdigitated cantilever size, 1000  1000  10 Ǎm3, deflected by external magnetic force is 

shown in Fig. 7. Different experimental diameters of the fibers have been achieved for 

optimal sensitivity using a selective wet etching technique with the solutions of 

trichloroethylene, xylene and hydrofluoric acid driven by an automatic instrumentation. 

Based on original 125 Ǎm diameter of the single-mode fiber, related diameters of 65, 80, 95 

and 110 m in the parts of fiber gratings obtained. The simulation results that show the 

magnetic flux induced bending displacements related to different fiber diameters are shown 

in Fig. 8. Results show that the thinner the fiber diameter is, the higher the sensitivity 

obtains. A comparison of refraction spectra before and after side-polished FBG with iron 

coated films was studied (Tien et al., 2006). 

 

 

Fig. 5. Schematic diagram of a photoelectronic magnetic microsensor with EM wave- 
shielded packaging 
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Fig. 6. Fabrication processes of the  photoelectronic magnetic microsensor with EM wave-
shielded packaging 

 
 

Fig. 7. FEM simulation using ANSYS to estimate cantilever bended conditions by magnetic 
force 
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Fig. 8. Magnetic flux induced displacement related to different diameters of fibers 

4. Measurement and analysis 

The schematic cross-sectional view of the microsensor with interference reducing patterns 

connecting with measurement blocks is shown in Fig. 9. When actuated by the magnetic 

field, the membrane deflects to push fiber grating stretch that induce peak shift of the Bragg 

wavelength. The stretched fiber induces Ni-Fe film deformation actuated by external 

magnetic force that is the cause of fiber stretch to change the effective refraction index. The 

peak shift amount of Bragg wavelength is proportional to radial magnetic force measured 

using an optical spectrum analyzer with 0.01 nm resolution. Developed sensing structure of 

the microsensor includes a 300 nm Fe-film coated on FBG fiber and a parallel-plate capacitor 

both are deformed by a permalloy embedded polyimide membrane. Another measurement 

block diagram in the schematic cross-sectional view of the developed photoelectronic 

magnetic microsensor with temperature compensation is shown in Fig. 10. The sensing 

mechanism is the FBGs actuated by the covered cantilevers that a ferromagnetic material is 

topped on the surface. The cantilevers are attracted and bended to deform the optical 

gratings by magnetic flux density from external Nd-Fe-B magnets. The peak shift of the 

Bragg wavelength is produced from the major variations of the grating length and the fiber 

core effective refraction index. A precision LCR meter (Agilent E4980A) is used to measure 

magnetic induced capacitance variation because of the parallel interdigitated cantilever 

bends. The measured electrical response is in the range of 1.22 to 38.25 pF that is applied as 

a calibrating reference for comparing optical response excited by external magnetic flux. The 

signal of position-dependent capacitances is very weak that can be processed by designing 

capacitance-to-frequency transferred circuits to amplify magnetic response signal. 

Instruments used in the optical-magnetic measurements are very expensive commercial 

products. Therefore, to develop a precision, low cost, and portable measurement system is 

desired. The angular-orientation interference measurement of the permalloy surrounded 

packaging is shown in Fig. 11 to analyze environmental magnetic noise effect. The peak shift 

amount of Bragg wavelength is proportional to vertical radial magnetic force measured 

using an optical spectrum analyzer with 0.01 nm resolution. Original wave patterns of the 
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reflection spectrum were calibrated as shown in Fig. 12. Experimental results show that 

noise can be reduced effectively when the photoelectronic magnetic microsensor with EM 

shielded packaging. Comparing with the responded pattern of temperature compensation, 

the central peak of wavelength of the sensing grating driven by bending cantilevers has 

shifted into the right side of long wavelength direction. The static wave patterns of the 

magnetic microsensor with an 80 % peak reflectivity and a 0.150 nm bandwidth, which 

wavelength peaks are 1550.24 nm and 1553.25 nm at 20 C. 

 

 

Fig. 9. Schematic diagram of the photoelectronic magnetic microsensor with measuring 
setup blocks 

 

 
 

Fig. 10. Experimental setup of the photoelectronic magnetic microsensor with temperature 
compensation 
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Fig. 11. Schematic of angular-orientation interference measurements for the packaged 
magnetic microsensors with and without permalloy surrounded 

 

Fig. 12. Static reflection wave patterns at 20 C, central peak wavelength are 1550.24 nm and 
1553.25 nm for compensation gratings and sensor’s gratings respectively 

Temperature effects and related compensation results of the developed FBG microsensors 
without any magnetic loading reaction are analyzed and shown in Fig. 13. The temperature 

sensitivities of FBG sensors are 1.17510-2 and 1.15310-2 nm/deg for sensor and reference 
structures, respectively. There is temperature induced error less than 1 % that is much 
smaller than magnetic flux sensing responses induced variation, therefore a null deviation 
of temperature compensation can be obtained by calibrating. The residual magnetic strength 
of Nd-Fe-B magnets up to 1.26 T was used to achieve temperature-independent magnetic 
measurements by evaluating the Bragg wavelength shift with sensitivity about 2.145 T/nm. 
A linear measurement approach in the range of 0 to 450 mT with the average error less than 
0.1% has been demonstrated that can be applied for precision magnetic measurement. The 
magnetic attractive force from a calibrated magnet is inverse proportional to the square of 
the distance between developed microsensor and the magnet. 
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Fig. 13. Temperature induced responses and related compensation results of the developed 
FBG microsensor without any magnetic effect 

The response curves in Fig. 14 present the measured center Bragg wavelength shifts and the 
net variations as the function of magnetic flux density. Responses without temperature 
compensation have different curves in separation to show magnetic response with 
temperature noise that have less sensitivity and high deviation at high temperature region. 
The curve slopes as magnetic sensitivity are smaller than the theoretical value. This is due to 
uncertainties of the FBG fiber properties in Young’s modulus, Poisson’s ration, and stress-optic 
coefficient with a high resistance in the optical-mechanical coupling reaction. The temperature 
independent sensitivity of the microsensors by evaluating the Bragg wavelength shift is about 
2.238 T/nm, and all curves of the magnetic responses with temperature compensation are 
closely overlap with very small deviation measured in variable temperature environment. 
 

 

Fig. 14. Experimental results show reflected central wavelength shifts and the equivalent 
sensing variation induced by different magnetic fluxes of magnets 
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Based on simple FBG signal measurement technology using expensive instrumentation 
(Huang et al., 2007, Kersey et al, 1997), a reliable low cost and portable measurement system 
is designed in the research for measuring photoelectronic magnetic field or even for 
universal optical sensing applications shown as Fig. 15. The photodiodes are used as the 
receivers to detect FBG microsensor signals and a non-biased resistance is optimal matched 
for better sensitivity. The signal of photocurrent is converted to sinusoidal voltage via 
selected resistance as input signal for amplifier, filter, and peak detection circuits. Analog 
voltage signals converted into digital signals by an A/D converter that is sent to a 
microprocessor to perform the functions of data acquisition, calculation, storage and display 
control in real-time mode. Measured and analyzed information is shown on LCD display or 
a computer human-machine interface (HMI) through a RS232 serial transmission.  
 

 

Fig. 15. The block diagram of a measurement system for developed photoelectronic sensors 

 

 

Fig. 16. A typical digital readout of human-machine interface for the photoelectronic 
magnetic microsensor 
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Fig. 16 shows a typical HMI used in a photoelectronic magnetic microsensor measurement. 
Dynamic measurement and analyzed information, data acquisition and storage do show on 
the screen in real-time mode.  

5. Conclusion 

The novel FBG-based magnetic microsensors with temperature compensation and EM 
shielded packaging have been fabricated and tested. Computer simulation has been 
successfully applied to optimize design parameters of microsensing structures. 
Electroplated permalloy cantilevers interact with magnets to provide bending force for 
expanding fiber gratings. Experiments have demonstrated the external magnetic flux on the 
order of 1.26 T can be provided 350 Ǎm displacements of the cantilevers and 0.59 nm 
wavelength differences between the dual FBG. The test and reference gratings have same 

temperature sensitivity of 0.012  0.001 nm/C to cancel temperature-induced deviation. 
The magnetic sensitivity of 2.145 T/nm has been achieved using Nd-Fe-B magnets with 
residual magnetic strength up to 1.26 T. The signal processing circuits and the display HMI 
for digital readout in real-time mode are designed for static and dynamic magnetic flux 
measurements. Developed reliable low cost and portable measurement system can be 
applied to universal strain-induced photoelectrical sensing mechanism. 
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