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1. Introduction   

In recent years, the demand for mobile multimedia applications has increased 
tremendously. Since the volume of the application data such as video is high and the 
bandwidth of mobile channels is limited, efficient compression techniques are very much 
required (Ghanbari, 2003) (Sikora, 2005). This research area has attracted many researchers 
since the last 40 years, and many related works have been done as reviewed in (Sikora, 
2005).  
Generally, video compression technique aims to reduce both the spatial and temporal 
redundancy of a video sequence. The motion estimation and compensation is a very efficient 
technique to exploit the temporal redundancy of the video sequence (Sikora, 2005). Thus, it 
has been used in video coding standards for application in mobile communications such as 
in H.263 (H.263, 2000) and H.264 (Ostermann et al., 2004). Although this process offers 
significant gain in coding efficiency, the encoded bitstream suffers from channel errors 
during transmission in mobile channels which reduces the reconstructed frame quality at 
the receiver.    
Motion JPEG2000 (ISO/IEC, 2002), uses Intra-frame video coding only which eliminates the 
prediction step uses in motion estimation process in the temporal domain. It offers less 
design complexity, reduces computational load and increases robustness in wireless 
environments (Dufaux & Ebrahimi, 2004). In another work done in (Akbari & Soraghan, 
2003), a video coding scheme has been developed to omit the prediction step in temporal 
domain for robust video transmission in noisy mobile environment. In that work, the similar 
high frequency subbands from each frame within a Group of Frame (GOP) are joined to 
produce a number of group data. Each of the group data is processed using an Adaptive 
Joint Subband Vector Quantization (AJSVQ). The Adaptive Vector Quantization (AVQ) 
technique has been developed based on the work presented in (Voukelatos & Soraghan, 97).  
In the past years, there have been considerable research efforts in Lattice Vector 
Quantization (LVQ) for image and video compression schemes (Conway & Sloane, 1988) 
(Barlaud et al., 94) (Kossentini & Smith, 99) (Sampson et al., 95) (Weiping et al., 97) (Kuo et 
Al., 2002) (Man et. al., 2002) (Feideropoulou et. al., 2007). The choice for LVQ has been for its 
property to reduce complexity of a vector quantizer. In video coding, the works have been 
inclined towards using LVQ with motion estimation and compensation process as explained 
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in (Sampson et al., 95) (Weiping, et. al., 97) (Kuo et al., 2002) (Feideropoulou et al., 2007).  
However, only the work in (Man et. al., 2002) has been introduced to omit the motion 
estimation and compensation techniques and yet incorporates LVQ in the encoding process. 
The prediction step is omitted by the wavelet transform on the temporal domain, thus 
reducing the computational load in the video coding scheme. The LVQ is applied on the 
coefficients of the transformed data. The work is reported to achieve a good balance 
between coding efficiency and error resilience.  
In our related work (Salleh & Soraghan, 2005) (Salleh & Soraghan, 2006) (Salleh & Soraghan, 
2007), multistage lattice vector quantization (MLVQ) has been introduced. This technique 
has the capability to capture the quantization errors. For every pass of quantization process 
the errors are magnified by multiplication with the current scaling factor. The advantage of 
this process is that, it offers reduction in quantization errors and hence enhances 
reconstruction of frame quality as well it offers robustness for video transmission over 
mobile channels. 
This chapter presents a video coding scheme that utilizes MLVQ algorithm to exploit the 
spatial-temporal video redundancy. Since LVQ reduces computational load of the codebook 
generation, this paves the way for the video coding scheme to have multistage processes 
(multistage lattice VQ). The Unequal Error Protection (UEP) and Equal Error Protection (EEP) 
schemes are also developed for robust video transmission. Results of the video coding scheme 
in erroneous Hilly Terrain (HT) and Bad Urban (BU) mobile environments are significantly 
better than H.263 codec using the TETRA channel simulator (ETSI, 1995). The performance 
under the same settings is comparable to H.264 codec for some test video sequences.   

2. Background     

The following subsections discuss briefly the basic concept of lattice vector quantization as 
well as a brief discussion about quad-tree coding. The use of vector quantization for lossy 
compression has been very common since the last decade. Lattice vector quantization 
technique offers great advantage in term of coding simplicity due to its regular structure 
(Conway & Sloane, 1988).  

2.1 Lattice vector quantization 

In lattice vector quantization (LVQ), the input data are mapped to the lattice points of a 
certain chosen lattice type. The lattice points or codeword may be selected from the coset 
points or the truncated lattice points (Gersho & Gray, 1992). The coset of a lattice is the set of 
points obtained after a specific vector is added to each lattice point. The input vectors 
surrounding these lattice points are group together as if there are in the same voronoi region.  
Some of the background of lattices, the quantizing algorithms for the chosen lattice type and 
the design of the lattice quantizer’s codebook are now presented. 

2.1.1 Lattice type 

A lattice is a regular arrangement of points in k-space that includes the origin or the zero-
vector. A lattice is defined as a set of linearly independent vectors [Conway and Sloane, 
1988]; 

 { }1 1 2 2: ....... n nX X a u a u a uΛ = = + + +  (1)   
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where kΛ∈ℜ , n k≤ , ia  and iu  are integers for i 1,  2, .,n= … . The vector set { }iu  is called 

the basis vectors of latticeΛ  and it is convenient to express them as a generating 

matrix [ ]1 2, ,........, nU u u u= .  

As an example consider a two-dimensional lattice 2Λ with basis vectors as:  

{ }2 11 1 12 1 21 2 22 2: ;X X a u a u a u a uΛ = = + +  

Also let us assume that  

11 12 21 220, 3 , 2, 1a a a a= = = =  

The generating matrix is given by: 

[ ]1 2

0 3
,

2 1
U u u

⎡ ⎤
= =⎢ ⎥

⎢ ⎥⎣ ⎦
 

The vector X  represents a two dimensional coordinate system where each point can be 

represented ( )1 2,X x x= . Thus, it can be written that 

1 23x m=  

2 1 22x m m= +  

where 1m  and 2m  are any integer value. Figure 1 shows the lattice structure defined by this 

example.   

 

Fig. 1. Two-dimensional hexagonal lattice 

The reciprocal or dual lattice *Λ consists of all points Y in the subspace of kℜ spanned by 

1 2, ,......., nu u u such that the inner product 1 1. ..... k kX Y x y x y= + +  is an integer for all x∈Λ  

(Conway & Sloane, 1988). When the lattices are contained in their duals, there exist the 

cosets representatives 0 1,........, dr r −  such that  

 ( )
1

*

0

d

i
i

r
−

=

Λ = + Λ∪   (2)   

1
x

2
x
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where d is the determinant of Λ . In a different approach, the dual lattice is obtained by 

taking the transpose of the inverse generating matrix given by ( )1 t
U− once the generating 

matrix is known (Gibson & Sayood, 1988).  

The Zn or cubic lattice is the simplest form of a lattice structure. It consists of all the points in 

the coordinate system with a certain lattice dimension. Other lattices such as ( )2nD n ≥ , 

( )1nA n≥ , [ ]6,7,8nE n =  and their dual are the densest known sphere packing and covering 

in dimension 8n ≤  (Conway & Sloane, 1988). Thus, they can be used for an efficient lattice 

vector quantizer. The nD  lattice is defined by the following (Conway & Sloane, 1988): 

 ( )1 2, ,......, n
n nD x x x Z= ∈   (3) 

1

n

i
i

where x even
=

=∑  

Its dual i.e. *
nD  is the union of four cosets of nD : 

 ( )
3

*

0
n i n

i

D r D
=

= +∪  (4) 

( )0 0nwhere r = , 1

1

2

n

r
⎛ ⎞

= ⎜ ⎟⎜ ⎟
⎝ ⎠

, ( )1
2 0 ,1nr −= , 

1

3

1 1
,

2 2

n

r
−⎛ ⎞

= −⎜ ⎟⎜ ⎟
⎝ ⎠

 

The nA  lattice for 1n ≥ consists the points of ( )0 1, ,......, nx x x with the integer coordinates 

sum to zero (Conway & Sloane, 1982). The lattice quantization for nA  is done in n+1 

dimensions and the final result is obtained after reverting the dimension back to n (Gibson 

& Sayood, 1988), (Conway & Sloane, 1982). Its lattice *
nA  consists of the union of 1n + cosets 

of nA  (Conway & Sloane, 1982): 

 ( )*

0

n

n i n
i

A r A
=

= +∪   (5) 

The expression for nE  lattice with 6,7,8n = is explained in as the following:  

 8 8

1 1 1 1 1 1 1 1
, , , , , , ,

2 2 2 2 2 2 2 2
E D

⎛ ⎞= +⎜ ⎟
⎝ ⎠

  (6) 

The dual lattice is given by the same definition i.e. *
8 8E E= .  

The lattice 7E is defined as the following: 

 
4 4

7 7 7

1 1
,

2 2
E A A

⎛ ⎞⎛ ⎞
⎜ ⎟= − +⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
∪  (7)   

The dual lattice is given by the following: 

 ( )
2 6 3

*
7 7 7

0

3 1
,

4 4
i

i

E E s A
=

⎛ ⎞⎛ ⎞
⎜ ⎟= − + = +⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
∪ ∪  (8) 
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2 2

, , 4
4 4

i j

i

j i
where s i j

⎛ ⎞−⎛ ⎞ ⎛ ⎞⎜ ⎟= + =⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠⎝ ⎠
      

Besides, other important lattices have also been considered for many applications such as 

the Coxeter-Todd ( )12K  lattice, Barnes-Wall lattice ( )16Λ  and Leech lattice ( )24Λ . These 

lattices are the densest known sphere packing and coverings in their respective dimension 

(Conway & Sloane, 1988), (Gibson & Sayood, 1988). 

2.3 Quad-tree coding 

Significant data often sifted from a set of data or subband using quad-tree coding technique. 
Often, a treshold is used for this purpose. If the data energy is higher than the threshold 
value, the block remains in the subband otherwise the block is replaced with zeros. This 
process continues until all the blocks in the subband are checked. At the end that particular 
subband has some zero coefficients as well as some preserved significant coefficients or the 
subband has been sifted. Then, the significant coefficients in the sifted subbands are 
searched and saved as a unit following a top down quadtree structure. Thus, there are two 
outcomes of this process namely; the significant units and the MAP sequence which tells the 
location of the significant subband coefficients. The pseudo code shown in Figure 2 
illustrates the search of the preserved significant coefficients procedure on a particular sifted 
subband: 
 

 

Fig. 2. Search procedure of the significant coefficients 

Figure 3 and Figure 4 show construction of a top down quad-tree structure of the MAP 

sequence out of a sifted subband. The symbol X  in Figure 3 shows the nonzero value of 
subband coefficients. The quad-tree structure produces a degree of compression to the MAP 
sequence as shown in Figure 4.  

 
1. Obtain maximum quad-tree level based on subband rectangular size 
2. FOR quad-tree level = 1 to maximum 

a. call for TEST UNIT 
b. save MAP sequence and significant unit 

3. END 
TEST UNIT:  
1. Divide the subband into 4 descendent subregions 
2. FOR descendent subregion = 1 to 4  

a. IF descendent  subregion has nonzero components 
b. Attach “1” to MAP sequence, and further split the descendent  subregion into 

another 4 equal descendent subregions 
i. IF size of subregion equal block size 

ii. save block into significant unit 
ELSE    

a. Attach “0” to MAP sequence and stop splitting the descendent subregion, and 
return to one level up of the quad-tree levels.  

b. Return MAP sequence and significant unit 
3. END 
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  0 X 0 0 0 0 0 0 

X 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

0 X 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

Fig. 3. Part of a sifted subband 

 

 

Fig. 4. Corresponding quad-tree representation of MAP sequence 

3. Multistage lattice vector quantization video codec 

In this section, the implementation of the proposed video codec based on the MLVQ 
technique is presented. The same high frequency subbands are grouped and their significant 
coefficients are processed by the MLVQ algorithm for lossy compression. The encoding 
procedure for MLVQ is also presented in the following subsections.  

3.1 Overview MLVQ video codec  

The block diagram of the MLVQ video codec is shown in Figure 5. The video codec takes a 
video sequence and passes it to a frame buffer. The buffer dispatches n  frames at a time to 

m  DWT blocks, thus effectively group the video sequence into a group of n  frames. Each of 

these m DWT blocks performs 2-D discrete wavelet transform using JPEG2000 wavelet 

L1_map 

L3_map 

L2_map 

1 1 10

0 0 01

0 0 01 1 1 00 1 1 10 0 0 10

1 0 00 0 0 01 0 0 01 0 0 01

0 1 11 0 1 01

11
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(Lawson & Zhu, 2002). Then, the same high frequency subbands from each frame are joined 
together. 
The coefficients of the high frequency subbands from each group are first subdivided into a 

predefine unit block size of N N× , which ultimately defines the size of vector dimension. 

Then the significant vectors are searched or identified in each subband group by comparing 
the individual vector’s energy with a threshold value. The preserved significant vectors 
from the subband group are then passed to the multistage lattice VQ (MLVQ) process for 
lossy compression. The MLVQ process produces two outputs i.e. the scale list and index 
sequence. The index sequence is then entropy coded using the Golomb coding (Golomb, 66). 
The location information of the significant units is defined as the MAP sequence (Man et al., 
99) represented in the form of binary ones and zeros. If the coefficient block size is 
significant the MAP data is one otherwise it is zero. The lowest frequency subband group is 
compressed using the lossless coding. The non-predictive MLVQ video coder operates at a 
fixed frame rate and a fixed output bit rate by allocating a constant number of bits to all the 
frames of the input video sequence.  
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vector 
selection 

Quad-tree 
coding 
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Fig. 5. Non-predictive MLVQ video encoder 

3.2 Joining high frequency subbands  

A video sequence contains high temporal redundancy due to the similarity of the successive 
frames content. One way to reduce the temporal redundancy is to get the difference frame 
between the successive frames in a group of picture (GOP). In many video coding standards 
that use motion estimation and compensation, this redundancy is exploited via the 
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prediction process. However, this technique produces a video coding scheme that is not 
robust, particularly in mobile environments. Moreover, motion estimation technique 
involves high computational loads and design complexity. The advantage of joining the 
high frequency subbands within the GOP is that, if one or more of the code joint high 
frequency subbands bitstream are corrupted, the GOP can still be reconstructed using the 
other joint subbands as well as the low frequency subbands. Unlike video standards which 
employed motion estimation, the lost of motion vector data results in the lost of the 
prediction frames leaving only the intra frames for reconstruction.  

The non-predictive MLVQ video codec joins the same subbands within the GOP results in 

max3L groups of subbands as illustrated in Figure 6 below. In this case maxL  denotes the 
number of DWT level. The significant coefficients of each subband group are then selected 
using the quad-tree coding. The preserved significant coefficients of each subband group are 
then coded using the multistage lattice vector quantization (MLVQ) encoding process. 
Applying the MLVQ encoding to the preserved significant coefficients of the subband 
groups exploits the spatial and temporal redundancy of the video sequence.   
 

 

Fig. 6. Joining subband significant coefficients in a GOP 

3.3 Single pass LVQ encoder  

The significant coefficients or vectors of every joint subband are quantized and output as the 
scale list and index list. In this work, the Zn lattice quantizer has been chosen to quantize the 

  

HH11 

 

  

HH21 

 

  

HHm1 

 

. . . . . .

Frame 1 Frame 2 Frame m 

HH11 HH21 HHm1 

HH11 

HH21 

 

  

. 
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Group of subband
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significant vectors. The Zn spherical codebook is enumerated by theta series. The spherical 
codebook is chosen since the data to be quantized are the preserved coefficients relative to a 
threshold, rather than the entire wavelet coefficients of the high frequency subbands. They 
do not exhibit the Laplacian distribution which requires a pyramidal codebook. In this 
work, a four-dimensional 4Z lattice codebook has been chosen due its simple codebook 
construction. The codebook is derived with the first energy level ( )1m =  has 8 lattice points 
or vectors, second level ( )2m =  has 24 vectors, and third level ( )3m =  has 32 vectors. 
Therefore, a total of 64 codewords are in the codebook which can be represented by 6-bit 
index. 

Spherical Zn LVQ Encoding Procedure 

The significant vectors are quantized using the Zn spherical LVQ. The encoding procedure 
of a single stage or pass LVQ process is summarized below:  
1. Scale the input vectors.  

a. Obtained an energy list from the input vector list. Let iE  be the individual element in the 

energy list set. 2
N

i j
j

E X=∑  where j  is the column and i  is the row of a matrix respectively 

while N is the dimension of the vector. 

b. Find the maximum energy from the list ( )maxE . 

c. Define the energy list normalized factor β ( ( )0 1β< ≤ ), where 1 indicates the maximum 

energy. 

d. Define selected energy: maxsE E β= ×⎢ ⎥⎣ ⎦  where .⎢ ⎥⎣ ⎦ is a floor function. 

e. Scaling factor: sE

m
α =  

f. Scale vectors are obtained by dividing each input vectors by the scaling factor α .  

2. The scaled vectors are quantized using the nZ lattice quantizing algorithm.  

3. The output vectors of this algorithm are checked to make sure that they are confined in the 
chosen spherical codebook radius m .   

4. If the output vectors exceed the codebook radius m  then they are rescaled and remapped to the 

nearest valid codeword to produce the final quantized vectors ( )QV .  

In lattice VQ, the vectors can be scaled in such a way that the resulting scaled vector will 

reside in one of the three combinations of regions i.e. the granular region, overlap regions, 

or both. The normalized factor β serves as the indicator as where the scaled vectors would 

reside in one of these three regions. If the value of β is 1 all the scaled vectors are in the 

granular region. For example, if the value is 0.8 the majority of the scaled vectors are in the 

granular region, and few are in the overlap region. Therefore, the optimum value of β is 

obtained from experiment. In the experiment the value of β starting from 0.5 up to 0.9 with 

0.01 increments are used. Each time the image is reconstructed, and the value of PSNR is the 

calculated. Therefore, the optimum β is found from the best value of PSNR. This value will 

be used in the first stage or pass of multistage LVQ and the subsequent LVQ stages the 

scaled vectors are forced to reside only in granular regions ( )1β = . This is because the 

quantization errors data have small magnitude variation. 
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3.4 MLVQ encoder  

The multistage LVQ (MLVQ) process is illustrated in Figure 6 using an example of a 

particular group subband. In each LVQ pass three outputs i.e. the scale factor ( )α , 

quantized vectors ( )QV , and the quantization error vectors ( )QE  are produced. At every 

pass, the quantized vectors ( )QV  are obtained using the spherical nZ  LVQ. If the four-

dimensional vectors are quantized, and if the origin is included, the outer lattice point will 

be removed to accommodate the origin. 

The first LVQ stage processes the significant vectors and produces a scale factor ( )1α , the 

quantized vectors ( )1QV or codewords, and the quantization error vectors ( )1QE  etc. Then 

the quantization error vectors ( )1QE  are “blown out” by multiplying them with the current 

stage scale factor ( )1α . They are then used as the input vectors for the subsequent LVQ 

stage, and this process repeats up to stage K.  Figure 7 illustrates the resulting K-stage 

codebook generation and the corresponding indexes of a particular subband. Next, the 

index sequences of the K-stage codebook are variable length coded. 
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Fig. 7. MLVQ process of a particular subband 

The flow diagram of MLVQ algorithm that process all the high frequency subbands as well 
as a simple bit allocation procedure is described in Figure 8. In this work, a three-level DWT 

system ( )max 3L =  results in nine subbands. The encoding process starts from the lower 

frequency subbands towards the higher frequency subbands. This is because the lower  
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For Joint subband type = 1 

Joint Subband type: 
1 = HL 
2 = HH  
3 = LH 

•  Calculate encoded baseband bits 

•  Leftover bits = allocated bits - baseband bit

Leftover bits > 0 

Y

For DWT level = Lmax : 1

Scale the significant vectors (k=1) or QE 
vectors, and save into a scale record 

Vector quantize the scaled vectors, and 
save into a quantized vectors record 

Quantization error vectors = (scaled 
vectors – quantized vectors) x significant 
vectors scale (M = 1) or input vectors 
scale. 

Input vector = quantization errors vectors

•  Calculate the encoded joint high 
frequency bits 

•  Calculate leftover bits 

•   increment M 

Leftover bits > 0

Y

N

N

Prompt user 
inadequate 
bit allocation 

END 

 

Fig. 8. Flow diagram of MLVQ algorithm 
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subbands contain more important information and therefore have more impact on the 
reconstructed image.  
In this work, a simple bit allocation procedure is employed. The encoder calculates first the 
corresponding amount of bit usage for the lower subband. Then, the left over bits for high 
frequency subbands is obtained by subtracting this amount from the total bit allocated. 
Subsequently, the high frequency subbands are encoded starting from the joint HL, HH, and 
LH subbands. In each joint subband the amount of encoded bits used is calculated, and the 
leftover bit is obtained. The encoding process continues for the subsequence quantization 
stage if all the three high frequency subbands have been encoded. The process ends when 
the left over bit is exhausted.  In this work, the experimental data has prevailed that the 
optimum performance of the codec occurs when there are three multistage processes to 
encode the video sequence. 
In this algorithm, the residual data or quantization error vectors are captured and sent to the 
decoder to increase the reconstruction of frames quality. The quantization errors vectors are 
produced and magnified as the extra set of input vectors to be quantized. The advantage of 
magnifying the quantization errors vectors is that many vectors which have components 
near zero can be quantized to many more lattice points during the subsequent LVQ stages. 
Thus, more quantization errors can be captured and the MLVQ can produce better frame 
quality. 

4. MLVQ video transmission system    

The block diagram of the MLVQ video codec for transmission in mobile channel is shown in 
Figure 9. The Lossy Video Compression is the same process as the MLVQ encoder which 
encodes the video sequence with some compression gain. The compressed bitstream is then 
classified according to a predefine syntax structure in the Bitstream Constructor process. In 
this stage the bitstream is enciphered into two parts i.e. the header and texture. In the RS 
Encoder process the forward error correction (FEC) codes are added to the bitstream using 
Reed Solomon codes (Reed & Solomon, 60). In the next stage, the coded header and texture  
 

 

Fig. 9. Block diagram of MLVQ video transmission 
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are combined together in and alternating structure before they are passed through the 
TETRA Channel simulator. The received data are first de-multiplexed to the header and 
texture bitstreams. Then the RS Decoder process eliminates the added bit redundancy in the 
coded bitstreams. Then, the Bitstream Decomposer process deciphers the received bitstreams 
to the meaningful data for video decoding. The final stage is the Lossy Video Reconstruction 
process, where the compressed video sequence is reconstructed. The bitstream syntaxes are 
protected using the forward error correction codes (FEC) using the RS codes before they are 
transmitted in mobile channels. In this work, two error resilient schemes are developed i.e. 
the Equal Error Protection (UEP) and Unequal Error Protection (EEP) schemes. 

4.1 Unequal error protection  

In this work the shortened Reed Solomon codes are selected for forward error correction 
due to their burst error and erasure correcting capabilities, which makes them suitable to be 
used for error correction in mobile applications. Table 1 shows the properties of the 
shortened RS codes for FEC (Akbari, 2004).  
 

Original 
Code 

Shortened  
Code 

Code 
rate 

Errors/Erasures  
Corrected 

RS (255 , 237) RS (54 , 36) 2/3 9 errors/18 erasures 

RS (255 , 219) RS (54 , 18) 1/3 18 errors/36 erasures 

RS (255 , 215) RS (54 , 14) 1/4 20 errors/40 erasures 

Table 1. RS codes properties (Akbari, 2004). 

The UEP scheme applied to the MLVQ codec is shown in Figure 10. The labels 1S  and 2S  

represent the streams of different levels of priority produced by the MLVQ encoder. 

The 1C and 2C  denote the channel codes being used with rates of 1r  and 2r  respectively, 

where 1 2r r< .  
 

   
 
MUX 

Coded  
bitstream 

Video 
in

2S

1S

 
MLVQ 
Video 
Encoder

2C

1C

 
Fig. 10. UEP scheme for MLVQ video codec 

The MLVQ video codec bitstream is partitioned into a header and texture syntaxes. The 

header field contains parameters that can potentially cause decoding failure or loss of 

synchronisation, while the texture data defines the quality of the decoded frames without 

having any influence on the decoding process or codec synchronization. The purpose of 

partitioning the video bitstream is to have the UEP scheme where the header data are 

protected with more bit redundancy (code rate 1r ) and the texture data is protected with 

less bit redundancy (code rate 2r ) where 1 2r r< .  
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The header data for each group of pictures (GOPs) contains important  data for decoding 

such as picture start code, quad-tree parameters (MAP sequence), index sequence and scale 

list, which are transmitted through the channel with code rate 1r . The texture data contain 

the low frequency subband data are passed through the channel with code rate 2r . In this 

work the code rate of 1 1 4r =  and 2 2 3r = are used UEP scheme. The bit allocation for each 

group of pictures takes into account the additional bits consumed by the UEP scheme in the 

following way:  

• Suppose F is the allocated bits for a GOP 

• First, calculate the LL subands bits used after lossless coding 

• Then, computes the bits used to encode the texture data:
2

1
TXT LLbit bit

r
= ×   

• Then, calculate the left over bits: LFOVR TXTbit F bit= −  

• Thus, bits requires to encode header is given: 1HDR LFOVRbit bit r= ×  

4.2 Equal Error Protection (EEP)  

The equal error protection (EEP) uses the same amount of bit redundancy to protect both 
header and texture data. In this work, this scheme is developed for the purpose of 
comparing the performance of the MLVQ video codec with EEP with the H.263 video 
standard with EEP scheme. In addition, for further comparison with the current video 
coding standard, the the EEP scheme for H.264 has also been developed. The bitstream of 
H.264 format obtained from the JM reference software version 10.1 (JM H.264, 
http://iphome.hhi.de/suehring/tml/) is protected globally with the RS codes before 
sending the protected bitstream through TETRA channel. In this work the code rate of 1/3 is 

used for the protection of the source data for both 1C and 2C . 

5. Results 

This section presents the results of video transmission on error free channel. In this 
experiment the performance of the proposed MLVQ video codec is compared with the 
AJSVQ (Akbari & Soraghan, 2003) over noiseless channel in order to show the incremental 
results. The performance comparison with other video standards is also conducted for 
various bit rates. Then, the performance comparison between the codecs in mobile channels 
using the TETRA channel simulator is conducted.  

5.1 Transmission in error free channel  

The error free channel assumes an ideal channel condition with no lost to video data. All of 

the test video sequences used are in the form of Quarter Common Intermediate Format 

(QCIF) format. In this format, the luminance components consist of 144 176×  pixels, while 

the chrominance components have 72 88×  pixels. The optimized value found from 

experiment for the normalized energy factor ( )0.76β = . This value is used in spherical LVQ 

encoding scheme of the first stage or pass of the multistage quantization process found after 

using “Foreman”, “Carphone”, “Miss America” and “Salesman” video sequences. The value 

is used throughout the high frequency subbands encoding process. In the subsequent passes 

of the MLVQ scheme the value is set to one ( )1.0β = . 
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A preliminary experiment is conducted as to show the incremental performance of the new 

MLVQ video codec, where the test video sequence “Miss America” is first encoded using 

64kbps at 8 fps and compared to the non-predictive video codecs. In this case, the 

performance results are compared to the motion JPEG2000 standard and AJSVQ video 

codec (Akbari & Soraghan, 2003) (Akbari 2003). In order to emulate the motion JPEG2000 

video scheme, the individual gray frame of “Miss America” of size 176x144 pixels per frame 

is coded using the JPEG2000 image still coding standard. Fig. 11 below shows the relative 

performance of the first frame of “Miss America” sequence between MLVQ and AJSVQ. 

Other test sequences like “Salesman” and “Carphone” are also used in simulation. Fig. 12 

and Fig. 13 show the results taken at various bit rates for frame rate of 12 fps. The results 

show that in noiseless environment H.264 always has the best performance as compared to 

the rest of the codecs. 
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Fig. 11. Relative performance of “Miss America” at 8 fps 
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Fig. 12. “Salesman” over noiseless channel 
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Fig. 13. “Carphone” over noiseless channel 

5.2 Transmission in mobile channels  

In this subsection, two experimental results will be presented. First, the performance 

comparison results between the proposed MLVQ video codec with H.263 are presented. 

Secondly, the comparison performance results of the new codec against H.264 video 

standard are also presented.  

5.3 Comparison with H.263  

In this experiment the H.263+ encoder that employs Annexes D (Advanced Prediction 

Mode), F (Unrestricted Motion Vectors) and G (PB-frames) is used for simulation. The 

shortened RS codes with code rate of 1/3 and block interleaving at a depth of four with each 

ECC are utilized to equally protect the compressed H.263 bitstream and mitigate the effects 

of burst errors. The Bad Urban (BU) and Hilly Terrain (HT) environments with channel SNR 

equal to 18 dBs of the TETRA channel simulator (ETSI, 95) are used in the experiment. The 

video is encoded using bit rate 64 kb/s and frame rate of 15 fps throughout this experiment.  

Fig. 14 and Fig. 15 show the performance of the ‘Foreman’ and ‘Carphone’ test sequences 
particularly on frame rate 15 fps, at 18 dB channel SNR in bad urban (BU) and hilly terrain 
(HT) mobile environments respectively. The results show the performance of MLVQ with 
UEP is always better than the MLVQ with EEP. The performance of the MLVQ codec with 
EEP scheme is also compared to the H.263 with EEP schemes. This gives a fair comparison 
since both codecs use the same technique for error protection. The performance of MLVQ 
with UEP scheme is then compared to the MLVQ with EEP scheme to show the 
improvement gain due to the UEP scheme. 

5.4 Comparison with H.264  

In this experiment, MLVQ codec with UEP scheme has been chosen since it offers the best 
performance of forward error correction scheme. The baseline profile of the H.264 standard 
(JM H.264, http://iphome.hhi.de/suehring/tml/) is used since it is used for application in 
mobile environment. The baseline profile H.264 is equipped with the error resilient tools  
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Fig. 14. “Foreman” sequence over BU18 channel, 15 fps. 
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Fig. 15. “Carphone” sequence over HT18 channel, 15 fps. 
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such as redundant slices, flexible macroblock ordering, macroblock line intra refreshing and 

feedback channel. However, the baseline profile does not support data partition. Hence, the 

equal error protection (EEP) scheme with RS code rate ¼ is used for bits error protection 

before being transmitted in the mobile channels. In this experiment the TETRA Hilly Terrain 

(HT) channel is used as the mobile environment. The test sequences “Foreman”, 

“Carphone” and “Miss America” with bit rate of 64kbits/s and frame rate at 15 fps are used. 

In this experiment, the MLVQ codec are compared to the H.264 with error resilient tools 

enabled. Table 2 below summarizes the error resilient tool used in the experiment. 

 
 
 
 

Error resilient tool features H.264 bitstream 

Slice mode 50 MB per slice 

Error concealment No 

Redundant slices No 

FMO Interleave mode 

MB line intra refreshing Yes 

Feedback channel No 

 
 

Table 2. Error resilient tools used in H.264 video standard 

Table 3 shows the average PSNR obtained for the two codecs, where the average PSNR of 

H.264 is higher than MLVQ codec. This is due to the fact that the PSNR values of the earlier 

decoded H.264 frames are always higher. As the number of frame gets higher the PSNR 

values of H.264 are comparable to MLVQ as shown in Figure 16. 

 
 
 
 

H.264 MLVQ  Mobile 
Environment 

Sequence 
PSNR PSNR 

Carphone 25.36 21.70 

Foreman 24.43 21.80 HT 
Miss America 

31.20 29.86 

 
 

Table 3. Average PSNR of test sequences as compared to H.264 at SNR18dB 
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Fig. 16. “Foreman” sequence over HT18 channel 

6. Conclusion    

In this paper the multistage lattice vector quantization (MLVQ) coding scheme for mobile 

applications has been presented. The video codec groups the video sequence into a group of 

m-frames by grouping the high frequency subbands from each frame. The significant 

coefficients or vectors are then quantized using the MLVQ coding. The lattice vector 

quantization offers less amount of computation in generating the codebook due to its 

regular structure. Since the codebook generation does not require any computation, this 

facilitates the use of multistage quantization process to capture the quantization residual 

errors. This enhances the reconstructed frame quality. In noiseless environment, MLVQ is 

always inferior from the H.263 and H.264 standard codecs. However, the performance of the 

non-predictive MLVQ scheme is superior to the H.263 in mobile environment since the new 

video codec does not contain any motion vectors data. The non-predictive MLVQ codec 

performs comparably near to the performance of the latest H.264 video codec in erroneous 

mobile channels.  

7. Future research    

The forward error correction adds redundant bits to the coded bitstream, which allows the 

decoder to correct errors up to certain level. However, this reduces compression ratio. 

Moreover, the FEC must be designed with the assumption of the worst case scenario. If for 

example, the coded video is transmitted through an error-free channel, the additional bits 

are unnecessary. In another situation, where the channel might have highly variable quality 

the worst case situation also vary. Therefore, this suggests the need to employ the very 

powerful codes. In other words, these scenarios address a problem of efficient bits allocation 

for forward error correction technique, while minimizing the reduction of compression 

ratio. One area of future direction could be to investigate the use of multiple descriptions 
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coding (MDC). In this way, the joint source i.e. the MLVQ video data and the channel 

coding method could provide an effective way for error resilience with relatively small 

reduction in compression ratio.   
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